Ontogenetic Permanence of Non-Renewable Biomechanical Configurations in Homo Sapiens Anatomy

Main Article Content

Jaba Tkemaladze

Abstract

Aging in biological organisms is intricately linked to the accumulation of damage in long-lived irreparable structures, which remain unchanged throughout life. These structures include lens proteins (crystallins), DNA of postmitotic neurons, mitochondria of cardiomyocytes, tooth enamel, and centrioles of stem cells. Formed in the early stages of ontogenesis, they serve as "entropy accumulators"—a thermodynamic measure of molecular disorder. The impossibility of their replacement is dictated by evolutionary compromises: for instance, the stability of centrioles is crucial for the asymmetric division of stem cells, yet their selective inheritance results in the transfer of damage to progeny, thereby accelerating tissue aging. The accumulation of oxidized proteins, DNA mutations, and dysfunctional organelles disrupts homeostasis, triggering neurodegeneration, cataracts, and heart failure. This article examines the mechanisms underlying the damage to these structures, their role in age-related pathologies, and promising therapeutic strategies, including senolytics, CRISPR correction, and biomimetic materials. Special emphasis is placed on centrioles as key regulators of cellular entropy: while their stability supports tissue regeneration, defect accumulation leads to gene expression disruption and contributes to oncogenesis. Understanding the balance between longevity and vulnerability in irreparable structures opens new avenues for combating aging through targeted entropy management.

Article Details

Section

Editorial

Author Biography

Jaba Tkemaladze, Longevity Clinic

Dr Jaba Tkemaladze is a Professor, a Scientist, and a President of Longevity Alliance Georgia.

Research Director at Longevity Clinic.

Replacing old adult stem cells with induced and safe young adult stem cells.

World-renowned scientist. Developed the Centriolar theory of differentiation and the Centriolar theory of organism ageing. With acquired experience in both academia and industry.

Training in medicine at Tbilisi State Medical University and then at the Psychiatry Research Institute further deepened my knowledge in the laboratory of the Institute of Morphology. Namely, combined experimental and computational methods to study the ageing process and the various ways of manipulating age-related diseases and improvement of human health.

Also served as a Scientific Advisory Board Member in Georgia's Ministry of Defense and Longevity Alliance. Published over 50 scientific articles, given over 100 invited talks and received several awards.

His Rejuvenation Formula: Rejuvenation = Replacement of Old Centrioles with Young Ones.

How to Cite

Tkemaladze, J. (2025). Ontogenetic Permanence of Non-Renewable Biomechanical Configurations in Homo Sapiens Anatomy. Longevity Horizon, 1(3). DOI:https://doi.org/10.5281/zenodo.15086387

References

Ahuja, C. S., Wilson, J. R., Nori, S., et al. (2017). Traumatic spinal cord injury. Nature Reviews Disease Primers, 3(1), 17018. https://doi.org/10.1038/nrdp.2017.18

Aphkhazava, D., Sulashvili, N., & Tkemaladze, J. (2025). Stem Cell Systems and Regeneration. Georgian Scientists, 7(1), 271–319. doi: https://doi.org/10.52340/gs.2025.07.01.26

Asbell, P. A., Dualan, I., Mindel, J., Brocks, D., Ahmad, M., & Epstein, S. (2005). Age-related cataract. The Lancet, 365(9459), 599-609. https://doi.org/10.1016/S0140-6736(05)70803-5

Assinck, P., Duncan, G. J., Hilton, B. J., et al. (2017). Cell transplantation therapy for spinal cord injury. Nature Neuroscience, 20(5), 637–647. https://doi.org/10.1038/nn.4541

Bassnett, S., Shi, Y., & Vrensen, G. F. (2011). Biological glass: Structural determinants of eye lens transparency. Philosophical Transactions of the Royal Society B, 366(1568), 1250–1264. https://doi.org/10.1098/rstb.2010.0302

Bazzi, H., & Anderson, K. V. (2014). Acentriolar mitosis activates a p53-dependent apoptosis pathway in the mouse embryo. Proceedings of the National Academy of Sciences, 111(15), E1491–E1500. https://doi.org/10.1073/pnas.1400568111

Beniash, E., Stifler, C. A., Sun, C. Y., et al. (2019). The hidden structure of human enamel. Nature Communications, 10(1), 4383. https://doi.org/10.1038/s41467-019-12185-7

Bloemendal, H., de Jong, W., Jaenicke, R., Lubsen, N. H., Slingsby, C., & Tardieu, A. (2004). Ageing and vision: Structure, stability and function of lens crystallins. Progress in Biophysics and Molecular Biology, 86(3), 407-485. https://doi.org/10.1016/j.pbiomolbio.2003.11.012

Borges, A. B., Caneppele, T. M., & Masterson, D. (2017). Is resin infiltration an effective esthetic treatment for enamel development defects and white spot lesions? A systematic review. Journal of Dentistry, 56, 11–18. https://doi.org/10.1016/j.jdent.2016.10.010

Bradbury, E. J., & Burnside, E. R. (2019). Moving beyond the glial scar for spinal cord repair. Nature Communications, 10(1), 3879. https://doi.org/10.1038/s41467-019-11723-7

Bratic, A., & Larsson, N. G. (2013). The role of mitochondria in aging. Journal of Clinical Investigation, 123(3), 951–957. https://doi.org/10.1172/JCI64125

Broekmans, F. J., Knauff, E. A., te Velde, E. R., et al. (2007). Female reproductive ageing: Current knowledge and future trends. Trends in Endocrinology & Metabolism, 18(2), 58–65. https://doi.org/10.1016/j.tem.2007.01.004

Brown, D. A., Perry, J. B., Allen, M. E., et al. (2017). Mitochondrial function as a therapeutic target in heart failure. Nature Reviews Cardiology, 14(4), 238–250. https://doi.org/10.1038/nrcardio.2016.203

Brunk, U. T., & Terman, A. (2002). Lipofuscin: Mechanisms of age-related accumulation and influence on cell function. Free Radical Biology and Medicine, 33(5), 611-619. https://doi.org/10.1016/S0891-5849(02)00959-0

Burnight, E. R., Gupta, M., Wiley, L. A., et al. (2017). CRISPR-Cas9 genome engineering: Treating inherited retinal degeneration. Progress in Retinal and Eye Research, 65, 28–49. https://doi.org/10.1016/j.preteyeres.2018.03.003

Byrne, A. B., Edwards, T. J., & Hammarlund, M. (2020). In vivo laser axotomy in C. elegans. Journal of Visualized Experiments, 156, e60469. https://doi.org/10.3791/60469

Capell, B. C., Erdos, M. R., Madigan, J. P., et al. (2005). Inhibiting farnesylation of progerin prevents the characteristic nuclear blebbing of Hutchinson-Gilford progeria syndrome. Proceedings of the National Academy of Sciences, 102(36), 12879–12884. https://doi.org/10.1073/pnas.0506001102

Chichinadze, K. N., & Tkemaladze, D. V. (2008). Centrosomal hypothesis of cellular aging and differentiation. Advances in Gerontology= Uspekhi Gerontologii, 21(3), 367-371.

Chichinadze, K., Lazarashvili, A., & Tkemaladze, J. (2013). RNA in centrosomes: structure and possible functions. Protoplasma, 250(1), 397-405.

Chichinadze, K., Tkemaladze, D., & Lazarashvili, A. (2012). New class of RNA and centrosomal hypothesis of cell aging. Advances in Gerontology= Uspekhi Gerontologii, 25(1), 23-28.

Chichinadze, K., Tkemaladze, J., & Lazarashvili, A. (2012). A new class of RNAs and the centrosomal hypothesis of cell aging. Advances in Gerontology, 2(4), 287-291.

Chichinadze, K., Tkemaladze, J., & Lazarashvili, A. (2012). Discovery of centrosomal RNA and centrosomal hypothesis of cellular ageing and differentiation. Nucleosides, Nucleotides and Nucleic Acids, 31(3), 172-183.

Choi, Y. K., Liu, P., Sze, S. K., et al. (2020). CDK5RAP2 regulates centriole engagement and cohesion in mice. Developmental Cell, 48(4), 567–579. https://doi.org/10.1016/j.devcel.2019.01.022

Cobo, A., García-Velasco, J. A., Coello, A., et al. (2018). Oocyte vitrification as an efficient option for elective fertility preservation. Fertility and Sterility, 109(5), 755–762. https://doi.org/10.1016/j.fertnstert.2018.02.135

D’Angelo, M. A., Raices, M., Panowski, S. H., & Hetzer, M. W. (2009). Age-dependent deterioration of nuclear pore complexes causes a loss of nuclear integrity in postmitotic cells. Cell, 136(2), 284–295. https://doi.org/10.1016/j.cell.2008.11.037

Demarco, F. F., Corrêa, M. B., Cenci, M. S., et al. (2012). Longevity of posterior composite restorations: Not only a matter of materials. Dental Materials, 28(1), 87–101. https://doi.org/10.1016/j.dental.2011.09.003

Fakih, M. H., El Shmoury, M., Szeptycki, J., et al. (2021). The AUGMENT treatment: Physician reported outcomes of the initial global patient experience. Journal of Assisted Reproduction and Genetics, 38(6), 1423–1430. https://doi.org/10.1007/s10815-021-02169-2Fang, E. F., Scheibye-Knudsen, M., Brace, L. E., et al. (2016). Defective mitophagy in XPA via PARP-1 hyperactivation and NAD+/SIRT1 reduction. Cell, 157(4), 882–896. https://doi.org/10.1016/j.cell.2014.03.026

Fischer, J. M., Popp, O., Gebhard, D., & Veith, S. (2016). Poly(ADP-ribose)-mediated regulation of DNA repair capacity in neurons. Nucleic Acids Research, 44(15), 7072-7084. https://doi.org/10.1093/nar/gkw470

Frade, J. M., & López-Sánchez, N. (2010). A novel hypothesis for Alzheimer disease based on neuronal tetraploidy induced by p75 (NTR). Cell Cycle, 9(10), 1934–1941. https://doi.org/10.4161/cc.9.10.11582

Franasiak, J. M., Forman, E. J., Hong, K. H., et al. (2014). The nature of aneuploidy with increasing age of the female partner: A review of 15,169 consecutive trophectoderm biopsies evaluated with comprehensive chromosomal screening. Fertility and Sterility, 101(3), 656–663. https://doi.org/10.1016/j.fertnstert.2013.11.004

Frost, B., Bardai, F. H., & Feany, M. B. (2014). Lamin dysfunction mediates neurodegeneration in tauopathies. Current Biology, 24(2), 129–134. https://doi.org/10.1016/j.cub.2013.11.064

Fu, J., Hagan, I. M., & Glover, D. M. (2015). The centrosome and its duplication cycle. Cold Spring Harbor Perspectives in Biology, 7(2), a015800. https://doi.org/10.1101/cshperspect.a015800

Gammage, P. A., Viscomi, C., Simard, M. L., et al. (2018). Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo. Nature Medicine, 24(11), 1691–1695. https://doi.org/10.1038/s41591-018-0165-9

Geoffroy, C. G., & Zheng, B. (2014). Myelin-associated inhibitors in axonal growth after CNS injury. Current Opinion in Neurobiology, 27, 31–38. https://doi.org/10.1016/j.conb.2014.02.012

Gomes, L. C., Di Benedetto, G., & Scorrano, L. (2011). During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nature Cell Biology, 13(5), 589–598. https://doi.org/10.1038/ncb2220

Grima, J. C., Daigle, J. G., Arbez, N., et al. (2017). Mutant Huntingtin disrupts the nuclear pore complex. Neuron, 94(1), 93–107. https://doi.org/10.1016/j.neuron.2017.03.023

Gruenbaum, Y., & Foisner, R. (2015). Lamins: Nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation. Annual Review of Biochemistry, 84, 131–164. https://doi.org/10.1146/annurev-biochem-060614-034115

Guemez-Gamboa, A., Coufal, N. G., & Gleeson, J. G. (2014). Primary cilia in the developing and mature brain. Neuron, 82(3), 511–521. https://doi.org/10.1016/j.neuron.2014.04.024

Halliwell, B. (2013). The antioxidant paradox: Less paradoxical now? British Journal of Clinical Pharmacology, 75(3), 637-644. https://doi.org/10.1111/j.1365-2125.2012.04272.x

Hartong, D. T., Berson, E. L., & Dryja, T. P. (2006). Retinitis pigmentosa. The Lancet, 368(9549), 1795–1809. https://doi.org/10.1016/S0140-6736(06)69740-7

He, Z., & Jin, Y. (2016). Intrinsic control of axon regeneration. Neuron, 90(3), 437–451. https://doi.org/10.1016/j.neuron.2016.04.022

Herculano-Houzel, S. (2014). The glia/neuron ratio: How it varies uniformly across brain structures and species and what that means for brain physiology and evolution. Glia, 62(9), 1377–1391. https://doi.org/10.1002/glia.22683

Hernandez, L., Roux, K. J., Wong, E. S. M., et al. (2010). Functional coupling between the extracellular matrix and nuclear lamina by Wnt signaling in progeria. Developmental Cell, 19(3), 413–425. https://doi.org/10.1016/j.devcel.2010.08.013

Hoeijmakers, J. H. (2009). DNA damage, aging, and cancer. New England Journal of Medicine, 361(15), 1475-1485. https://doi.org/10.1056/NEJMra0804615

Höhn, A., & Grune, T. (2013). Lipofuscin: Formation, effects, role in aging and turnover. Gerontology, 59(4), 328-336. https://doi.org/10.1159/000350727

Höhn, A., Weber, D., Jung, T., et al. (2017). Happily (n)ever after: Aging in the context of oxidative stress, proteostasis loss and cellular senescence. Redox Biology, 11, 482–501. https://doi.org/10.1016/j.redox.2016.12.001

Horwitz, J. (2003). Alpha-crystallin. Experimental Eye Research, 76(2), 145-153. https://doi.org/10.1016/S0014-4835(02)00278-6

Hou, Y., Dan, X., Babbar, M., et al. (2019). Ageing as a risk factor for neurodegenerative disease. Nature Reviews Neurology, 15(10), 565–581. https://doi.org/10.1038/s41582-019-0244-7

Insinna, C., & Besharse, J. C. (2008). Intraflagellar transport and the sensory outer segment of vertebrate photoreceptors. Developmental Dynamics, 237(8), 1982–1992. https://doi.org/10.1002/dvdy.21554

Ivanov, A., Pawlikowski, J., Manoharan, I., et al. (2013). Lysosome-mediated processing of chromatin in senescence. Journal of Cell Biology, 202(1), 129–143. https://doi.org/10.1083/jcb.201212110

Jaba, T. (2022). Dasatinib and quercetin: short-term simultaneous administration yields senolytic effect in humans. Issues and Developments in Medicine and Medical Research Vol. 2, 22-31.

Jaskelioff, M., Muller, F. L., Paik, J. H., et al. (2011). Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature, 469(7328), 102–106. https://doi.org/10.1038/nature09603

Jiang, X., Stockwell, B. R., & Conrad, M. (2017). Ferroptosis: Mechanisms, biology and role in disease. Nature Reviews Molecular Cell Biology, 22(4), 266-282. https://doi.org/10.1038/s41580-020-00324-8

Joiner, A., Luo, W., & Pretty, I. A. (2018). Tooth colour and whiteness: A review. Journal of Dentistry, 74, S3–S10. https://doi.org/10.1016/j.jdent.2018.04.018

Jung, T., Bader, N., & Grune, T. (2007). Lipofuscin: Formation, distribution, and metabolic consequences. Annals of the New York Academy of Sciences, 1119(1), 97-111. https://doi.org/10.1196/annals.1404.008

Kaarniranta, K., Uusitalo, H., Blasiak, J., et al. (2020). Mechanisms of mitochondrial dysfunction and their impact on age-related macular degeneration. Progress in Retinal and Eye Research, 79, 100858. https://doi.org/10.1016/j.preteyeres.2020.100858

Kantorow, M., Hawse, J. R., Cowell, T. L., Benhamed, S., Pizarro, G. O., Reddy, V. N., & Hejtmancik, J. F. (2020). Methionine sulfoxide reductase A is important for lens cell viability and resistance to oxidative stress. Proceedings of the National Academy of Sciences, 117(33), 19919-19927. https://doi.org/10.1073/pnas.2011636117

Kipshidze, M., & Tkemaladze, J. (2023). Comparative Analysis of drugs that improve the Quality of Life and Life Expectancy. Junior Researchers, 1(1), 184–193. doi: https://doi.org/10.52340/2023.01.01.19

Kipshidze, M., & Tkemaladze, J. (2023). The planaria Schmidtea mediterranea as a model system for the study of stem cell biology. Junior Researchers, 1(1), 194–218. doi: https://doi.org/10.52340/2023.01.01.20

Kipshidze, M., & Tkemaladze, J. (2024). Abastumani Resort: Balneological Heritage and Modern Potential. Junior Researchers, 2(2), 126–134. doi: https://doi.org/10.52340/jr.2024.02.02.12

Kipshidze, M., & Tkemaladze, J. (2024). Balneology in Georgia: traditions and modern situation. Junior Researchers, 2(2), 78–97. doi: https://doi.org/10.52340/jr.2024.02.02.09

Kipshidze, M., & Tkemaladze, J. (2024). Microelementoses - history and current status. Junior Researchers, 2(2), 108–125. doi: https://doi.org/10.52340/jr.2024.02.02.11

Kirkham, J., Firth, A., Vernals, D., et al. (2020). Self-assembling peptide scaffolds promote enamel remineralization. Journal of Dental Research, 96(7), 790–797. https://doi.org/10.1177/0022034517703828

Kirkham, J., Firth, A., Vernals, D., et al. (2020). Self-assembling peptide scaffolds promote enamel remineralization. Journal of Dental Research, 96(7), 790–797. https://doi.org/10.1177/0022034517703828

Kucher, K., Johns, D., Maier, D., et al. (2018). First-in-human study of anti-Nogo-A antibody in spinal cord injury. Annals of Clinical and Translational Neurology, 5(8), 845–856. https://doi.org/10.1002/acn3.581

Kurz, T., Terman, A., Gustafsson, B., & Brunk, U. T. (2008). Lysosomes in iron metabolism, ageing and apoptosis. Histochemistry and Cell Biology, 129(4), 389-406. https://doi.org/10.1007/s00418-008-0394-y

Lezhava, T., Monaselidze, J., Jokhadze, T., Kakauridze, N., Khodeli, N., Rogava, M., Tkemaladze, J., ... & Gaiozishvili, M. (2011). Gerontology research in Georgia. Biogerontology, 12, 87-91. doi: 10.1007/s10522-010-9283-6. Epub 2010 May 18. PMID: 20480236; PMCID: PMC3063552

Liang, Y., Hsu, J. C., & Yoon, D. W. (2020). Asymmetric inheritance of centrosomes maintains stem cell properties in Drosophila. Cell Stem Cell, 26(6), 896–909. https://doi.org/10.1016/j.stem.2020.04.003

Lira, V. A., Benton, C. R., Yan, Z., & Bonen, A. (2013). PGC-1α regulation by exercise training and its influences on muscle function and insulin sensitivity. American Journal of Physiology-Endocrinology and Metabolism, 299(2), E145–E161. https://doi.org/10.1152/ajpendo.00055.2010

Lodato, M. A., Rodin, R. E., Bohrson, C. L., et al. (2018). Aging and neurodegeneration are associated with increased mutations in single human neurons. Science, 359(6375), 555-559. https://doi.org/10.1126/science.aao4426

Löhr, K., Möckel, M., & Fischer, S. (2017). Age-related oxidative modifications impair centrosome structure and function. Aging Cell, 16(2), 310–320. https://doi.org/10.1111/acel.12552

López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2013). The hallmarks of aging. Cell, 153(6), 1194-1217. https://doi.org/10.1016/j.cell.2013.05.039

Lu, T., Pan, Y., Kao, S. Y., et al. (2004). Gene regulation and DNA damage in the ageing human brain. Nature, 429(6994), 883-891. https://doi.org/10.1038/nature02661

Lussi, A., Carvalho, T. S., & Jaeggi, T. (2012). Erosive tooth wear: From diagnosis to therapy. Monographs in Oral Science, 25, 1–8. https://doi.org/10.1159/000359936

Madabhushi, R., Gao, F., Pfenning, A. R., et al. (2015). Activity-induced DNA breaks govern the expression of neuronal early-response genes. Cell, 161(7), 1592-1605. https://doi.org/10.1016/j.cell.2015.05.032

Makley, L. N., McMenimen, K. A., DeVree, B. T., et al. (2015). Pharmacological chaperone for α-crystallin partially restores transparency in cataract models. Science, 350(6261), 674–677. https://doi.org/10.1126/science.aac9145

Matsaberidze, M., Prangishvili, A., Gasitashvili, Z., Chichinadze, K., & Tkemaladze, J. (2017). TO TOPOLOGY OF ANTI-TERRORIST AND ANTI-CRIMINAL TECHNOLOGY FOR EDUCATIONAL PROGRAMS. International Journal of Terrorism & Political Hot Spots, 12.

May-Panloup, P., Boucret, L., Chao de la Barca, J. M., et al. (2016). Ovarian ageing: The role of mitochondria in oocytes and follicles. Human Reproduction Update, 22(6), 725–743. https://doi.org/10.1093/humupd/dmw028

Maynard, S., Fang, E. F., Scheibye-Knudsen, M., Croteau, D. L., & Bohr, V. A. (2015). DNA damage, DNA repair, aging, and neurodegeneration. Cold Spring Harbor Perspectives in Medicine, 5(10), a025130. https://doi.org/10.1101/cshperspect.a025130

Molday, R. S., Kellner, U., & Weber, B. H. F. (2015). X-linked juvenile retinoschisis: Clinical diagnosis, genetic analysis, and molecular mechanisms. Progress in Retinal and Eye Research, 49, 77–91. https://doi.org/10.1016/j.preteyeres.2015.06.001

Moreau, K. L., & King, J. A. (2012). Protein misfolding and aggregation in cataract disease and prospects for prevention. Trends in Molecular Medicine, 18(5), 273-282. https://doi.org/10.1016/j.molmed.2012.03.005

Moreno, A. M., Alemán, F., Catroli, G. F., et al. (2022). Long-lasting analgesia via targeted in vivo epigenetic repression of NaV1.7. Science Translational Medicine, 14(632), eabj2854. https://doi.org/10.1126/scitranslmed.abj2854

Moreno-García, A., Kun, A., Calero, O., Medina, M., & Calero, M. (2018). An overview of the role of lipofuscin in age-related neurodegeneration. Frontiers in Neuroscience, 12, 464. https://doi.org/10.3389/fnins.2018.00464

Murphy, M. P., & Hartley, R. C. (2018). Mitochondria as a therapeutic target for common pathologies. Nature Reviews Drug Discovery, 17(12), 865–886. https://doi.org/10.1038/nrd.2018.174

Narendra, D., Tanaka, A., Suen, D. F., & Youle, R. J. (2008). Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. Journal of Cell Biology, 183(5), 795–803. https://doi.org/10.1083/jcb.200809125

Nigg, E. A., & Holland, A. J. (2018). Once and only once: Mechanisms of centriole duplication and their deregulation in disease. Nature Reviews Molecular Cell Biology, 19(5), 297–312. https://doi.org/10.1038/nrm.2017.127

Nixon, R. A. (2013). The role of autophagy in neurodegenerative disease. Nature Medicine, 19(8), 983-997. https://doi.org/10.1038/nm.3232

Nybo Andersen, A. M., Wohlfahrt, J., Christens, P., et al. (2000). Maternal age and fetal loss: Population based register linkage study. BMJ, 320(7251), 1708–1712. https://doi.org/10.1136/bmj.320.7251.1708

Oh, H., Taffet, G. E., & Entman, M. L. (2020). DNA damage and cardiovascular aging. Circulation Research, 126(11), 1547-1565. https://doi.org/10.1161/CIRCRESAHA.119.315939

Pazour, G. J., & Witman, G. B. (2003). The vertebrate primary cilium is a sensory organelle. Current Opinion in Cell Biology, 15(1), 105–110. https://doi.org/10.1016/S0955-0674(02)00012-1

Peumans, M., Van Meerbeek, B., Lambrechts, P., & Vanherle, G. (2000). Porcelain veneers: A review of the literature. Journal of Dentistry, 28(3), 163–177. https://doi.org/10.1016/S0300-5712(99)00066-4

Pickrell, A. M., & Youle, R. J. (2015). The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron, 85(2), 257–273. https://doi.org/10.1016/j.neuron.2014.12.007

Pitts, N. B., Zero, D. T., & Marsh, P. D. (2017). Dental caries. Nature Reviews Disease Primers, 3(1), 17030. https://doi.org/10.1038/nrdp.2017.30

Prangishvili, A., Gasitashvili, Z., Matsaberidze, M., Chkhartishvili, L., Chichinadze, K., Tkemaladze, J., ... & Azmaiparashvili, Z. (2019). SYSTEM COMPONENTS OF HEALTH AND INNOVATION FOR THE ORGANIZATION OF NANO-BIOMEDIC ECOSYSTEM TECHNOLOGICAL PLATFORM. Current Politics and Economics of Russia, Eastern and Central Europe, 34(2/3), 299-305.

Riga, D., Riga, S., & Halalau, F. (2016). Brain lipofuscin and melatonin. Annals of the New York Academy of Sciences, 1057(1), 380-390. https://doi.org/10.1196/annals.1356.029

Rogers, G. C., & Rogers, S. L. (2008). Centriole asymmetry and inheritance in Drosophila male germline stem cells. Current Biology, 18(1), 27–32. https://doi.org/10.1016/j.cub.2007.11.050

Ross, J. M., Öberg, J., Brené, S., et al. (2013). High brain lactate is a hallmark of aging and caused by a shift in the lactate dehydrogenase A/B ratio. Proceedings of the National Academy of Sciences, 110(16), 6330–6335. https://doi.org/10.1073/pnas.1215355110

Ruan, Q., Zhang, Y., Yang, X., et al. (2016). Biomimetic remineralization of human enamel in vitro. Acta Biomaterialia, 10(8), 3952–3958. https://doi.org/10.1016/j.actbio.2014.03.018

Rubinsztein, D. C., Bento, C. F., & Deretic, V. (2015). Therapeutic targeting of autophagy in neurodegenerative and infectious diseases. Journal of Experimental Medicine, 212(7), 979–990. https://doi.org/10.1084/jem.20150956

Rudick, B. J., Ingles, S. A., Chung, K., et al. (2019). Influence of vitamin D on ovarian reserve markers in infertile women. Reproductive Biomedicine Online, 38(5), 789–797. https://doi.org/10.1016/j.rbmo.2019.01.007

Russell, S., Bennett, J., Wellman, J. A., et al. (2017). Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: A randomised, controlled, open-label, phase 3 trial. The Lancet, 390(10097), 849–860. https://doi.org/10.1016/S0140-6736(17)31868-8

Sardiello, M., Palmieri, M., di Ronza, A., et al. (2009). A gene network regulating lysosomal biogenesis and function. Science, 325(5939), 473-477. https://doi.org/10.1126/science.1174447

Satir, P., & Christensen, S. T. (2007). Overview of structure and function of mammalian cilia. Annual Review of Physiology, 69, 377–400. https://doi.org/10.1146/annurev.physiol.69.040705.141236

Savas, J. N., Toyama, B. H., Xu, T., et al. (2012). Extremely long-lived nuclear pore proteins in the rat brain. Science, 335(6071), 942–942. https://doi.org/10.1126/science.1217421

Scaffidi, P., & Misteli, T. (2006). Lamin A-dependent nuclear defects in human aging. Science, 312(5776), 1059–1063. https://doi.org/10.1126/science.1127168

Scheltens, P., De Strooper, B., Kivipelto, M., et al. (2021). Alzheimer’s disease. The Lancet, 397(10284), 1577–1590. https://doi.org/10.1016/S0140-6736(20)32205-4

Scheltens, P., De Strooper, B., Kivipelto, M., et al. (2021). Alzheimer’s disease. The Lancet, 397(10284), 1577–1590. https://doi.org/10.1016/S0140-6736(20)32205-4

Schwab, M. E., & Strittmatter, S. M. (2014). Nogo limits neural plasticity and recovery from injury. Current Opinion in Neurobiology, 27, 53–60. https://doi.org/10.1016/j.conb.2014.02.011

Selwitz, R. H., Ismail, A. I., & Pitts, N. B. (2007). Dental caries. The Lancet, 369(9555), 51–59. https://doi.org/10.1016/S0140-6736(07)60031-2

Sender, R., Fuchs, S., & Milo, R. (2016). Revised estimates for the number of human and bacteria cells in the body. PLoS Biology, 14(8), e1002533. https://doi.org/10.1371/journal.pbio.1002533

Sharma, K. K., & Santhoshkumar, P. (2009). Lens aging: Effects of crystallins. Biochimica et Biophysica Acta (BBA) - General Subjects, 1790(10), 1095-1108. https://doi.org/10.1016/j.bbagen.2009.05.008

Sharma, K. K., Santhoshkumar, P., & Hogg, R. (2020). Crystallin proteins and amyloid fibrils. Cellular and Molecular Life Sciences, 77(3), 463–477. https://doi.org/10.1007/s00018-019-03391-z

Shi, Y., Barton, K., De Maria, A., et al. (2015). The stratified syncytium of the vertebrate lens. Journal of Cell Science, 128(6), 1063–1072. https://doi.org/10.1242/jcs.162511

Sies, H., Berndt, C., & Jones, D. P. (2017). Oxidative stress. Annual Review of Biochemistry, 86, 715–748. https://doi.org/10.1146/annurev-biochem-061516-045037

Simmer, J. P., Papagerakis, P., Smith, C. E., et al. (2010). Regulation of dental enamel shape and hardness. Journal of Dental Research, 89(10), 1024–1038. https://doi.org/10.1177/0022034510375829

Slingsby, C., & Wistow, G. J. (2014). Functions of crystallins in and out of lens: Roles in elongated and post-mitotic cells. Progress in Biophysical and Molecular Biology, 115(1), 52-67. https://doi.org/10.1016/j.pbiomolbio.2014.02.006

Smith, C. E., Hu, Y., & Hu, J. C. (2016). Amelogenesis imperfecta: Genes, proteins, and pathways. Frontiers in Physiology, 7, 435. https://doi.org/10.3389/fphys.2016.00435

Sparrow, J. R., Gregory-Roberts, E., Yamamoto, K., et al. (2012). The bisretinoids of retinal pigment epithelium. Progress in Retinal and Eye Research, 31(2), 121–135. https://doi.org/10.1016/j.preteyeres.2011.12.001

Stevens, D. A., Lee, Y., Kang, H. C., et al. (2015). Parkin loss leads to PARIS-dependent declines in mitochondrial mass and respiration. Proceedings of the National Academy of Sciences, 112(37), 11696–11701. https://doi.org/10.1073/pnas.1500624112

Sun, N., Youle, R. J., & Finkel, T. (2016). The mitochondrial basis of aging. Molecular Cell, 61(5), 654–666. https://doi.org/10.1016/j.molcel.2016.01.028

Sun, N., Yun, J., Liu, J., et al. (2015). Measuring in vivo mitophagy. Molecular Cell, 60(4), 685–696. https://doi.org/10.1016/j.molcel.2015.10.009

Surmeier, D. J., Obeso, J. A., & Halliday, G. M. (2017). Selective neuronal vulnerability in Parkinson disease. Nature Reviews Neuroscience, 18(2), 101–113. https://doi.org/10.1038/nrn.2016.178

Tedeschi, A., & Bradke, F. (2017). Spatial and temporal arrangement of neuronal intrinsic and extrinsic mechanisms controlling axon regeneration. Current Opinion in Neurobiology, 42, 118–127. https://doi.org/10.1016/j.conb.2016.12.005

Titus, S., Li, F., Stobezki, R., et al. (2013). Impairment of BRCA1-related DNA double-strand break repair leads to ovarian aging in mice and humans. Science Translational Medicine, 5(172), 172ra21. https://doi.org/10.1126/scitranslmed.3004925

Tkemaladze, J. (2023). Cross-senolytic effects of dasatinib and quercetin in humans. Georgian Scientists, 5(3), 138–152. doi: https://doi.org/10.52340/2023.05.03.15

Tkemaladze, J. (2023). Is the selective accumulation of oldest centrioles in stem cells the main cause of organism ageing?. Georgian Scientists, 5(3), 216–235. doi: https://doi.org/10.52340/2023.05.03.22

Tkemaladze, J. (2023). Long-Term Differences between Regenerations of Head and Tail Fragments in Schmidtea Mediterranea Ciw4. Available at SSRN 4257823.

Tkemaladze, J. (2023). Reduction, proliferation, and differentiation defects of stem cells over time: a consequence of selective accumulation of old centrioles in the stem cells?. Molecular Biology Reports, 50(3), 2751-2761.

Tkemaladze, J. (2023). Structure and possible functions of centriolar RNA with reference to the centriolar hypothesis of differentiation and replicative senescence. Junior Researchers, 1(1), 156–170. doi: https://doi.org/10.52340/2023.01.01.17

Tkemaladze, J. (2023). The centriolar hypothesis of differentiation and replicative senescence. Junior Researchers, 1(1), 123–141. doi: https://doi.org/10.52340/2023.01.01.15

Tkemaladze, J. (2024). Absence of centrioles and regenerative potential of planaria. Georgian Scientists, 6(4), 59–75. doi: https://doi.org/10.52340/gs.2024.06.04.08

Tkemaladze, J. (2024). Cell center and the problem of accumulation of oldest centrioles in stem cells. Georgian Scientists, 6(2), 304–322. doi: https://doi.org/10.52340/gs.2024.06.02.32

Tkemaladze, J. (2024). Editorial: Molecular mechanism of ageing and therapeutic advances through targeting glycative and oxidative stress. Front Pharmacol. 2024 Mar 6;14:1324446. doi: 10.3389/fphar.2023.1324446. PMID: 38510429; PMCID: PMC10953819.

Tkemaladze, J. (2024). Elimination of centrioles. Georgian Scientists, 6(4), 291–307. doi: https://doi.org/10.52340/gs.2024.06.04.25

Tkemaladze, J. (2024). Main causes of intelligence decrease and prospects for treatment. Georgian Scientists, 6(2), 425–432. doi: https://doi.org/10.52340/gs.2024.06.02.44

Tkemaladze, J. (2024). The rate of stem cell division decreases with age. Georgian Scientists, 6(4), 228–242. doi: https://doi.org/10.52340/gs.2024.06.04.21

Tkemaladze, J. (2025). A Universal Approach to Curing All Diseases: From Theoretical Foundations to the Prospects of Applying Modern Biotechnologies in Future Medicine. doi: http://dx.doi.org/10.13140/RG.2.2.24481.11366

Tkemaladze, J. (2025). Aging Model - Drosophila Melanogaster. doi: http://dx.doi.org/10.13140/RG.2.2.16706.49607

Tkemaladze, J. (2025). Allotransplantation Between Adult Drosophila of Different Ages and Sexes. doi: http://dx.doi.org/10.13140/RG.2.2.27711.62884

Tkemaladze, J. (2025). Anti-Blastomic Substances in the Blood Plasma of Schizophrenia Patients. doi: http://dx.doi.org/10.13140/RG.2.2.12721.08807

Tkemaladze, J. (2025). Centriole Elimination as a Mechanism for Restoring Cellular Order. doi: http://dx.doi.org/10.13140/RG.2.2.12890.66248/1

Tkemaladze, J. (2025). Hypotheses on the Role of Centrioles in Aging Processes. doi: http://dx.doi.org/10.13140/RG.2.2.15014.02887/1

Tkemaladze, J. (2025). Limits of Cellular Division: The Hayflick Phenomenon. doi: http://dx.doi.org/10.13140/RG.2.2.25803.30249

Tkemaladze, J. (2025). Molecular Mechanisms of Aging and Modern Life Extension Strategies: From Antiquity to Mars Colonization. doi: http://dx.doi.org/10.13140/RG.2.2.13208.51204

Tkemaladze, J. (2025). Pathways of Somatic Cell Specialization in Multicellular Organisms. doi: http://dx.doi.org/10.13140/RG.2.2.23348.97929/1

Tkemaladze, J. (2025). Strategic Importance of the Caucasian Bridge and Global Power Rivalries. doi: http://dx.doi.org/10.13140/RG.2.2.19153.03680

Tkemaladze, J. (2025). Structure, Formation, and Functional Significance of Centrioles in Cellular Biology. doi: http://dx.doi.org/10.13140/RG.2.2.27441.70245/1

Tkemaladze, J. (2025). The Epistemological Reconfiguration and Transubstantial Reinterpretation of Eucharistic Practices Established by the Divine Figure of Jesus Christ in Relation to Theological Paradigms. doi: http://dx.doi.org/10.13140/RG.2.2.28347.73769/1

Tkemaladze, J. (2025). Transforming the psyche with phoneme frequencies "Habere aliam linguam est possidere secundam animam". doi: http://dx.doi.org/10.13140/RG.2.2.16105.61286

Tkemaladze, J. (2025). Uneven Centrosome Inheritance and Its Impact on Cell Fate. doi: http://dx.doi.org/10.13140/RG.2.2.34917.31206

Tkemaladze, J. (2025). Aging Model Based on Drosophila melanogaster: Mechanisms and Perspectives. Longevity Horizon, 1(3). doi: https://doi.org/10.5281/zenodo.14955643

Tkemaladze, J. (2025). Anatomy, Biogenesis, and Role in Cell Biology of Centrioles. Longevity Horizon, 1(2). doi: https://doi.org/10.5281/zenodo.14742232

Tkemaladze, J. (2025). Anti-Blastomic Substances in the Plasma of Schizophrenia Patients: A Dual Role of Complement C4 in Synaptic Pruning and Tumor Suppression. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.15042448

Tkemaladze, J. (2025). Asymmetry in the Inheritance of Centrosomes / Centrioles and Its Consequences. Longevity Horizon, 1(2). doi: https://doi.org/10.5281/zenodo.14837352

Tkemaladze, J. (2025). Centriole Elimination: A Mechanism for Resetting Entropy in the Cell. Longevity Horizon, 1(2). doi: https://doi.org/10.5281/zenodo.14876013

Tkemaladze, J. (2025). Concept to The Alive Language. Longevity Horizon, 1(1). doi: https://doi.org/10.5281/zenodo.14688792

Tkemaladze, J. (2025). Concept to The Caucasian Bridge. Longevity Horizon, 1(1). doi: https://doi.org/10.5281/zenodo.14689276

Tkemaladze, J. (2025). Concept to The Curing All Diseases. Longevity Horizon, 1(1). doi: https://doi.org/10.5281/zenodo.14676208

Tkemaladze, J. (2025). Concept to The Eternal Youth. Longevity Horizon, 1(1). doi: https://doi.org/10.5281/zenodo.14681902

Tkemaladze, J. (2025). Concept to The Food Security. Longevity Horizon, 1(1). doi: https://doi.org/10.5281/zenodo.14642407

Tkemaladze, J. (2025). Concept to the Living Space. Longevity Horizon, 1(1). doi: https://doi.org/10.5281/zenodo.14635991

Tkemaladze, J. (2025). Concept to The Restoring Dogmas. Longevity Horizon, 1(1). doi: https://doi.org/10.5281/zenodo.14708980

Tkemaladze, J. (2025). Differentiation of Somatic Cells in Multicellular Organisms. Longevity Horizon, 1(2). doi: https://doi.org/10.5281/10.5281/zenodo.14778927

Tkemaladze, J. (2025). Molecular Insights and Radical Longevity from Ancient Elixirs to Mars Colonies. Longevity Horizon, 1(2). doi: https://doi.org/10.5281/zenodo.14895222

Tkemaladze, J. (2025). Protocol for Transplantation of Healthy Cells Between Adult Drosophila of Different Ages and Sexes. Longevity Horizon, 1(2). doi: https://doi.org/10.5281/zenodo.14889948

Tkemaladze, J. (2025). Replicative Hayflick Limit. Longevity Horizon, 1(2). doi: https://doi.org/10.5281/zenodo.14752664

Tkemaladze, J. (2025). Solutions to the Living Space Problem to Overcome the Fear of Resurrection from the Dead. doi: http://dx.doi.org/10.13140/RG.2.2.34655.57768

Tkemaladze, J. (2025). Systemic Resilience and Sustainable Nutritional Paradigms in Anthropogenic Ecosystems. doi: http://dx.doi.org/10.13140/RG.2.2.18943.32169/1

Tkemaladze, J. (2025). The Centriolar Theory of Differentiation Explains the Biological Meaning of the Centriolar Theory of Organismal Aging. Longevity Horizon, 1(3). doi:https://doi.org/10.5281/zenodo.14897688

Tkemaladze, J. (2025). The Concept of Data-Driven Automated Governance. Georgian Scientists, 6(4), 399–410. doi: https://doi.org/10.52340/gs.2024.06.04.38

Tkemaladze, J. (2025).Achieving Perpetual Vitality Through Innovation. doi: http://dx.doi.org/10.13140/RG.2.2.31113.35685

Tkemaladze, J. V., & Chichinadze, K. N. (2005). Centriolar mechanisms of differentiation and replicative aging of higher animal cells. Biochemistry (Moscow), 70, 1288-1303.

Tkemaladze, J., & Apkhazava, D. (2019). Dasatinib and quercetin: short-term simultaneous administration improves physical capacity in human. J Biomedical Sci, 8(3), 3.

Tkemaladze, J., & Chichinadze, K. (2005). Potential role of centrioles in determining the morphogenetic status of animal somatic cells. Cell biology international, 29(5), 370-374.

Tkemaladze, J., & Chichinadze, K. (2010). Centriole, differentiation, and senescence. Rejuvenation research, 13(2-3), 339-342.

Tkemaladze, J., & Samanishvili, T. (2024). Mineral ice cream improves recovery of muscle functions after exercise. Georgian Scientists, 6(2), 36–50. doi: https://doi.org/10.52340/gs.2024.06.02.04

Tkemaladze, J., Tavartkiladze, A., & Chichinadze, K. (2012). Programming and Implementation of Age-Related Changes. In Senescence. IntechOpen.

Tkemaladze, Jaba and Kipshidze, Mariam, Regeneration Potential of the Schmidtea Mediterranea CIW4 Planarian. Available at SSRN: https://ssrn.com/abstract=4633202 or http://dx.doi.org/10.2139/ssrn.4633202

Truscott, R. J. (2005). Age-related nuclear cataract—oxidation is the key. Experimental Eye Research, 80(5), 709-725. https://doi.org/10.1016/j.exer.2004.12.007

Van Blerkom, J. (2011). Mitochondrial function in the human oocyte and embryo and their role in developmental competence. Mitochondrion, 11(5), 797–813. https://doi.org/10.1016/j.mito.2010.09.012

Varma, S. D., Kovtun, S., & Hegde, K. R. (2017). Role of ultraviolet irradiation and oxidative stress in cataract formation—medical prevention by nutritional antioxidants and metabolic agonists. Eye and Contact Lens, 43(5), 279–285. https://doi.org/10.1097/ICL.0000000000000381

Verdin, E. (2015). NAD⁺ in aging, metabolism, and neurodegeneration. Science, 350(6265), 1208-1213. https://doi.org/10.1126/science.aac4854

Wallace, W. H., & Kelsey, T. W. (2010). Human ovarian reserve from conception to the menopause. PLoS ONE, 5(1), e8772. https://doi.org/10.1371/journal.pone.0008772

Wang, L., Lee, K., & Maldonado, M. (2021). Centriole age regulates asymmetric stem cell division. Nature Cell Biology, 23(3), 284–294. https://doi.org/10.1038/s41556-021-00643-8

Weikel, K. A., Garber, C., Baburins, A., & Taylor, A. (2014). Nutritional modulation of cataract. Nutrition Reviews, 72(1), 30–47. https://doi.org/10.1111/nure.12077

West, N. X., Lussi, A., Seong, J., & Hellwig, E. (2013). Dentin hypersensitivity: Pain mechanisms and aetiology of exposed cervical dentin. Clinical Oral Investigations, 17(1), 9–19. https://doi.org/10.1007/s00784-012-0887-x

Wetselaar, P., Vermaire, J. H., & Lobbezoo, F. (2016). The prevalence of tooth wear in the Dutch adult population. Caries Research, 50(6), 543–550. https://doi.org/10.1159/000447020

Wheway, G., Nazlamova, L., & Hancock, J. T. (2018). Signaling through the primary cilium. Frontiers in Cell and Developmental Biology, 6, 8. https://doi.org/10.3389/fcell.2018.00008

Xiong, X., Lan, D., Li, J., et al. (2020). Epigenetic alterations in aging oocytes. Aging and Disease, 11(6), 1464–1477. https://doi.org/10.14336/AD.2020.0219

Ye, J., Zhao, Y., & Li, H. (2021). POC1 ensures centrosome cohesion by recruiting CEP120 during cell division. Journal of Cell Science, 134(10), jcs258420. https://doi.org/10.1242/jcs.258420

Yousefzadeh, M. J., Zhu, Y., McGowan, S. J., et al. (2018). Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine, 36, 18–28. https://doi.org/10.

Yousefzadeh, M. J., Zhu, Y., McGowan, S. J., et al. (2018). Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine, 36, 18–28. https://doi.org/10.1016/j.ebiom.2018.09.015

Zheng, B., Tuszynski, M. H., & Jin, Y. (2021). Regeneration of the central nervous system through reprogramming. Cell Stem Cell, 28(2), 179–195. https://doi.org/10.1016/j.stem.2020.12.001

Zhong, X., Li, M., & Zhang, H. (2022). CRISPR-based editing of centrosomal genes rescues ciliary defects in human cells. Science Advances, 8(12), eabm4644. https://doi.org/10.1126/sciadv.abm4644

Прангишвили, А. И., Гаситашвили, З. А., Мацаберидзе, М. И., Чичинадзе, К. Н., Ткемаладзе, Д. В., & Азмайпарашвили, З. А. (2017). К топологии антитеррористических и антикриминальных технологии для образовательных программ. В научном издании представлены материалы Десятой международной научно-технической конфе-ренции «Управление развитием крупномасштабных систем (MLSD’2016)» по следующим направле-ниям:• Проблемы управления развитием крупномасштабных систем, включая ТНК, Госхолдин-ги и Гос-корпорации., 284.

Прангишвили, А. И., Гаситашвили, З. А., Мацаберидзе, М. И., Чхартишвили, Л. С., Чичинадзе, К. Н., & Ткемаладзе, Д. В. (2017). & Азмайпарашвили, ЗА (2017). Системные составляющие здравоохранения и инноваций для организации европейской нано-биомедицинской екосистемной технологической платформы. Управление развитием крупномасштабных систем MLSD, 365-368.

Ткемаладзе, Д. В., & Чичинадзе, К. Н. (2005). Центриолярные механизмы дифференцировки и репликативного старения клеток высших животных. Биохимия, 70(11), 1566-1584.

Ткемаладзе, Д., Цомаиа, Г., & Жоржолиани, И. (2001). Создание искусственных самоадаптирующихся систем на основе Теории Прогноза. Искусственный интеллект. УДК 004.89. Искусственный интеллект. УДК 004.89.

Чичинадзе, К. Н., & Ткемаладзе, Д. В. (2008). Центросомная гипотеза клеточного старения и дифференциации. Успехи геронтологии, 21(3), 367-371.

Чичинадзе, К., Ткемаладзе, Д., & Лазарашвили, А. (2012). Новый класс рнк и центросомная гипотеза старения клеток. Успехи геронтологии, 25(1), 23-28.