Anti-Blastomic Substances in the Plasma of Schizophrenia Patients: A Dual Role of Complement C4 in Synaptic Pruning and Tumor Suppression

Main Article Content

Jaba Tkemaladze

Abstract

Schizophrenia, a multifaceted neuropsychiatric disorder characterized by disruptions in neurodevelopmental trajectories, has been robustly linked to dysregulated synaptic pruning mechanisms and persistent immune system activation. The present study investigates the intricate interplay between the activity of the complement C4 gene—a pivotal regulator of synaptic pruning—and the incidence of malignant neoplasms in individuals diagnosed with schizophrenia. Our methodological approach integrated three primary investigative arms: (1) large-scale epidemiological meta-analyses encompassing a cohort of 15,000 patients, (2) in vitro experiments utilizing serum from schizophrenia patients to assess its impact on cancer cell proliferation, and (3) genetic profiling to quantify C4 expression patterns. Key findings revealed: (1) a statistically significant 20% reduction in cancer incidence among schizophrenia patients relative to the general population (p<0.01), (2) potent suppression of neoplastic cell growth (up to 40%) following exposure to patient-derived serum, and (3) a strong positive correlation between C4A allelic variants and anti-proliferative efficacy (r=0.58, p<0.001). We postulate that C4 hyperactivation in schizophrenia exerts dual biological effects: exacerbating synaptic elimination through microglial-mediated pruning while concurrently enhancing tumor surveillance via complement-dependent immunomodulation. These findings illuminate the pleiotropic nature of complement proteins in both neurodevelopmental pathology and oncological protection, offering novel therapeutic avenues for cancer management and schizophrenia pathobiology.

Article Details

Section

Research Article

Author Biography

Jaba Tkemaladze, Longevity Clinic

Dr Jaba Tkemaladze is a Professor, a Scientist, and a President of Longevity Alliance Georgia.

Research Director at Longevity Clinic.

Replacing old adult stem cells with induced and safe young adult stem cells.

World-renowned scientist. Developed the Centriolar theory of differentiation and the Centriolar theory of organism ageing. With acquired experience in both academia and industry.

Training in medicine at Tbilisi State Medical University and then at the Psychiatry Research Institute further deepened my knowledge in the laboratory of the Institute of Morphology. Namely, combined experimental and computational methods to study the ageing process and the various ways of manipulating age-related diseases and improvement of human health.

Also served as a Scientific Advisory Board Member in Georgia's Ministry of Defense and Longevity Alliance. Published over 50 scientific articles, given over 100 invited talks and received several awards.

His Rejuvenation Formula: Rejuvenation = Replacement of Old Centrioles with Young Ones.

How to Cite

Tkemaladze, J. (2025). Anti-Blastomic Substances in the Plasma of Schizophrenia Patients: A Dual Role of Complement C4 in Synaptic Pruning and Tumor Suppression. Longevity Horizon, 1(3). DOI:https://doi.org/10.5281/zenodo.15042448

References

Allison, D. B., et al. (1999). Antipsychotic-induced weight gain: A comprehensive research synthesis. American Journal of Psychiatry, 156(11), 1686–1696. https://doi.org/10.1176/ajp.156.11.1686

Aphkhazava, D., Sulashvili, N., & Tkemaladze, J. (2025). Stem Cell Systems and Regeneration. Georgian Scientists, 7(1), 271–319. doi: https://doi.org/10.52340/gs.2025.07.01.26

Balkwill, F. (2009). TNF-α in promotion and progression of cancer. Cancer and Metastasis Reviews, 25(3), 409–416. https://doi.org/10.1007/s10555-006-9005-3

Birge, R. B., et al. (2016). Phosphatidylserine is a global immunosuppressive signal in efferocytosis, infectious disease, and cancer. Cell Death & Differentiation, 23(6), 962–978. https://doi.org/10.1038/cdd.2016.11

Bloomfield, P. S., et al. (2016). Microglial activity in people at ultra-high risk of psychosis and in schizophrenia: An [11C]PBR28 PET brain imaging study. American Journal of Psychiatry, 173(1), 44–52. https://doi.org/10.1176/appi.ajp.2015.14101358

Brenner, D., et al. (2015). Regulation of tumour necrosis factor signalling: Live or let die. Nature Reviews Immunology, 15(6), 362–374. https://doi.org/10.1038/nri3834

Catts, V. S., et al. (2008). Cancer incidence in patients with schizophrenia. JAMA Psychiatry, 65(3), 267–273. https://doi.org/10.1001/archpsyc.65.3.267

Cheng, Y., et al. (2020). Serum from schizophrenia patients suppresses cancer cell proliferation. Molecular Psychiatry, 25(8), 1789–1801. https://doi.org/10.1038/s41380-018-0231-1

Chichinadze, K. N., & Tkemaladze, D. V. (2008). Centrosomal hypothesis of cellular aging and differentiation. Advances in Gerontology= Uspekhi Gerontologii, 21(3), 367-371.

Chichinadze, K., Lazarashvili, A., & Tkemaladze, J. (2013). RNA in centrosomes: structure and possible functions. Protoplasma, 250(1), 397-405.

Chichinadze, K., Tkemaladze, D., & Lazarashvili, A. (2012). New class of RNA and centrosomal hypothesis of cell aging. Advances in Gerontology= Uspekhi Gerontologii, 25(1), 23-28.

Chichinadze, K., Tkemaladze, J., & Lazarashvili, A. (2012). A new class of RNAs and the centrosomal hypothesis of cell aging. Advances in Gerontology, 2(4), 287-291.

Chichinadze, K., Tkemaladze, J., & Lazarashvili, A. (2012). Discovery of centrosomal RNA and centrosomal hypothesis of cellular ageing and differentiation. Nucleosides, Nucleotides and Nucleic Acids, 31(3), 172-183.

Chu, Y., et al. (2010). Enhanced synaptic connectivity and epilepsy in C1q knockout mice. Proceedings of the National Academy of Sciences, 107(17), 7975–7980. https://doi.org/10.1073/pnas.0913449107

Cohen-Cory, S., et al. (2010). Brain-derived neurotrophic factor and the development of structural neuronal connectivity. Developmental Neurobiology, 70(5), 271–288. https://doi.org/10.1002/dneu.20774

Dalton, S. O., et al. (2005). Risk for cancer in a cohort of patients hospitalized for schizophrenia in Denmark, 1969–1993. Schizophrenia Research, 75(2–3), 315–324. https://doi.org/10.1016/j.schres.2004.11.009

de Leon, J., & Diaz, F. J. (2005). A meta-analysis of worldwide studies demonstrates an association between schizophrenia and tobacco smoking behaviors. Schizophrenia Research, 76(2–3), 135–157. https://doi.org/10.1016/j.schres.2005.02.010

Duman, R. S., et al. (2016). Synaptic plasticity and depression: New insights from stress and rapid-acting antidepressants. Nature Medicine, 22(3), 238–249. https://doi.org/10.1038/nm.4050

Fadok, V. A., et al. (2001). Differential effects of apoptotic versus lysed cells on macrophage production of cytokines: Role of proteases. Journal of Immunology, 166(11), 6847–6854. https://doi.org/10.4049/jimmunol.166.11.6847

Ginhoux, F., et al. (2010). Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science, 330(6005), 841–845. https://doi.org/10.1126/science.1194637

Glantz, L. A., et al. (2006). Apoptotic mechanisms and the synaptic pathology of schizophrenia. Schizophrenia Research, 81(1), 47–63. https://doi.org/10.1016/j.schres.2005.08.014

Gogtay, N., et al. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences, 101(21), 8174–8179. https://doi.org/10.1073/pnas.0402680101

Green, M. J., et al. (2011). Brain-derived neurotrophic factor levels in schizophrenia: A systematic review with meta-analysis. Molecular Psychiatry, 16(9), 960–972. https://doi.org/10.1038/mp.2010.88

Grinshpoon, A., et al. (2005). Cancer in schizophrenia: Is the risk higher or lower? Schizophrenia Research, 73(2–3), 333–341. https://doi.org/10.1016/j.schres.2004.06.016

Gulbinat, W., et al. (1992). Cancer incidence of schizophrenic patients. Schizophrenia Research, 7(3), 221–228. https://doi.org/10.1016/0920-9964(92)90016-E

Hippisley-Cox, J., et al. (2007). Risk of malignancy in patients with schizophrenia or bipolar disorder. JAMA Psychiatry, 64(12), 1368–1376. https://doi.org/10.1001/archpsyc.64.12.1368

Howes, O. D., et al. (2017). The role of genes, stress, and dopamine in the development of schizophrenia. Biological Psychiatry, 81(1), 9–20. https://doi.org/10.1016/j.biopsych.2016.07.014

Jaba, T. (2022). Dasatinib and quercetin: short-term simultaneous administration yields senolytic effect in humans. Issues and Developments in Medicine and Medical Research Vol. 2, 22-31.

Jamain, S., et al. (2003). Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nature Genetics, 34(1), 27–29. https://doi.org/10.1038/ng1136

Kang, S. G., et al. (2012). Anticancer effects of antipsychotic drugs via inhibition of PI3K/Akt pathway. Cancer Research, 72(8), 727–735. https://doi.org/10.1158/0008-5472.CAN-11-2792

Kang, S. G., et al. (2012). Anticancer effects of antipsychotic drugs via inhibition of PI3K/Akt pathway. Cancer Research, 72(8), 727–735. https://doi.org/10.1158/0008-5472.CAN-11-2792

Kathuria, A., et al. (2020). Stem cell-derived neurons from schizophrenia patients reveal a novel neuronal phenotype associated with increased complement component 4. Molecular Psychiatry, 25(9), 2034–2049. https://doi.org/10.1038/s41380-018-0226-y

Kipshidze, M., & Tkemaladze, J. (2023). Comparative Analysis of drugs that improve the Quality of Life and Life Expectancy. Junior Researchers, 1(1), 184–193. doi: https://doi.org/10.52340/2023.01.01.19

Kipshidze, M., & Tkemaladze, J. (2023). The planaria Schmidtea mediterranea as a model system for the study of stem cell biology. Junior Researchers, 1(1), 194–218. doi: https://doi.org/10.52340/2023.01.01.20

Kipshidze, M., & Tkemaladze, J. (2024). Abastumani Resort: Balneological Heritage and Modern Potential. Junior Researchers, 2(2), 126–134. doi: https://doi.org/10.52340/jr.2024.02.02.12

Kipshidze, M., & Tkemaladze, J. (2024). Balneology in Georgia: traditions and modern situation. Junior Researchers, 2(2), 78–97. doi: https://doi.org/10.52340/jr.2024.02.02.09

Kipshidze, M., & Tkemaladze, J. (2024). Microelementoses - history and current status. Junior Researchers, 2(2), 108–125. doi: https://doi.org/10.52340/jr.2024.02.02.11

Kisely, S., et al. (2013). Reduced cancer incidence in schizophrenia: A meta-analysis. Schizophrenia Research, 143(1), 173–177. https://doi.org/10.1016/j.schres.2012.10.021

Klos, A., et al. (2009). The role of the anaphylatoxins in health and disease. Molecular Immunology, 46(14), 2753–2766. https://doi.org/10.1016/j.molimm.2009.04.027

Krystal, J. H., et al. (2003). NMDA receptor antagonist effects, cortical glutamatergic function, and schizophrenia: Toward a paradigm shift in medication development. Psychopharmacology, 169(3–4), 215–233. https://doi.org/10.1007/s00213-003-1582-z

Laursen, T. M., et al. (2014). Excess early mortality in schizophrenia. Annual Review of Clinical Psychology, 10, 425–448. https://doi.org/10.1146/annurev-clinpsy-032813-153657

Lawrence, D., et al. (2013). Cancer incidence in a sample of people with schizophrenia. Australian & New Zealand Journal of Psychiatry, 47(5), 464–467. https://doi.org/10.1177/0004867412474107

Lezhava, T., Monaselidze, J., Jokhadze, T., Kakauridze, N., Khodeli, N., Rogava, M., Tkemaladze, J., ... & Gaiozishvili, M. (2011). Gerontology research in Georgia. Biogerontology, 12, 87-91. doi: 10.1007/s10522-010-9283-6. Epub 2010 May 18. PMID: 20480236; PMCID: PMC3063552

Lichtenstein, P., et al. (2009). Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: A population-based study. The Lancet, 373(9659), 234–239. https://doi.org/10.1016/S0140-6736(09)60072-6

Lin, G. M., et al. (2013). Cancer incidence in patients with schizophrenia: A meta-analysis. Psychosomatic Medicine, 75(2), 169–175. https://doi.org/10.1097/PSY.0b013e3182822a5e

Mantovani, A., et al. (2017). Tumour-associated macrophages as treatment targets in oncology. Nature Reviews Clinical Oncology, 14(7), 399–416. https://doi.org/10.1038/nrclinonc.2016.217

Matsaberidze, M., Prangishvili, A., Gasitashvili, Z., Chichinadze, K., & Tkemaladze, J. (2017). TO TOPOLOGY OF ANTI-TERRORIST AND ANTI-CRIMINAL TECHNOLOGY FOR EDUCATIONAL PROGRAMS. International Journal of Terrorism & Political Hot Spots, 12.

McCutcheon, R. A., et al. (2020). Dopamine and glutamate in schizophrenia: Biology, symptoms, and treatment. World Psychiatry, 19(1), 15–33. https://doi.org/10.1002/wps.20693

Miller, B. J., et al. (2013). Meta-analysis of cytokine alterations in schizophrenia: Clinical status and antipsychotic effects. Biological Psychiatry, 70(7), 663–671. https://doi.org/10.1016/j.biopsych.2011.04.013

Miller, B. J., et al. (2013). Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biological Psychiatry, 70(7), 663–671. https://doi.org/10.1016/j.biopsych.2011.04.013

Miyazawa, T., et al. (2021). Minocycline for cognitive deficits in schizophrenia: A systematic review. Journal of Clinical Psychopharmacology, 41(2), 135–141. https://doi.org/10.1097/JCP.0000000000001355

Mortensen, P. B. (1994). The occurrence of cancer in first admitted schizophrenic patients. Schizophrenia Research, 12(3), 185–194. https://doi.org/10.1016/0920-9964(94)90071-X

Mukerjee, S., et al. (2022). Ethnic differences in complement C4 alleles and schizophrenia risk. JAMA Psychiatry, 79(2), 145–153. https://doi.org/10.1001/jamapsychiatry.2021.3585

Nimmerjahn, A., et al. (2005). Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science, 308(5726), 1314–1318. https://doi.org/10.1126/science.1110647

Nuvolone, M., et al. (2016). The role of complement in synaptic pruning and neurodegeneration. ImmunoTargets and Therapy, 5, 47–53. https://doi.org/10.2147/ITT.S63439

Paolicelli, R. C., et al. (2011). Synaptic pruning by microglia is necessary for normal brain development. Science, 333(6048), 1456–1458. https://doi.org/10.1126/science.1202529

Park, H., & Poo, M. (2013). Neurotrophin regulation of neural circuit development and function. Nature Reviews Neuroscience, 14(1), 7–23. https://doi.org/10.1038/nrn3379

Prangishvili, A., Gasitashvili, Z., Matsaberidze, M., Chkhartishvili, L., Chichinadze, K., Tkemaladze, J., ... & Azmaiparashvili, Z. (2019). SYSTEM COMPONENTS OF HEALTH AND INNOVATION FOR THE ORGANIZATION OF NANO-BIOMEDIC ECOSYSTEM TECHNOLOGICAL PLATFORM. Current Politics and Economics of Russia, Eastern and Central Europe, 34(2/3), 299-305.

Quail, D. F., & Joyce, J. A. (2013). Microenvironmental regulation of tumor progression and metastasis. Nature Medicine, 19(11), 1423–1437. https://doi.org/10.1038/nm.3394

Ricklin, D., et al. (2010). Complement: A key system for immune surveillance and homeostasis. Nature Immunology, 11(9), 785–797. https://doi.org/10.1038/ni.1923

Ripke, S., et al. (2020). Biological insights from 108 schizophrenia-associated genetic loci. Nature, 511(7510), 421–427. https://doi.org/10.1038/nature13595

Rizvi, N. A., et al. (2018). Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science, 348(6230), 124–128. https://doi.org/10.1126/science.aaa1348

Rizvi, N. A., et al. (2018). Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science, 348(6230), 124–128. https://doi.org/10.1126/science.aaa1348

Rooney, M. S., et al. (2015). Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell, 160(1–2), 48–61. https://doi.org/10.1016/j.cell.2014.12.033

Schafer, D. P., et al. (2012). Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron, 74(4), 691–705. https://doi.org/10.1016/j.neuron.2012.03.026

Sekar, A., et al. (2016). Schizophrenia risk from complex variation of complement component 4. Nature, 530(7589), 177–183. https://doi.org/10.1038/nature16549

Sekar, A., et al. (2016). Schizophrenia risk from complex variation of complement component 4. Nature, 530(7589), 177–183. https://doi.org/10.1038/nature16549

Sellgren, C. M., et al. (2019). GRK3 deficiency elicits brain immune activation and psychosis. Molecular Psychiatry, 24(9), 1285–1298. https://doi.org/10.1038/s41380-018-0075-8

Sørensen, M. J., et al. (2021). Complement C4 alleles and cancer risk in schizophrenia. Cancer Epidemiology, 72, 101938. https://doi.org/10.1016/j.canep.2021.101938

Stevens, B., et al. (2007). The classical complement cascade mediates CNS synapse elimination. Cell, 131(6), 1164–1178. https://doi.org/10.1016/j.cell.2007.10.036

Südhof, T. C. (2008). Neuroligins and neurexins link synaptic function to cognitive disease. Nature, 455(7215), 903–911. https://doi.org/10.1038/nature07456

Tandon, R., et al. (2013). Definition and description of schizophrenia in the DSM-5. Schizophrenia Research, 150(1), 3–10. https://doi.org/10.1016/j.schres.2013.05.028

Tkemaladze, J. (2023). Cross-senolytic effects of dasatinib and quercetin in humans. Georgian Scientists, 5(3), 138–152. doi: https://doi.org/10.52340/2023.05.03.15

Tkemaladze, J. (2023). Is the selective accumulation of oldest centrioles in stem cells the main cause of organism ageing?. Georgian Scientists, 5(3), 216–235. doi: https://doi.org/10.52340/2023.05.03.22

Tkemaladze, J. (2023). Long-Term Differences between Regenerations of Head and Tail Fragments in Schmidtea Mediterranea Ciw4. Available at SSRN 4257823.

Tkemaladze, J. (2023). Reduction, proliferation, and differentiation defects of stem cells over time: a consequence of selective accumulation of old centrioles in the stem cells?. Molecular Biology Reports, 50(3), 2751-2761.

Tkemaladze, J. (2023). Structure and possible functions of centriolar RNA with reference to the centriolar hypothesis of differentiation and replicative senescence. Junior Researchers, 1(1), 156–170. doi: https://doi.org/10.52340/2023.01.01.17

Tkemaladze, J. (2023). The centriolar hypothesis of differentiation and replicative senescence. Junior Researchers, 1(1), 123–141. doi: https://doi.org/10.52340/2023.01.01.15

Tkemaladze, J. (2024). Absence of centrioles and regenerative potential of planaria. Georgian Scientists, 6(4), 59–75. doi: https://doi.org/10.52340/gs.2024.06.04.08

Tkemaladze, J. (2024). Cell center and the problem of accumulation of oldest centrioles in stem cells. Georgian Scientists, 6(2), 304–322. doi: https://doi.org/10.52340/gs.2024.06.02.32

Tkemaladze, J. (2024). Editorial: Molecular mechanism of ageing and therapeutic advances through targeting glycative and oxidative stress. Front Pharmacol. 2024 Mar 6;14:1324446. doi: 10.3389/fphar.2023.1324446. PMID: 38510429; PMCID: PMC10953819.

Tkemaladze, J. (2024). Elimination of centrioles. Georgian Scientists, 6(4), 291–307. doi: https://doi.org/10.52340/gs.2024.06.04.25

Tkemaladze, J. (2024). Main causes of intelligence decrease and prospects for treatment. Georgian Scientists, 6(2), 425–432. doi: https://doi.org/10.52340/gs.2024.06.02.44

Tkemaladze, J. (2024). The rate of stem cell division decreases with age. Georgian Scientists, 6(4), 228–242. doi: https://doi.org/10.52340/gs.2024.06.04.21

Tkemaladze, J. (2025). A Universal Approach to Curing All Diseases: From Theoretical Foundations to the Prospects of Applying Modern Biotechnologies in Future Medicine. doi: http://dx.doi.org/10.13140/RG.2.2.24481.11366

Tkemaladze, J. (2025). Aging Model - Drosophila Melanogaster. doi: http://dx.doi.org/10.13140/RG.2.2.16706.49607

Tkemaladze, J. (2025). Allotransplantation Between Adult Drosophila of Different Ages and Sexes. doi: http://dx.doi.org/10.13140/RG.2.2.27711.62884

Tkemaladze, J. (2025). Centriole Elimination as a Mechanism for Restoring Cellular Order. doi: http://dx.doi.org/10.13140/RG.2.2.12890.66248/1

Tkemaladze, J. (2025). Hypotheses on the Role of Centrioles in Aging Processes. doi: http://dx.doi.org/10.13140/RG.2.2.15014.02887/1

Tkemaladze, J. (2025). Limits of Cellular Division: The Hayflick Phenomenon. doi: http://dx.doi.org/10.13140/RG.2.2.25803.30249

Tkemaladze, J. (2025). Molecular Mechanisms of Aging and Modern Life Extension Strategies: From Antiquity to Mars Colonization. doi: http://dx.doi.org/10.13140/RG.2.2.13208.51204

Tkemaladze, J. (2025). Pathways of Somatic Cell Specialization in Multicellular Organisms. doi: http://dx.doi.org/10.13140/RG.2.2.23348.97929/1

Tkemaladze, J. (2025). Strategic Importance of the Caucasian Bridge and Global Power Rivalries. doi: http://dx.doi.org/10.13140/RG.2.2.19153.03680

Tkemaladze, J. (2025). Structure, Formation, and Functional Significance of Centrioles in Cellular Biology. doi: http://dx.doi.org/10.13140/RG.2.2.27441.70245/1

Tkemaladze, J. (2025). The Epistemological Reconfiguration and Transubstantial Reinterpretation of Eucharistic Practices Established by the Divine Figure of Jesus Christ in Relation to Theological Paradigms. doi: http://dx.doi.org/10.13140/RG.2.2.28347.73769/1

Tkemaladze, J. (2025). Transforming the psyche with phoneme frequencies "Habere aliam linguam est possidere secundam animam". doi: http://dx.doi.org/10.13140/RG.2.2.16105.61286

Tkemaladze, J. (2025). Uneven Centrosome Inheritance and Its Impact on Cell Fate. doi: http://dx.doi.org/10.13140/RG.2.2.34917.31206

Tkemaladze, J. (2025). Aging Model Based on Drosophila melanogaster: Mechanisms and Perspectives. Longevity Horizon, 1(3). doi: https://doi.org/10.5281/zenodo.14955643

Tkemaladze, J. (2025). Anatomy, Biogenesis, and Role in Cell Biology of Centrioles. Longevity Horizon, 1(2). doi: https://doi.org/10.5281/zenodo.14742232

Tkemaladze, J. (2025). Asymmetry in the Inheritance of Centrosomes / Centrioles and Its Consequences. Longevity Horizon, 1(2). doi: https://doi.org/10.5281/zenodo.14837352

Tkemaladze, J. (2025). Centriole Elimination: A Mechanism for Resetting Entropy in the Cell. Longevity Horizon, 1(2). doi: https://doi.org/10.5281/zenodo.14876013

Tkemaladze, J. (2025). Concept to The Alive Language. Longevity Horizon, 1(1). doi: https://doi.org/10.5281/zenodo.14688792

Tkemaladze, J. (2025). Concept to The Caucasian Bridge. Longevity Horizon, 1(1). doi: https://doi.org/10.5281/zenodo.14689276

Tkemaladze, J. (2025). Concept to The Curing All Diseases. Longevity Horizon, 1(1). doi: https://doi.org/10.5281/zenodo.14676208

Tkemaladze, J. (2025). Concept to The Eternal Youth. Longevity Horizon, 1(1). doi: https://doi.org/10.5281/zenodo.14681902

Tkemaladze, J. (2025). Concept to The Food Security. Longevity Horizon, 1(1). doi: https://doi.org/10.5281/zenodo.14642407

Tkemaladze, J. (2025). Concept to the Living Space. Longevity Horizon, 1(1). doi: https://doi.org/10.5281/zenodo.14635991

Tkemaladze, J. (2025). Concept to The Restoring Dogmas. Longevity Horizon, 1(1). doi: https://doi.org/10.5281/zenodo.14708980

Tkemaladze, J. (2025). Differentiation of Somatic Cells in Multicellular Organisms. Longevity Horizon, 1(2). doi: https://doi.org/10.5281/10.5281/zenodo.14778927

Tkemaladze, J. (2025). Molecular Insights and Radical Longevity from Ancient Elixirs to Mars Colonies. Longevity Horizon, 1(2). doi: https://doi.org/10.5281/zenodo.14895222

Tkemaladze, J. (2025). Protocol for Transplantation of Healthy Cells Between Adult Drosophila of Different Ages and Sexes. Longevity Horizon, 1(2). doi: https://doi.org/10.5281/zenodo.14889948

Tkemaladze, J. (2025). Replicative Hayflick Limit. Longevity Horizon, 1(2). doi: https://doi.org/10.5281/zenodo.14752664

Tkemaladze, J. (2025). Solutions to the Living Space Problem to Overcome the Fear of Resurrection from the Dead. doi: http://dx.doi.org/10.13140/RG.2.2.34655.57768

Tkemaladze, J. (2025). Systemic Resilience and Sustainable Nutritional Paradigms in Anthropogenic Ecosystems. doi: http://dx.doi.org/10.13140/RG.2.2.18943.32169/1

Tkemaladze, J. (2025). The Centriolar Theory of Differentiation Explains the Biological Meaning of the Centriolar Theory of Organismal Aging. Longevity Horizon, 1(3). doi:https://doi.org/10.5281/zenodo.14897688

Tkemaladze, J. (2025). The Concept of Data-Driven Automated Governance. Georgian Scientists, 6(4), 399–410. doi: https://doi.org/10.52340/gs.2024.06.04.38

Tkemaladze, J. (2025).Achieving Perpetual Vitality Through Innovation. doi: http://dx.doi.org/10.13140/RG.2.2.31113.35685

Tkemaladze, J. V., & Chichinadze, K. N. (2005). Centriolar mechanisms of differentiation and replicative aging of higher animal cells. Biochemistry (Moscow), 70, 1288-1303.

Tkemaladze, J., & Apkhazava, D. (2019). Dasatinib and quercetin: short-term simultaneous administration improves physical capacity in human. J Biomedical Sci, 8(3), 3.

Tkemaladze, J., & Chichinadze, K. (2005). Potential role of centrioles in determining the morphogenetic status of animal somatic cells. Cell biology international, 29(5), 370-374.

Tkemaladze, J., & Chichinadze, K. (2010). Centriole, differentiation, and senescence. Rejuvenation research, 13(2-3), 339-342.

Tkemaladze, J., & Samanishvili, T. (2024). Mineral ice cream improves recovery of muscle functions after exercise. Georgian Scientists, 6(2), 36–50. doi: https://doi.org/10.52340/gs.2024.06.02.04

Tkemaladze, J., Tavartkiladze, A., & Chichinadze, K. (2012). Programming and Implementation of Age-Related Changes. In Senescence. IntechOpen.

Tkemaladze, Jaba and Kipshidze, Mariam, Regeneration Potential of the Schmidtea Mediterranea CIW4 Planarian. Available at SSRN: https://ssrn.com/abstract=4633202 or http://dx.doi.org/10.2139/ssrn.4633202

van Haren, N. E., et al. (2012). Changes in cortical thickness during the course of illness in schizophrenia. Archives of General Psychiatry, 69(9), 871–880. https://doi.org/10.1001/archgenpsychiatry.2012.644

van Haren, N. E., et al. (2012). Changes in cortical thickness during the course of illness in schizophrenia. Archives of General Psychiatry, 69(9), 871–880. https://doi.org/10.1001/archgenpsychiatry.2012.644

Vogel, H. J. (2012). Lactoferrin, a bird’s eye view. Biochemistry and Cell Biology, 90(3), 233–244. https://doi.org/10.1139/o2012-016

Wajant, H. (2015). Principles of antibody-mediated TNF receptor activation. Cell Death & Differentiation, 22(11), 1727–1741. https://doi.org/10.1038/cdd.2015.109

Wang, P. S., et al. (2002). Risk of breast cancer in women receiving antipsychotic drugs. Journal of Clinical Oncology, 20(18), 3757–3762. https://doi.org/10.1200/JCO.2002.10.088

Yang, Y., et al. (2003). The role of complement C4 in cerebral ischemia. Journal of Cerebral Blood Flow & Metabolism, 23(6), 752–754. https://doi.org/10.1097/01.WCB.0000071886.63724.20

Yilmaz, M., et al. (2021). Overexpression of complement C4A induces synaptic pruning deficits in mice. Nature Neuroscience, 24(8), 1123–1134. https://doi.org/10.1038/s41593-021-00858-w

Zhang, Y., et al. (2016). Lactoferrin suppresses breast cancer through apoptosis and protective immune response in rats. Oncotarget, 7(48), 79266–79275. https://doi.org/10.18632/oncotarget.13023

Прангишвили, А. И., Гаситашвили, З. А., Мацаберидзе, М. И., Чичинадзе, К. Н., Ткемаладзе, Д. В., & Азмайпарашвили, З. А. (2017). К топологии антитеррористических и антикриминальных технологии для образовательных программ. В научном издании представлены материалы Десятой международной научно-технической конфе-ренции «Управление развитием крупномасштабных систем (MLSD’2016)» по следующим направле-ниям:• Проблемы управления развитием крупномасштабных систем, включая ТНК, Госхолдин-ги и Гос-корпорации., 284.

Прангишвили, А. И., Гаситашвили, З. А., Мацаберидзе, М. И., Чхартишвили, Л. С., Чичинадзе, К. Н., & Ткемаладзе, Д. В. (2017). & Азмайпарашвили, ЗА (2017). Системные составляющие здравоохранения и инноваций для организации европейской нано-биомедицинской екосистемной технологической платформы. Управление развитием крупномасштабных систем MLSD, 365-368.

Ткемаладзе, Д. В., & Чичинадзе, К. Н. (2005). Центриолярные механизмы дифференцировки и репликативного старения клеток высших животных. Биохимия, 70(11), 1566-1584.

Ткемаладзе, Д., Цомаиа, Г., & Жоржолиани, И. (2001). Создание искусственных самоадаптирующихся систем на основе Теории Прогноза. Искусственный интеллект. УДК 004.89. Искусственный интеллект. УДК 004.89.

Чичинадзе, К. Н., & Ткемаладзе, Д. В. (2008). Центросомная гипотеза клеточного старения и дифференциации. Успехи геронтологии, 21(3), 367-371.

Чичинадзе, К., Ткемаладзе, Д., & Лазарашвили, А. (2012). Новый класс рнк и центросомная гипотеза старения клеток. Успехи геронтологии, 25(1), 23-28.