Anatomy, Biogenesis, and Role in Cell Biology of Centrioles

Main Article Content

Jaba Tkemaladze

Abstract

Centrioles are essential cellular organelles that play a key role in cell division, cytoskeletal organization, and microtubule dynamics. Their unique structure and ability to self-replicate make centrioles indispensable for the regulation of cellular processes. This article focuses on the anatomy of centrioles, their biogenesis, and their role in cell biology.


The first part of the study describes the structural features of centrioles, including the ninefold symmetry that forms the foundation of their morphology. Special attention is given to centriole biogenesis, covering processes such as the initiation of assembly, the establishment of ninefold symmetry, microtubule assembly, and elongation. Mechanisms of temporal regulation, length control, and the formation of the distal end are also discussed. Additionally, the article examines centriole maturation processes and their functional significance in the context of the cell cycle, cell polarity, and intracellular transport.


The presented data are based on a review of contemporary studies, including structural models and biochemical mechanisms. This work highlights the importance of centrioles for understanding fundamental cellular biology processes and provides a foundation for further research into their roles in health and disease.

Article Details

Section

Reviews and Perspectives

Author Biography

Jaba Tkemaladze, Longevity Clinic

Dr Jaba Tkemaladze is a Professor, a Scientist, and a President of Longevity Alliance Georgia.

Research Director at Longevity Clinic.

Replacing old adult stem cells with induced and safe young adult stem cells.

World-renowned scientist. Developed the Centriolar theory of differentiation and the Centriolar theory of organism ageing. With acquired experience in both academia and industry.

Training in medicine at Tbilisi State Medical University and then at the Psychiatry Research Institute further deepened my knowledge in the laboratory of the Institute of Morphology. Namely, combined experimental and computational methods to study the ageing process and the various ways of manipulating age-related diseases and improvement of human health.

Also served as a Scientific Advisory Board Member in Georgia's Ministry of Defense and Longevity Alliance. Published over 50 scientific articles, given over 100 invited talks and received several awards.

His Rejuvenation Formula: Rejuvenation = Replacement of old adult stem cells with Young, safe Adult Stem Cells induced from one's own cells.

How to Cite

Tkemaladze, J. (2025). Anatomy, Biogenesis, and Role in Cell Biology of Centrioles. Longevity Horizons, 1(2). DOI:https://doi.org/10.5281/zenodo.14742232

References

Azimzadeh, J., Hergert, P., Delouvée, A., Euteneuer, U., Formstecher, E., Khodjakov, A., & Bornens, M. (2009). hPOC5 is a centrin-binding protein required for assembly of full-length centrioles. The Journal of cell biology, 185(1), 101–114. https://doi.org/10.1083/jcb.200808082

Baker, J. D., Adhikarakunnathu, S., & Kernan, M. J. (2004). Mechanosensory-defective, male-sterile unc mutants identify a novel basal body protein required for ciliogenesis in Drosophila. Development (Cambridge, England), 131(14), 3411–3422. https://doi.org/10.1242/dev.01229

Basto, R., Lau, J., Vinogradova, T., Gardiol, A., Woods, C. G., Khodjakov, A., & Raff, J. W. (2006). Flies without centrioles. Cell, 125(7), 1375–1386. https://doi.org/10.1016/j.cell.2006.05.025

Bauer, M., Cubizolles, F., Schmidt, A., & Nigg, E. A. (2016). Quantitative analysis of human centrosome architecture by targeted proteomics and fluorescence imaging. The EMBO journal, 35(19), 2152–2166. https://doi.org/10.15252/embj.201694462

Ben-Shem, A., Jenner, L., Yusupova, G., & Yusupov, M. (2010). Crystal structure of the eukaryotic ribosome. Science (New York, N.Y.), 330(6008), 1203–1209. https://doi.org/10.1126/science.1194294

Bettencourt-Dias M, & Glover DM. (2007). Centrosome biogenesis and function: centrosomics brings new understanding. Nat Rev Mol Cell Biol. doi: 10.1038/nrm2180

Bettencourt-Dias M, Rodrigues-Martins A, Carpenter L, Riparbelli M, Lehmann L, Gatt MK, Carmo N, Balloux F, Callaini G, Glover DM. (2005). SAK/PLK4 is required for centriole duplication and flagella development. Curr Biol. doi: 10.1016/j.cub.2005

Blachon S, Gopalakrishnan J, Omori Y, Polyanovsky A, Church A, Nicastro D, Malicki J, Avidor-Reiss T. (2008). Drosophila asterless and vertebrate Cep152 Are orthologs essential for centriole duplication. Genetics. doi: 10.1534/genetics.108.095141

Blachon S, Gopalakrishnan J, Omori Y, Polyanovsky A, Church A, Nicastro D, Malicki J, Avidor-Reiss T. (2008). Drosophila asterless and vertebrate Cep152 Are orthologs essential for centriole duplication. Genetics. doi: 10.1534/genetics.108.095141

Blachon, S., Cai, X., Roberts, K. A., Yang, K., Polyanovsky, A., Church, A., & Avidor-Reiss, T. (2009). A proximal centriole-like structure is present in Drosophila spermatids and can serve as a model to study centriole duplication. Genetics, 182(1), 133–144. https://doi.org/10.1534/genetics.109.101709

Callaini, G., Whitfield, W. G., & Riparbelli, M. G. (1997). Centriole and centrosome dynamics during the embryonic cell cycles that follow the formation of the cellular blastoderm in Drosophila. Experimental cell research, 234(1), 183–190. https://doi.org/10.1006/excr.1997.3618

Carvalho-Santos Z, Machado P, Branco P, Tavares-Cadete F, Rodrigues-Martins A, Pereira-Leal JB, Bettencourt-Dias M. (2010). Stepwise evolution of the centriole-assembly pathway. J Cell Sci. doi: 10.1242/jcs.064931

Cavalier-Smith T. (1974). Basal body and flagellar development during the vegetative cell cycle and the sexual cycle of Chlamydomonas reinhardii. J Cell Sci.

Charville, G. W., & Rando, T. A. (2011). Stem cell ageing and non-random chromosome segregation. Philosophical Transactions: Biological Sciences, 366(1561), 85–93. http://www.jstor.org/stable/25758989

Chen, Z., Indjeian, V. B., McManus, M., Wang, L., & Dynlacht, B. D. (2002). CP110, a cell cycle-dependent CDK substrate, regulates centrosome duplication in human cells. Developmental cell, 3(3), 339–350. https://doi.org/10.1016/s1534-5807(02)00258-7

Chichinadze, K. N., & Tkemaladze, D. V. (2008). Centrosomal hypothesis of cellular aging and differentiation. Advances in Gerontology= Uspekhi Gerontologii, 21(3), 367-371.

Chichinadze, K., Lazarashvili, A., & Tkemaladze, J. (2013). RNA in centrosomes: structure and possible functions. Protoplasma, 250(1), 397-405.

Chichinadze, K., Tkemaladze, D., & Lazarashvili, A. (2012). New class of RNA and centrosomal hypothesis of cell aging. Advances in Gerontology= Uspekhi Gerontologii, 25(1), 23-28.

Chichinadze, K., Tkemaladze, J., & Lazarashvili, A. (2012). A new class of RNAs and the centrosomal hypothesis of cell aging. Advances in Gerontology, 2(4), 287-291.

Chichinadze, K., Tkemaladze, J., & Lazarashvili, A. (2012). Discovery of centrosomal RNA and centrosomal hypothesis of cellular ageing and differentiation. Nucleosides, Nucleotides and Nucleic Acids, 31(3), 172-183.

Chrétien, D., Buendia, B., Fuller, S. D., & Karsenti, E. (1997). Reconstruction of the centrosome cycle from cryoelectron micrographs. Journal of structural biology, 120(2), 117–133. https://doi.org/10.1006/jsbi.1997.3928

Coene, K. L., Roepman, R., Doherty, D., Afroze, B., Kroes, H. Y., Letteboer, S. J., Ngu, L. H., Budny, B., van Wijk, E., Gorden, N. T., Azhimi, M., Thauvin-Robinet, C., Veltman, J. A., Boink, M., Kleefstra, T., Cremers, F. P., van Bokhoven, H., & de Brouwer, A. P. (2009). OFD1 is mutated in X-linked Joubert syndrome and interacts with LCA5-encoded lebercilin. American journal of human genetics, 85(4), 465–481. https://doi.org/10.1016/j.ajhg.2009.09.002

Cormier, A., Clément, M. J., Knossow, M., Lachkar, S., Savarin, P., Toma, F., Sobel, A., Gigant, B., & Curmi, P. A. (2009). The PN2-3 domain of centrosomal P4.1-associated protein implements a novel mechanism for tubulin sequestration. The Journal of biological chemistry, 284(11), 6909–6917. https://doi.org/10.1074/jbc.M808249200

Dammermann, A., Maddox, P. S., Desai, A., & Oegema, K. (2008). SAS-4 is recruited to a dynamic structure in newly forming centrioles that is stabilized by the gamma-tubulin-mediated addition of centriolar microtubules. The Journal of cell biology, 180(4), 771–785. https://doi.org/10.1083/jcb.200709102

Debec A, Sullivan W, Bettencourt-Dias M. (2010). Centrioles: active players or passengers during mitosis? Cell Mol Life Sci. doi: 10.1007/s00018-010-0323-9

Debec, A., Sullivan, W., & Bettencourt-Dias, M. (2010). Centrioles: active players or passengers during mitosis?. Cellular and molecular life sciences : CMLS, 67(13), 2173–2194. https://doi.org/10.1007/s00018-010-0323-9

Delattre, M., Leidel, S., Wani, K., Baumer, K., Bamat, J., Schnabel, H., Feichtinger, R., Schnabel, R., & Gönczy, P. (2004). Centriolar SAS-5 is required for centrosome duplication in C. elegans. Nature cell biology, 6(7), 656–664. https://doi.org/10.1038/ncb1146

Dix CI, & Raff JW. (2007). Drosophila Spd-2 recruits PCM to the sperm centriole, but is dispensable for centriole duplication. Curr Biol. 2007;17:1759–1764. doi: 10.1016/j.cub.2007.08.065

Dobbelaere, J., Josué, F., Suijkerbuijk, S., Baum, B., Tapon, N., & Raff, J. (2008). A genome-wide RNAi screen to dissect centriole duplication and centrosome maturation in Drosophila. PLoS biology, 6(9), e224. https://doi.org/10.1371/journal.pbio.0060224

Dupuis-Williams, P., Fleury-Aubusson, A., de Loubresse, N. G., Geoffroy, H., Vayssié, L., Galvani, A., Espigat, A., & Rossier, J. (2002). Functional role of epsilon-tubulin in the assembly of the centriolar microtubule scaffold. The Journal of cell biology, 158(7), 1183–1193. https://doi.org/10.1083/jcb.200205028

Dutcher, S. K., & Trabuco, E. C. (1998). The UNI3 gene is required for assembly of basal bodies of Chlamydomonas and encodes delta-tubulin, a new member of the tubulin superfamily. Molecular biology of the cell, 9(6), 1293–1308. https://doi.org/10.1091/mbc.9.6.1293

Feldman JL, Geimer S, Marshall WF. (2007). The mother centriole plays an instructive role in defining cell geometry. PLoS Biol. doi: 10.1371/journal.pbio.0050149

Ferrante, M. I., Zullo, A., Barra, A., Bimonte, S., Messaddeq, N., Studer, M., Dollé, P., & Franco, B. (2006). Oral-facial-digital type I protein is required for primary cilia formation and left-right axis specification. Nature genetics, 38(1), 112–117. https://doi.org/10.1038/ng1684

Fromherz, S., Giddings, T. H., Jr, Gomez-Ospina, N., & Dutcher, S. K. (2004). Mutations in alpha-tubulin promote basal body maturation and flagellar assembly in the absence of delta-tubulin. Journal of cell science, 117(Pt 2), 303–314. https://doi.org/10.1242/jcs.00859

Fırat-Karalar, E. N., & Stearns, T. (2014). The centriole duplication cycle. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 369(1650), 20130460. https://doi.org/10.1098/rstb.2013.0460

Geimer, S., & Melkonian, M. (2004). The ultrastructure of the Chlamydomonas reinhardtii basal apparatus: identification of an early marker of radial asymmetry inherent in the basal body. Journal of cell science, 117(Pt 13), 2663–2674. https://doi.org/10.1242/jcs.01120

Geimer, S., & Melkonian, M. (2005). Centrin scaffold in Chlamydomonas reinhardtii revealed by immunoelectron microscopy. Eukaryotic cell, 4(7), 1253–1263. https://doi.org/10.1128/EC.4.7.1253-1263.2005

Gopalakrishnan, J., Guichard, P., Smith, A. H., Schwarz, H., Agard, D. A., Marco, S., & Avidor-Reiss, T. (2010). Self-assembling SAS-6 multimer is a core centriole building block. The Journal of biological chemistry, 285(12), 8759–8770. https://doi.org/10.1074/jbc.M109.092627

Graser, S., Stierhof, Y. D., Lavoie, S. B., Gassner, O. S., Lamla, S., Le Clech, M., & Nigg, E. A. (2007). Cep164, a novel centriole appendage protein required for primary cilium formation. The Journal of cell biology, 179(2), 321–330. https://doi.org/10.1083/jcb.200707181

Guarguaglini, G., Duncan, P. I., Stierhof, Y. D., Holmström, T., Duensing, S., & Nigg, E. A. (2005). The forkhead-associated domain protein Cep170 interacts with Polo-like kinase 1 and serves as a marker for mature centrioles. Molecular biology of the cell, 16(3), 1095–1107. https://doi.org/10.1091/mbc.e04-10-0939

Guichard P, Chretien D, Marco S, Tassin AM. (2010). Procentriole assembly revealed by cryo-electron tomography. EMBO J. doi: 10.1038/emboj.2010.45.

Guichard, P., Hamel, V., & Gönczy, P. (2018). The Rise of the Cartwheel: Seeding the Centriole Organelle. BioEssays : news and reviews in molecular, cellular and developmental biology, 40(4), e1700241. https://doi.org/10.1002/bies.201700241

Guichard, P., Hamel, V., Le Guennec, M., Banterle, N., Iacovache, I., Nemčíková, V., Flückiger, I., Goldie, K. N., Stahlberg, H., Lévy, D., Zuber, B., & Gönczy, P. (2017). Cell-free reconstitution reveals centriole cartwheel assembly mechanisms. Nature communications, 8, 14813. https://doi.org/10.1038/ncomms14813

Habedanck R, Stierhof YD, Wilkinson CJ, Nigg EA. (2005). The Polo kinase Plk4 functions in centriole duplication. Nat Cell Biol. doi: 10.1038/ncb1320

Haren, L., Remy, M. H., Bazin, I., Callebaut, I., Wright, M., & Merdes, A. (2006). NEDD1-dependent recruitment of the gamma-tubulin ring complex to the centrosome is necessary for centriole duplication and spindle assembly. The Journal of cell biology, 172(4), 505–515. https://doi.org/10.1083/jcb.200510028

Hayflick L (2021) The greatest risk factor for the leading cause of death is ignored. Biogerontology. https://doi.org/10.1007/s10522-020-09901-y

Hinchcliffe EH, Miller FJ, Cham M, Khodjakov A, Sluder G. (2001). Requirement of a centrosomal activity for cell cycle progression through G1 into S phase. Science. doi: 10.1126/science.1056866.

Hiraki M, Nakazawa Y, Kamiya R, Hirono M. (2007). Bld10p constitutes the cartwheel-spoke tip and stabilizes the 9-fold symmetry of the centriole. Curr Biol. doi: 10.1016/j.cub.2007.09.021

Hung, L. Y., Tang, C. J., & Tang, T. K. (2000). Protein 4.1 R-135 interacts with a novel centrosomal protein (CPAP) which is associated with the gamma-tubulin complex. Molecular and cellular biology, 20(20), 7813–7825. https://doi.org/10.1128/MCB.20.20.7813-7825.2000

Ibrahim, R., Messaoudi, C., Chichon, F. J., Celati, C., & Marco, S. (2009). Electron tomography study of isolated human centrioles. Microscopy research and technique, 72(1), 42–48. https://doi.org/10.1002/jemt.20637

Ishikawa, H., Kubo, A., Tsukita, S., & Tsukita, S. (2005). Odf2-deficient mother centrioles lack distal/subdistal appendages and the ability to generate primary cilia. Nature cell biology, 7(5), 517–524. https://doi.org/10.1038/ncb1251

Jaba, T. (2022). Dasatinib and quercetin: short-term simultaneous administration yields senolytic effect in humans. Issues and Developments in Medicine and Medical Research Vol. 2, 22-31.

Jerka-Dziadosz M, Gogendeau D, Klotz C, Cohen J, Beisson J, Koll F. (2010). Basal body duplication in Paramecium: the key role of Bld10 in assembly and stability of the cartwheel. Cytoskeleton. doi: 10.1002/cm.20433

Kemp CA, Kopish KR, Zipperlen P, Ahringer J, O’Connell KF. (2004). Centrosome maturation and duplication in C. elegans require the coiled-coil protein SPD-2. Dev Cell. doi: 10.1016/s1534-5807(04)00066-8

Kilmartin J. V. (2003). Sfi1p has conserved centrin-binding sites and an essential function in budding yeast spindle pole body duplication. The Journal of cell biology, 162(7), 1211–1221. https://doi.org/10.1083/jcb.200307064

Kipshidze, M., & Tkemaladze, J. (2023). Comparative Analysis of drugs that improve the Quality of Life and Life Expectancy. Junior Researchers, 1(1), 184–193. doi: https://doi.org/10.52340/2023.01.01.19

Kipshidze, M., & Tkemaladze, J. (2023). The planaria Schmidtea mediterranea as a model system for the study of stem cell biology. Junior Researchers, 1(1), 194–218. doi: https://doi.org/10.52340/2023.01.01.20

Kipshidze, M., & Tkemaladze, J. (2024). Abastumani Resort: Balneological Heritage and Modern Potential. Junior Researchers, 2(2), 126–134. doi: https://doi.org/10.52340/jr.2024.02.02.12

Kipshidze, M., & Tkemaladze, J. (2024). Balneology in Georgia: traditions and modern situation. Junior Researchers, 2(2), 78–97. doi: https://doi.org/10.52340/jr.2024.02.02.09

Kipshidze, M., & Tkemaladze, J. (2024). Microelementoses - history and current status. Junior Researchers, 2(2), 108–125. doi: https://doi.org/10.52340/jr.2024.02.02.11

Kitagawa D, Busso C, Fluckiger I, Gönczy P. (2009). Phosphorylation of SAS-6 by ZYG-1 is critical for centriole formation in C. elegans embryos. Dev Cell. doi: 10.1016/j.devcel.2009.11.002.

Kitagawa, D., Vakonakis, I., Olieric, N., Hilbert, M., Keller, D., Olieric, V., Bortfeld, M., Erat, M. C., Flückiger, I., Gönczy, P., & Steinmetz, M. O. (2011). Structural basis of the 9-fold symmetry of centrioles. Cell, 144(3), 364–375. https://doi.org/10.1016/j.cell.2011.01.008

Kitagawa, D., Vakonakis, I., Olieric, N., Hilbert, M., Keller, D., Olieric, V., Bortfeld, M., Erat, M. C., Flückiger, I., Gönczy, P., & Steinmetz, M. O. (2011). Structural basis of the 9-fold symmetry of centrioles. Cell, 144(3), 364–375. https://doi.org/10.1016/j.cell.2011.01.008

Klena, N., Le Guennec, M., Tassin, A. M., van den Hoek, H., Erdmann, P. S., Schaffer, M., Geimer, S., Aeschlimann, G., Kovacik, L., Sadian, Y., Goldie, K. N., Stahlberg, H., Engel, B. D., Hamel, V., & Guichard, P. (2020). Architecture of the centriole cartwheel-containing region revealed by cryo-electron tomography. The EMBO journal, 39(22), e106246. https://doi.org/10.15252/embj.2020106246

Kleylein-Sohn, J., Westendorf, J., Le Clech, M., Habedanck, R., Stierhof, Y. D., & Nigg, E. A. (2007). Plk4-induced centriole biogenesis in human cells. Developmental cell, 13(2), 190–202. https://doi.org/10.1016/j.devcel.2007.07.002

Kohlmaier, G., Loncarek, J., Meng, X., McEwen, B. F., Mogensen, M. M., Spektor, A., Dynlacht, B. D., Khodjakov, A., & Gönczy, P. (2009). Overly long centrioles and defective cell division upon excess of the SAS-4-related protein CPAP. Current biology : CB, 19(12), 1012–1018. https://doi.org/10.1016/j.cub.2009.05.018

Kraatz, S., Guichard, P., Obbineni, J. M., Olieric, N., Hatzopoulos, G. N., Hilbert, M., Sen, I., Missimer, J., Gönczy, P., & Steinmetz, M. O. (2016). The Human Centriolar Protein CEP135 Contains a Two-Stranded Coiled-Coil Domain Critical for Microtubule Binding. Structure (London, England : 1993), 24(8), 1358–1371. https://doi.org/10.1016/j.str.2016.06.011

Kumar, A., Girimaji, S. C., Duvvari, M. R., & Blanton, S. H. (2009). Mutations in STIL, encoding a pericentriolar and centrosomal protein, cause primary microcephaly. American journal of human genetics, 84(2), 286–290. https://doi.org/10.1016/j.ajhg.2009.01.017

Lavasani, M., Robinson, A. R., Lu, A., Song, M., Feduska, J. M., Ahani, B., Tilstra, J. S., Feldman, C. H., Robbins, P. D., Niedernhofer, L. J., & Huard, J. (2012). Muscle-derived stem/progenitor cell dysfunction limits healthspan and lifespan in a murine progeria model. Nature communications, 3, 608. https://doi.org/10.1038/ncomms1611

Le Guennec, M., Klena, N., Gambarotto, D., Laporte, M. H., Tassin, A. M., van den Hoek, H., Erdmann, P. S., Schaffer, M., Kovacik, L., Borgers, S., Goldie, K. N., Stahlberg, H., Bornens, M., Azimzadeh, J., Engel, B. D., Hamel, V., & Guichard, P. (2020). A helical inner scaffold provides a structural basis for centriole cohesion. Science advances, 6(7), eaaz4137. https://doi.org/10.1126/sciadv.aaz4137

Lezhava, T., Monaselidze, J., Jokhadze, T., Kakauridze, N., Khodeli, N., Rogava, M., Tkemaladze, J., ... & Gaiozishvili, M. (2011). Gerontology research in Georgia. Biogerontology, 12, 87-91. doi: 10.1007/s10522-010-9283-6. Epub 2010 May 18. PMID: 20480236; PMCID: PMC3063552

Lin, D. H., & Hoelz, A. (2019). The Structure of the Nuclear Pore Complex (An Update). Annual review of biochemistry, 88, 725–783. https://doi.org/10.1146/annurev-biochem-062917-011901

Loncarek J, Hergert P, Magidson V, Khodjakov A. (2008). Control of daughter centriole formation by the pericentriolar material. Nat Cell Biol. doi: 10.1038/ncb1694

Ma, M., Stoyanova, M., Rademacher, G., Dutcher, S. K., Brown, A., & Zhang, R. (2019). Structure of the Decorated Ciliary Doublet Microtubule. Cell, 179(4), 909–922.e12. https://doi.org/10.1016/j.cell.2019.09.030

Marshall WF. (2007). Stability and robustness of an organelle number control system: modeling and measuring homeostatic regulation of centriole abundance. Biophys J. doi: 10.1529/biophysj.107.107052

Marteil, G., Guerrero, A., Vieira, A. F., de Almeida, B. P., Machado, P., Mendonça, S., Mesquita, M., Villarreal, B., Fonseca, I., Francia, M. E., Dores, K., Martins, N. P., Jana, S. C., Tranfield, E. M., Barbosa-Morais, N. L., Paredes, J., Pellman, D., Godinho, S. A., & Bettencourt-Dias, M. (2018). Over-elongation of centrioles in cancer promotes centriole amplification and chromosome missegregation. Nature communications, 9(1), 1258. https://doi.org/10.1038/s41467-018-03641-x

Matsaberidze, M., Prangishvili, A., Gasitashvili, Z., Chichinadze, K., & Tkemaladze, J. (2017). TO TOPOLOGY OF ANTI-TERRORIST AND ANTI-CRIMINAL TECHNOLOGY FOR EDUCATIONAL PROGRAMS. International Journal of Terrorism & Political Hot Spots, 12.

Melkonian, M., Andersen, R. A., Schnepf, E., Beech, P. L., Heimann, K., & Melkonian, M. (1991). Development of the flagellar apparatus during the cell cycle in unicellular algae. The Cytoskeleton of Flagellate and Ciliate Protists, 23-37.

Mikule K, Delaval B, Kaldis P, Jurcyzk A, Hergert P, Doxsey S. (2007). Loss of centrosome integrity induces p38-p53-p21-dependent G1-S arrest. Nat Cell Biol. doi: 10.1038/ncb1529

Mogensen MM, Malik A, Piel M, Bouckson-Castaing V, Bornens M. (2000). Microtubule minus-end anchorage at centrosomal and non-centrosomal sites: the role of ninein. J Cell Sci. doi: 10.1242/jcs.113.17.3013

Montcouquiol M. & Kelley MW. (2003). Planar and vertical signals control cellular differentiation and patterning in the mammalian cochlea. J Neurosci. 2003;23:9469–9478. doi: 10.1523/JNEUROSCI.23-28-09469.2003

Morrissette, N. S., & Sibley, L. D. (2002). Cytoskeleton of apicomplexan parasites. Microbiology and molecular biology reviews : MMBR, 66(1), 21–38. https://doi.org/10.1128/MMBR.66.1.21-38.2002

Mottier-Pavie, V., & Megraw, T. L. (2009). Drosophila bld10 is a centriolar protein that regulates centriole, basal body, and motile cilium assembly. Molecular biology of the cell, 20(10), 2605–2614. https://doi.org/10.1091/mbc.e08-11-1115

Nakazawa Y, Hiraki M, Kamiya R, Hirono M. (2007). SAS-6 is a cartwheel protein that establishes the 9-fold symmetry of the centriole. Curr Biol. doi: 10.1016/j.cub.2007.11.046

Nakazawa Y, Hiraki M, Kamiya R, Hirono M. (2007). SAS-6 is a cartwheel protein that establishes the 9-fold symmetry of the centriole. Curr Biol. doi: 10.1016/j.cub.2007.11.046

O’Connell K, Caron C, Kopish K, Hurd D, Kemphues K, Li Y, White J. (2001). The C. elegans zyg-1 gene encodes a regulator of centrosome duplication with distinct maternal and paternal roles in the embryo. Cell Motil Cytoskeleton. doi: 10.1016/s0092-8674(01)00338-5

Ohta, T., Essner, R., Ryu, J. H., Palazzo, R. E., Uetake, Y., & Kuriyama, R. (2002). Characterization of Cep135, a novel coiled-coil centrosomal protein involved in microtubule organization in mammalian cells. The Journal of cell biology, 156(1), 87–99. https://doi.org/10.1083/jcb.200108088

Paintrand, M., Moudjou, M., Delacroix, H., & Bornens, M. (1992). Centrosome organization and centriole architecture: their sensitivity to divalent cations. Journal of structural biology, 108(2), 107–128. https://doi.org/10.1016/1047-8477(92)90011-x

Paoletti, A., Bordes, N., Haddad, R., Schwartz, C. L., Chang, F., & Bornens, M. (2003). Fission yeast cdc31p is a component of the half-bridge and controls SPB duplication. Molecular biology of the cell, 14(7), 2793–2808. https://doi.org/10.1091/mbc.e02-10-0661

Paoletti, A., Moudjou, M., Paintrand, M., Salisbury, J. L., & Bornens, M. (1996). Most of centrin in animal cells is not centrosome-associated and centrosomal centrin is confined to the distal lumen of centrioles. Journal of cell science, 109 ( Pt 13), 3089–3102. https://doi.org/10.1242/jcs.109.13.3089

Park TJ, Haigo SL, Wallingford JB. Ciliogenesis defects in embryos lacking inturned or fuzzy function are associated with failure of planar cell polarity and Hedgehog signaling. (2006). Nat Genet. doi: 10.1038/ng1753

Pearson, C. G., Osborn, D. P., Giddings, T. H., Jr, Beales, P. L., & Winey, M. (2009). Basal body stability and ciliogenesis requires the conserved component Poc1. The Journal of cell biology, 187(6), 905–920. https://doi.org/10.1083/jcb.200908019

Pedersen, L. B., Schrøder, J. M., Satir, P., & Christensen, S. T. (2012). The ciliary cytoskeleton. Comprehensive Physiology, 2(1), 779–803. https://doi.org/10.1002/cphy.c110043

Peel N, Stevens NR, Basto R, Raff JW. (2007). Overexpressing centriole-replication proteins in vivo induces centriole overduplication and de novo formation. Curr Biol. doi: 10.1016/j.cub.2007.04.036

Piel, M., Meyer, P., Khodjakov, A., Rieder, C. L., & Bornens, M. (2000). The respective contributions of the mother and daughter centrioles to centrosome activity and behavior in vertebrate cells. The Journal of cell biology, 149(2), 317–330. https://doi.org/10.1083/jcb.149.2.317

Piemonte, K. M., Anstine, L. J., & Keri, R. A. (2021). Centrosome Aberrations as Drivers of Chromosomal Instability in Breast Cancer. Endocrinology, 162(12), bqab208. https://doi.org/10.1210/endocr/bqab208

Prangishvili, A., Gasitashvili, Z., Matsaberidze, M., Chkhartishvili, L., Chichinadze, K., Tkemaladze, J., ... & Azmaiparashvili, Z. (2019). SYSTEM COMPONENTS OF HEALTH AND INNOVATION FOR THE ORGANIZATION OF NANO-BIOMEDIC ECOSYSTEM TECHNOLOGICAL PLATFORM. Current Politics and Economics of Russia, Eastern and Central Europe, 34(2/3), 299-305.

Qi, F., & Zhou, J. (2021). Multifaceted roles of centrosomes in development, health, and disease. Journal of molecular cell biology, 13(9), 611–621. https://doi.org/10.1093/jmcb/mjab041

Reina, J., & Gonzalez, C. (2014). When fate follows age: unequal centrosomes in asymmetric cell division. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 369(1650), 20130466. https://doi.org/10.1098/rstb.2013.0466

Rodrigues-Martins A, Bettencourt-Dias M, Riparbelli M, Ferreira C, Ferreira I, Callaini G, Glover DM. (2007). DSAS-6 organizes a tube-like centriole precursor, and its absence suggests modularity in centriole assembly. Curr Biol. doi: 10.1016/j.cub.2007.07.034

Salisbury, J. L., Suino, K. M., Busby, R., & Springett, M. (2002). Centrin-2 is required for centriole duplication in mammalian cells. Current biology : CB, 12(15), 1287–1292. https://doi.org/10.1016/s0960-9822(02)01019-9

Schatten, H., & Sun, Q. Y. (2009). The functional significance of centrosomes in mammalian meiosis, fertilization, development, nuclear transfer, and stem cell differentiation. Environmental and molecular mutagenesis, 50(8), 620–636. https://doi.org/10.1002/em.20493

Schatten, H., & Sun, Q. Y. (2011). The significant role of centrosomes in stem cell division and differentiation. Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada, 17(4), 506–512. https://doi.org/10.1017/S1431927611000018

Schmidt, T. I., Kleylein-Sohn, J., Westendorf, J., Le Clech, M., Lavoie, S. B., Stierhof, Y. D., & Nigg, E. A. (2009). Control of centriole length by CPAP and CP110. Current biology : CB, 19(12), 1005–1011. https://doi.org/10.1016/j.cub.2009.05.016

Schulz I, Erle A, Graf R, Kruger A, Lohmeier H, Putzler S, Samereier M, Weidenthaler S. (2009). Identification and cell cycle-dependent localization of nine novel, genuine centrosomal components in Dictyostelium discoideum. Cell Motil Cytoskeleton. doi: 10.1002/cm.20384

Shang, Y., Tsao, C. C., & Gorovsky, M. A. (2005). Mutational analyses reveal a novel function of the nucleotide-binding domain of gamma-tubulin in the regulation of basal body biogenesis. The Journal of cell biology, 171(6), 1035–1044. https://doi.org/10.1083/jcb.200508184

Sharma, A., Aher, A., Dynes, N. J., Frey, D., Katrukha, E. A., Jaussi, R., Grigoriev, I., Croisier, M., Kammerer, R. A., Akhmanova, A., Gönczy, P., & Steinmetz, M. O. (2016). Centriolar CPAP/SAS-4 Imparts Slow Processive Microtubule Growth. Developmental cell, 37(4), 362–376. https://doi.org/10.1016/j.devcel.2016.04.024

Simons M, & Walz G. (2006). Polycystic kidney disease: cell division without a c(l)ue? Kidney Int. doi: 10.1038/sj.ki.5001534

Singla, V., Romaguera-Ros, M., Garcia-Verdugo, J. M., & Reiter, J. F. (2010). Ofd1, a human disease gene, regulates the length and distal structure of centrioles. Developmental cell, 18(3), 410–424. https://doi.org/10.1016/j.devcel.2009.12.022

Spektor, A., Tsang, W. Y., Khoo, D., & Dynlacht, B. D. (2007). Cep97 and CP110 suppress a cilia assembly program. Cell, 130(4), 678–690. https://doi.org/10.1016/j.cell.2007.06.027

Steib, E., Laporte, M. H., Gambarotto, D., Olieric, N., Zheng, C., Borgers, S., Olieric, V., Le Guennec, M., Koll, F., Tassin, A. M., Steinmetz, M. O., Guichard, P., & Hamel, V. (2020). WDR90 is a centriolar microtubule wall protein important for centriole architecture integrity. eLife, 9, e57205. https://doi.org/10.7554/eLife.57205

Stevens, N. R., Dobbelaere, J., Brunk, K., Franz, A., & Raff, J. W. (2010). Drosophila Ana2 is a conserved centriole duplication factor. The Journal of cell biology, 188(3), 313–323. https://doi.org/10.1083/jcb.200910016

Stevens, N. R., Raposo, A. A., Basto, R., St Johnston, D., & Raff, J. W. (2007). From stem cell to embryo without centrioles. Current biology : CB, 17(17), 1498–1503. https://doi.org/10.1016/j.cub.2007.07.060

Tang, C. J., Fu, R. H., Wu, K. S., Hsu, W. B., & Tang, T. K. (2009). CPAP is a cell-cycle regulated protein that controls centriole length. Nature cell biology, 11(7), 825–831. https://doi.org/10.1038/ncb1889

Tkemaladze J. Editorial: Molecular mechanism of ageing and therapeutic advances through targeting glycative and oxidative stress. Front Pharmacol. 2024 Mar 6;14:1324446. doi: 10.3389/fphar.2023.1324446. PMID: 38510429; PMCID: PMC10953819.

Tkemaladze, J. (2023). Cross-senolytic effects of dasatinib and quercetin in humans. Georgian Scientists, 5(3), 138–152. doi: https://doi.org/10.52340/2023.05.03.15

Tkemaladze, J. (2023). Is the selective accumulation of oldest centrioles in stem cells the main cause of organism ageing?. Georgian Scientists, 5(3), 216–235. doi: https://doi.org/10.52340/2023.05.03.22

Tkemaladze, J. (2023). Long-Term Differences between Regenerations of Head and Tail Fragments in Schmidtea Mediterranea Ciw4. Available at SSRN 4257823.

Tkemaladze, J. (2023). Reduction, proliferation, and differentiation defects of stem cells over time: a consequence of selective accumulation of old centrioles in the stem cells?. Molecular Biology Reports, 50(3), 2751-2761.

Tkemaladze, J. (2023). Structure and possible functions of centriolar RNA with reference to the centriolar hypothesis of differentiation and replicative senescence. Junior Researchers, 1(1), 156–170. doi: https://doi.org/10.52340/2023.01.01.17

Tkemaladze, J. (2023). The centriolar hypothesis of differentiation and replicative senescence. Junior Researchers, 1(1), 123–141. doi: https://doi.org/10.52340/2023.01.01.15

Tkemaladze, J. (2024). Absence of centrioles and regenerative potential of planaria. Georgian Scientists, 6(4), 59–75. doi: https://doi.org/10.52340/gs.2024.06.04.08

Tkemaladze, J. (2024). Cell center and the problem of accumulation of oldest centrioles in stem cells. Georgian Scientists, 6(2), 304–322. doi: https://doi.org/10.52340/gs.2024.06.02.32

Tkemaladze, J. (2024). Elimination of centrioles. Georgian Scientists, 6(4), 291–307. doi: https://doi.org/10.52340/gs.2024.06.04.25

Tkemaladze, J. (2024). Main causes of intelligence decrease and prospects for treatment. Georgian Scientists, 6(2), 425–432. doi: https://doi.org/10.52340/gs.2024.06.02.44

Tkemaladze, J. (2024). The rate of stem cell division decreases with age. Georgian Scientists, 6(4), 228–242. doi: https://doi.org/10.52340/gs.2024.06.04.21

Tkemaladze, J. (2025). A Universal Approach to Curing All Diseases: From Theoretical Foundations to the Prospects of Applying Modern Biotechnologies in Future Medicine. doi: 10.13140/RG.2.2.24481.11366

Tkemaladze, J. (2025). Strategic Importance of the Caucasian Bridge and Global Power Rivalries. doi: 10.13140/RG.2.2.19153.03680

Tkemaladze, J. (2025). The Epistemological Reconfiguration and Transubstantial Reinterpretation of Eucharistic Practices Established by the Divine Figure of Jesus Christ in Relation to Theological Paradigms. doi: 10.13140/RG.2.2.28347.73769

Tkemaladze, J. (2025). Transforming the psyche with phoneme frequencies "Habere aliam linguam est possidere secundam animam" Charlemagne. doi: 10.13140/RG.2.2.16105.61286

Tkemaladze, J. (2025). Concept to The Alive Language. Longevity Horizons, 108(1). doi: https://doi.org/10.5281/zenodo.14688792

Tkemaladze, J. (2025). Concept to The Caucasian Bridge. Longevity Horizons, 108(1). doi: https://doi.org/10.5281/zenodo.14689276

Tkemaladze, J. (2025). Concept to The Curing All Diseases. Longevity Horizons, 108(1). https://doi.org/10.5281/zenodo.14676208

Tkemaladze, J. (2025). Concept to The Eternal Youth. Longevity Horizons, 108(1). doi: https://doi.org/10.5281/zenodo.14681902

Tkemaladze, J. (2025). Concept to The Food Security. Longevity Horizons, 108(1). doi: https://doi.org/10.5281/zenodo.14642407

Tkemaladze, J. (2025). Concept to the Living Space. Longevity Horizons, 108(1). doi: https://doi.org/10.5281/zenodo.14635991

Tkemaladze, J. (2025). Concept to The Restoring Dogmas. Longevity Horizons, 108(1). https://doi.org/10.5281/zenodo.14708980

Tkemaladze, J. (2025). Solutions to the Living Space Problem to Overcome the Fear of Resurrection from the Dead. doi: 10.13140/RG.2.2.34655.57768

Tkemaladze, J. (2025). The Concept of Data-Driven Automated Governance. Georgian Scientists, 6(4), 399–410. doi: https://doi.org/10.52340/gs.2024.06.04.38

Tkemaladze, J. (2025).Achieving Perpetual Vitality Through Innovation. doi: 10.13140/RG.2.2.31113.35685

Tkemaladze, J. (2025).Systemic Resilience and Sustainable Nutritional Paradigms in Anthropogenic Ecosystems. doi: 10.13140/RG.2.2.18943.32169/1

Tkemaladze, J. V., & Chichinadze, K. N. (2005). Centriolar mechanisms of differentiation and replicative aging of higher animal cells. Biochemistry (Moscow), 70, 1288-1303.

Tkemaladze, J., & Apkhazava, D. (2019). Dasatinib and quercetin: short-term simultaneous administration improves physical capacity in human. J Biomedical Sci, 8(3), 3.

Tkemaladze, J., & Chichinadze, K. (2005). Potential role of centrioles in determining the morphogenetic status of animal somatic cells. Cell biology international, 29(5), 370-374.

Tkemaladze, J., & Chichinadze, K. (2010). Centriole, differentiation, and senescence. Rejuvenation research, 13(2-3), 339-342.

Tkemaladze, J., & Samanishvili, T. (2024). Mineral ice cream improves recovery of muscle functions after exercise. Georgian Scientists, 6(2), 36–50. doi: https://doi.org/10.52340/gs.2024.06.02.04

Tkemaladze, J., Tavartkiladze, A., & Chichinadze, K. (2012). Programming and Implementation of Age-Related Changes. In Senescence. IntechOpen.

Tkemaladze, Jaba and Kipshidze, Mariam, Regeneration Potential of the Schmidtea Mediterranea CIW4 Planarian. Available at SSRN: https://ssrn.com/abstract=4633202 or http://dx.doi.org/10.2139/ssrn.4633202

Tsou MF, Wang WJ, George KA, Uryu K, Stearns T, Jallepalli PV. (2009). Polo kinase and separase regulate the mitotic licensing of centriole duplication in human cells. Dev Cell. doi: 10.1016/j.devcel.2009.07.015

Uetake Y, Loncarek J, Nordberg JJ, English CN, La Terra S, Khodjakov A, Sluder G. (2007). Cell cycle progression and de novo centriole assembly after centrosomal removal in untransformed human cells. J Cell Biol. doi: 10.1083/jcb.200607073

Uzbekov, R., & Prigent, C. (2007). Clockwise or anticlockwise? Turning the centriole triplets in the right direction!. FEBS letters, 581(7), 1251–1254. https://doi.org/10.1016/j.febslet.2007.02.069

van Breugel, M., Hirono, M., Andreeva, A., Yanagisawa, H. A., Yamaguchi, S., Nakazawa, Y., Morgner, N., Petrovich, M., Ebong, I. O., Robinson, C. V., Johnson, C. M., Veprintsev, D., & Zuber, B. (2011). Structures of SAS-6 suggest its organization in centrioles. Science (New York, N.Y.), 331(6021), 1196–1199. https://doi.org/10.1126/science.1199325

Varmark H, Llamazares S, Rebollo E, Lange B, Reina J, Schwarz H, Gonzalez C. (2007). Asterless is a centriolar protein required for centrosome function and embryo development in Drosophila. Curr Biol. doi: 10.1016/j.cub.2007.09.031

Vladar, E. K., & Stearns, T. (2007). Molecular characterization of centriole assembly in ciliated epithelial cells. The Journal of cell biology, 178(1), 31–42. https://doi.org/10.1083/jcb.200703064

Vorobjev, I. A., & Chentsov YuS (1982). Centrioles in the cell cycle. I. Epithelial cells. The Journal of cell biology, 93(3), 938–949. https://doi.org/10.1083/jcb.93.3.938

Wang X, Tsai JW, Imai JH, Lian WN, Vallee RB, Shi SH. (2009). Asymmetric centrosome inheritance maintains neural progenitors in the neocortex. Nature. doi: 10.1038/nature08435

Ware, S. M., Aygun, M. G., & Hildebrandt, F. (2011). Spectrum of clinical diseases caused by disorders of primary cilia. Proceedings of the American Thoracic Society, 8(5), 444–450. https://doi.org/10.1513/pats.201103-025SD

Weier, A. K., Homrich, M., Ebbinghaus, S., Juda, P., Miková, E., Hauschild, R., Zhang, L., Quast, T., Mass, E., Schlitzer, A., Kolanus, W., Burgdorf, S., Gruß, O. J., Hons, M., Wieser, S., & Kiermaier, E. (2022). Multiple centrosomes enhance migration and immune cell effector functions of mature dendritic cells. The Journal of cell biology, 221(12), e202107134. https://doi.org/10.1083/jcb.202107134

Wong C, & Stearns T. (2003). Centrosome number is controlled by a centrosome-intrinsic block to reduplication. Nat Cell Biol. 2003;5:539–544. doi: 10.1038/ncb993

Wu, Q., Li, B., Liu, L., Sun, S., & Sun, S. (2020). Centrosome dysfunction: a link between senescence and tumor immunity. Signal transduction and targeted therapy, 5(1), 107. https://doi.org/10.1038/s41392-020-00214-7

Yamashita YM, Mahowald AP, Perlin JR, Fuller MT. (2007). Asymmetric inheritance of mother versus daughter centrosome in stem cell division. Science. doi: 10.1126/science.1134910

Yang, YH.K., Ogando, C.R., Wang See, C. et al. (2018). Changes in phenotype and differentiation potential of human mesenchymal stem cells aging in vitro. Stem Cell Res Ther 9, 131. https://doi.org/10.1186/s13287-018-0876-3

Yang, YH.K., Ogando, C.R., Wang See, C. et al. Changes in phenotype and differentiation potential of human mesenchymal stem cells aging in vitro. Stem Cell Res Ther 9, 131 (2018). https://doi.org/10.1186/s13287-018-0876-3

Zhu F, Lawo S, Bird A, Pinchev D, Ralph A, Richter C, Muller-Reichert T, Kittler R, Hyman AA, Pelletier L. (2008). The mammalian SPD-2 ortholog Cep192 regulates centrosome biogenesis. Curr Biol. doi: 10.1016/j.cub.2007.12.055

Прангишвили, А. И., Гаситашвили, З. А., Мацаберидзе, М. И., Чичинадзе, К. Н., Ткемаладзе, Д. В., & Азмайпарашвили, З. А. (2017). К топологии антитеррористических и антикриминальных технологии для образовательных программ. В научном издании представлены материалы Десятой международной научно-технической конфе-ренции «Управление развитием крупномасштабных систем (MLSD’2016)» по следующим направле-ниям:• Проблемы управления развитием крупномасштабных систем, включая ТНК, Госхолдин-ги и Гос-корпорации., 284.

Прангишвили, А. И., Гаситашвили, З. А., Мацаберидзе, М. И., Чхартишвили, Л. С., Чичинадзе, К. Н., Ткемаладзе, Д. В., ... & Азмайпарашвили, З. А. СИСТЕМНЫЕ СОСТАВЛЯЮЩИЕ ЗДРАВООХРАНЕНИЯ И ИННОВАЦИЙ ДЛЯ ОРГАНИЗАЦИИ ЕВРОПЕЙСКОЙ НАНО-БИОМЕДИЦИНСКОЙ ЕКОСИСТЕМНОЙ ТЕХНОЛОГИЧЕСКОЙ ПЛАТФОРМЫ. В научном издании представлены материалы Десятой международной научно-технической конфе-ренции «Управление развитием крупномасштабных систем (MLSD’2016)» по следующим направле-ниям:• Проблемы управления развитием крупномасштабных систем, включая ТНК, Госхолдин-ги и Гос-корпорации., 365.

Ткемаладзе, Д. (2025). Анатомия, биогенез и роль в клеточной биологии центриолей. doi: 10.13140/RG.2.2.27441.70245

Ткемаладзе, Д. В., & Чичинадзе, К. Н. (2005). Центриолярные механизмы дифференцировки и репликативного старения клеток высших животных. Биохимия, 70(11), 1566-1584.

Ткемаладзе, Д., Цомаиа, Г., & Жоржолиани, И. (2001). Создание искусственных самоадаптирующихся систем на основе Теории Прогноза. Искусственный интеллект. УДК 004.89. Искусственный интеллект. УДК 004.89.

Чичинадзе, К. Н., & Ткемаладзе, Д. В. (2008). Центросомная гипотеза клеточного старения и дифференциации. Успехи геронтологии, 21(3), 367-371.

Чичинадзе, К., Ткемаладзе, Д., & Лазарашвили, А. (2012). НОВЫЙ КЛАСС РНК И ЦЕНТРОСОМНАЯ ГИПОТЕЗА СТАРЕНИЯ КЛЕТОК. Успехи геронтологии, 25(1), 23-28.