Centriole Elimination: A Mechanism for Resetting Entropy in the Cell

Main Article Content

Jaba Tkemaladze

Abstract

Centrioles are highly conserved organelles within the eukaryotic domain of life, playing an indispensable role in microtubule organization, cellular differentiation, and the formation of cilia and flagella. However, in the processes of oogenesis and spermatogenesis in certain organisms, centrioles undergo elimination, thereby preventing the transmission of either young or aged centrioles to the zygote, depending on the specific system of asymmetric division. The removal of centrioles in gametes can be interpreted as a mechanism of resetting cellular entropy and restoring totipotency, which is crucial for embryonic development. In somatic cells, centriole elimination is also observed during terminal differentiation, suggesting a potential connection to replicative aging. Research indicates that the programmed removal of centrioles is linked to degradation mechanisms involving microtubule breakdown and the ubiquitin-proteasome system. Centrioles are unique in the cellular architecture as they lack self-repair mechanisms, leading to the continuous accumulation of entropy, thereby contributing to cellular and organismal aging. Consequently, eliminating centrioles where they are no longer needed can be seen as a countermeasure against aging. Furthermore, centriole elimination plays a pivotal role in preventing centrosome-related pathologies, abnormal cell division, and possibly even oncogenesis. Investigating the mechanisms of centriole elimination opens promising avenues in biomedicine, including strategies for tissue rejuvenation and aging control.

Article Details

Section

Reviews and Perspectives

Author Biography

Jaba Tkemaladze, Longevity Clinic

Dr Jaba Tkemaladze is a Professor, a Scientist, and a President of Longevity Alliance Georgia.

Research Director at Longevity Clinic.

Replacing old adult stem cells with induced and safe young adult stem cells.

World-renowned scientist. Developed the Centriolar theory of differentiation and the Centriolar theory of organism ageing. With acquired experience in both academia and industry.

Training in medicine at Tbilisi State Medical University and then at the Psychiatry Research Institute further deepened my knowledge in the laboratory of the Institute of Morphology. Namely, combined experimental and computational methods to study the ageing process and the various ways of manipulating age-related diseases and improvement of human health.

Also served as a Scientific Advisory Board Member in Georgia's Ministry of Defense and Longevity Alliance. Published over 50 scientific articles, given over 100 invited talks and received several awards.

His Rejuvenation Formula: Rejuvenation = Replacement of Old Centrioles with Young Ones.

How to Cite

Tkemaladze, J. (2025). Centriole Elimination: A Mechanism for Resetting Entropy in the Cell. Longevity Horizon, 1(2). DOI:https://doi.org/10.5281/zenodo.14876013

References

Avidor-Reiss, T., Carr, A., & Fishman, E. L. (2020). The sperm centrioles. Molecular and cellular endocrinology, 518, 110987. https://doi.org/10.1016/j.mce.2020.110987

Azimzadeh J. (2014). Exploring the evolutionary history of centrosomes. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 369(1650), 20130453. https://doi.org/10.1098/rstb.2013.0453

Balestra, F. R., Domínguez-Calvo, A., Wolf, B., Busso, C., Buff, A., Averink, T., Lipsanen-Nyman, M., Huertas, P., Ríos, R. M., & Gönczy, P. (2021). TRIM37 prevents formation of centriolar protein assemblies by regulating Centrobin. eLife, 10, e62640. https://doi.org/10.7554/eLife.62640

Balestra, F. R., Strnad, P., Flückiger, I., & Gönczy, P. (2013). Discovering regulators of centriole biogenesis through siRNA-based functional genomics in human cells. Developmental cell, 25(6), 555–571. https://doi.org/10.1016/j.devcel.2013.05.016

Balestra, F. R., von Tobel, L., & Gönczy, P. (2015). Paternally contributed centrioles exhibit exceptional persistence in C. elegans embryos. Cell research, 25(5), 642–644. https://doi.org/10.1038/cr.2015.49

Bayless, B. A., Giddings, T. H., Jr, Winey, M., & Pearson, C. G. (2012). Bld10/Cep135 stabilizes basal bodies to resist cilia-generated forces. Molecular biology of the cell, 23(24), 4820–4832. https://doi.org/10.1091/mbc.E12-08-0577

Becalska, A. N., & Gavis, E. R. (2009). Lighting up mRNA localization in Drosophila oogenesis. Development (Cambridge, England), 136(15), 2493–2503. https://doi.org/10.1242/dev.032391

Bedoui, S., Herold, M. J., & Strasser, A. (2020). Emerging connectivity of programmed cell death pathways and its physiological implications. Nature reviews. Molecular cell biology, 21(11), 678–695. https://doi.org/10.1038/s41580-020-0270-8

Bezler, A., & Gönczy, P. (2010). Mutual antagonism between the anaphase promoting complex and the spindle assembly checkpoint contributes to mitotic timing in Caenorhabditis elegans. Genetics, 186(4), 1271–1283. https://doi.org/10.1534/genetics.110.123133

Blachon, S., Khire, A., & Avidor-Reiss, T. (2014). The origin of the second centriole in the zygote of Drosophila melanogaster. Genetics, 197(1), 199–205. https://doi.org/10.1534/genetics.113.160523

Boag, P. R., Atalay, A., Robida, S., Reinke, V., & Blackwell, T. K. (2008). Protection of specific maternal messenger RNAs by the P body protein CGH-1 (Dhh1/RCK) during Caenorhabditis elegans oogenesis. The Journal of cell biology, 182(3), 543–557. https://doi.org/10.1083/jcb.200801183

Bobinnec, Y., Khodjakov, A., Mir, L. M., Rieder, C. L., Eddé, B., & Bornens, M. (1998). Centriole disassembly in vivo and its effect on centrosome structure and function in vertebrate cells. The Journal of cell biology, 143(6), 1575–1589. https://doi.org/10.1083/jcb.143.6.1575

Borrego-Pinto, J., Somogyi, K., Karreman, M. A., König, J., Müller-Reichert, T., Bettencourt-Dias, M., Gönczy, P., Schwab, Y., & Lénárt, P. (2016). Distinct mechanisms eliminate mother and daughter centrioles in meiosis of starfish oocytes. The Journal of cell biology, 212(7), 815–827. https://doi.org/10.1083/jcb.201510083

Boveri, T. (1887). Ueber den Antheil des Spermatozoon an der Theilung des Eies

Braun, D. A., & Hildebrandt, F. (2017). Ciliopathies. Cold Spring Harbor perspectives in biology, 9(3), a028191. https://doi.org/10.1101/cshperspect.a028191

Breslow, D. K., & Holland, A. J. (2019). Mechanism and Regulation of Centriole and Cilium Biogenesis. Annual review of biochemistry, 88, 691–724. https://doi.org/10.1146/annurev-biochem-013118-111153

Breslow, D. K., Hoogendoorn, S., Kopp, A. R., Morgens, D. W., Vu, B. K., Kennedy, M. C., Han, K., Li, A., Hess, G. T., Bassik, M. C., Chen, J. K., & Nachury, M. V. (2018). A CRISPR-based screen for Hedgehog signaling provides insights into ciliary function and ciliopathies. Nature genetics, 50(3), 460–471. https://doi.org/10.1038/s41588-018-0054-7

Buss, G., Stratton, M. B., Milenkovic, L., & Stearns, T. (2022). Postmitotic centriole disengagement and maturation leads to centrosome amplification in polyploid trophoblast giant cells. Molecular biology of the cell, 33(13), ar118. https://doi.org/10.1091/mbc.E22-05-0182

Carré, D., & Sardet, C. (1984). Fertilization and early development in Beroe ovata. Developmental biology, 105(1), 188–195. https://doi.org/10.1016/0012-1606(84)90274-4

Chang, T. B., Hsu, J. C., & Yang, T. T. (2023). Single-molecule localization microscopy reveals the ultrastructural constitution of distal appendages in expanded mammalian centrioles. Nature communications, 14(1), 1688. https://doi.org/10.1038/s41467-023-37342-x

Chichinadze, K. N., & Tkemaladze, D. V. (2008). Centrosomal hypothesis of cellular aging and differentiation. Advances in Gerontology= Uspekhi Gerontologii, 21(3), 367-371.

Chichinadze, K., Lazarashvili, A., & Tkemaladze, J. (2013). RNA in centrosomes: structure and possible functions. Protoplasma, 250(1), 397-405.

Chichinadze, K., Tkemaladze, D., & Lazarashvili, A. (2012). New class of RNA and centrosomal hypothesis of cell aging. Advances in Gerontology= Uspekhi Gerontologii, 25(1), 23-28.

Chichinadze, K., Tkemaladze, J., & Lazarashvili, A. (2012). A new class of RNAs and the centrosomal hypothesis of cell aging. Advances in Gerontology, 2(4), 287-291.

Chichinadze, K., Tkemaladze, J., & Lazarashvili, A. (2012). Discovery of centrosomal RNA and centrosomal hypothesis of cellular ageing and differentiation. Nucleosides, Nucleotides and Nucleic Acids, 31(3), 172-183.

Clift, D., McEwan, W. A., Labzin, L. I., Konieczny, V., Mogessie, B., James, L. C., & Schuh, M. (2017). A Method for the Acute and Rapid Degradation of Endogenous Proteins. Cell, 171(7), 1692–1706.e18. https://doi.org/10.1016/j.cell.2017.10.033

Conduit, P. T., & Raff, J. W. (2010). Cnn dynamics drive centrosome size asymmetry to ensure daughter centriole retention in Drosophila neuroblasts. Current biology : CB, 20(24), 2187–2192. https://doi.org/10.1016/j.cub.2010.11.055

Courtois, A., Schuh, M., Ellenberg, J., & Hiiragi, T. (2012). The transition from meiotic to mitotic spindle assembly is gradual during early mammalian development. The Journal of cell biology, 198(3), 357–370. https://doi.org/10.1083/jcb.201202135

Dirksen E. R. (1971). Centriole morphogenesis in developing ciliated epithelium of the mouse oviduct. The Journal of cell biology, 51(1), 286–302. https://doi.org/10.1083/jcb.51.1.286

Dutcher, S. K., Morrissette, N. S., Preble, A. M., Rackley, C., & Stanga, J. (2002). Epsilon-tubulin is an essential component of the centriole. Molecular biology of the cell, 13(11), 3859–3869. https://doi.org/10.1091/mbc.e02-04-0205

Fechter, J., Schöneberg, A., & Schatten, G. (1996). Excision and disassembly of sperm tail microtubules during sea urchin fertilization: requirements for microtubule dynamics. Cell motility and the cytoskeleton, 35(4), 281–288. https://doi.org/10.1002/(SICI)1097-0169(1996)35:4<281::AID-CM1>3.0.CO;2-A

Fishman, E. L., Jo, K., Nguyen, Q. P. H., Kong, D., Royfman, R., Cekic, A. R., Khanal, S., Miller, A. L., Simerly, C., Schatten, G., Loncarek, J., Mennella, V., & Avidor-Reiss, T. (2018). A novel atypical sperm centriole is functional during human fertilization. Nature communications, 9(1), 2210. https://doi.org/10.1038/s41467-018-04678-8

Fritz-Laylin, L. K., & Fulton, C. (2016). Naegleria: a classic model for de novo basal body assembly. Cilia, 5, 10. https://doi.org/10.1186/s13630-016-0032-6

Fujita, H., Yoshino, Y., & Chiba, N. (2015). Regulation of the centrosome cycle. Molecular & cellular oncology, 3(2), e1075643. https://doi.org/10.1080/23723556.2015.1075643

Gomes Pereira, S., Dias Louro, M. A., & Bettencourt-Dias, M. (2021). Biophysical and Quantitative Principles of Centrosome Biogenesis and Structure. Annual review of cell and developmental biology, 37, 43–63. https://doi.org/10.1146/annurev-cellbio-120219-051400

Gomes Pereira, S., Sousa, A. L., Nabais, C., Paixão, T., Holmes, A. J., Schorb, M., Goshima, G., Tranfield, E. M., Becker, J. D., & Bettencourt-Dias, M. (2021). The 3D architecture and molecular foundations of de novo centriole assembly via bicentrioles. Current biology : CB, 31(19), 4340–4353.e7. https://doi.org/10.1016/j.cub.2021.07.063

Gönczy, P., Schnabel, H., Kaletta, T., Amores, A. D., Hyman, T., & Schnabel, R. (1999). Dissection of cell division processes in the one cell stage Caenorhabditis elegans embryo by mutational analysis. The Journal of cell biology, 144(5), 927–946. https://doi.org/10.1083/jcb.144.5.927

Gudi, R., Haycraft, C. J., Bell, P. D., Li, Z., & Vasu, C. (2015). Centrobin-mediated regulation of the centrosomal protein 4.1-associated protein (CPAP) level limits centriole length during elongation stage. The Journal of biological chemistry, 290(11), 6890–6902. https://doi.org/10.1074/jbc.M114.603423

Gudi, R., Zou, C., Li, J., & Gao, Q. (2011). Centrobin-tubulin interaction is required for centriole elongation and stability. The Journal of cell biology, 193(4), 711–725. https://doi.org/10.1083/jcb.201006135

Gueth-Hallonet, C., Antony, C., Aghion, J., Santa-Maria, A., Lajoie-Mazenc, I., Wright, M., & Maro, B. (1993). gamma-Tubulin is present in acentriolar MTOCs during early mouse development. Journal of cell science, 105 ( Pt 1), 157–166. https://doi.org/10.1242/jcs.105.1.157

Guichard, P., Hachet, V., Majubu, N., Neves, A., Demurtas, D., Olieric, N., Fluckiger, I., Yamada, A., Kihara, K., Nishida, Y., Moriya, S., Steinmetz, M. O., Hongoh, Y., & Gönczy, P. (2013). Native architecture of the centriole proximal region reveals features underlying its 9-fold radial symmetry. Current biology : CB, 23(17), 1620–1628. https://doi.org/10.1016/j.cub.2013.06.061

Harper, N. C., Rillo, R., Jover-Gil, S., Assaf, Z. J., Bhalla, N., & Dernburg, A. F. (2011). Pairing centers recruit a Polo-like kinase to orchestrate meiotic chromosome dynamics in C. elegans. Developmental cell, 21(5), 934–947. https://doi.org/10.1016/j.devcel.2011.09.001

He, L., Wang, X., & Montell, D. J. (2011). Shining light on Drosophila oogenesis: live imaging of egg development. Current opinion in genetics & development, 21(5), 612–619. https://doi.org/10.1016/j.gde.2011.08.011

Hertig, A. T., & Adams, E. C. (1967). Studies on the human oocyte and its follicle. I. Ultrastructural and histochemical observations on the primordial follicle stage. The Journal of cell biology, 34(2), 647–675. https://doi.org/10.1083/jcb.34.2.647

Inoué, S., & Sato, H. (1967). Cell motility by labile association of molecules. The nature of mitotic spindle fibers and their role in chromosome movement. The Journal of general physiology, 50(6), 259–292.

Iwao, Y., & Elinson, R. P. (1990). Control of sperm nuclear behavior in physiologically polyspermic newt eggs: possible involvement of MPF. Developmental biology, 142(2), 301–312. https://doi.org/10.1016/0012-1606(90)90351-i

Iwao, Y., Kimoto, C., Fujimoto, A., Suda, A., & Hara, Y. (2020). Physiological polyspermy: Selection of a sperm nucleus for the development of diploid genomes in amphibians. Molecular reproduction and development, 87(3), 358–369. https://doi.org/10.1002/mrd.23235

Iwao, Y., Murakawa, T., Yamaguchi, J., & Yamashita, M. (2002). Localization of gamma-tubulin and cyclin B during early cleavage in physiologically polyspermic newt eggs. Development, growth & differentiation, 44(6), 489–499. https://doi.org/10.1046/j.1440-169x.2002.00661.x

Jaba, T. (2022). Dasatinib and quercetin: short-term simultaneous administration yields senolytic effect in humans. Issues and Developments in Medicine and Medical Research Vol. 2, 22-31.

Jakobsen, L., Vanselow, K., Skogs, M., Toyoda, Y., Lundberg, E., Poser, I., Falkenby, L. G., Bennetzen, M., Westendorf, J., Nigg, E. A., Uhlen, M., Hyman, A. A., & Andersen, J. S. (2011). Novel asymmetrically localizing components of human centrosomes identified by complementary proteomics methods. The EMBO journal, 30(8), 1520–1535. https://doi.org/10.1038/emboj.2011.63

Janke, C., & Magiera, M. M. (2020). The tubulin code and its role in controlling microtubule properties and functions. Nature reviews. Molecular cell biology, 21(6), 307–326. https://doi.org/10.1038/s41580-020-0214-3

Januschke, J., Gervais, L., Gillet, L., Keryer, G., Bornens, M., & Guichet, A. (2006). The centrosome-nucleus complex and microtubule organization in the Drosophila oocyte. Development (Cambridge, England), 133(1), 129–139. https://doi.org/10.1242/dev.02179

Januschke, J., Gervais, L., Gillet, L., Keryer, G., Bornens, M., & Guichet, A. (2006). The centrosome-nucleus complex and microtubule organization in the Drosophila oocyte. Development (Cambridge, England), 133(1), 129–139. https://doi.org/10.1242/dev.02179

Kai, Y., Iwata, K., Iba, Y., & Mio, Y. (2015). Diagnosis of abnormal human fertilization status based on pronuclear origin and/or centrosome number. Journal of assisted reproduction and genetics, 32(11), 1589–1595. https://doi.org/10.1007/s10815-015-0568-1

Kalbfuss, N., & Gönczy, P. (2023). Extensive programmed centriole elimination unveiled in C. elegans embryos. Science advances, 9(22), eadg8682. https://doi.org/10.1126/sciadv.adg8682

Kalbfuss, N., & Gönczy, P. (2023). Extensive programmed centriole elimination unveiled in C. elegans embryos. Science advances, 9(22), eadg8682. https://doi.org/10.1126/sciadv.adg8682

Kasahara, K., & Inagaki, M. (2021). Primary ciliary signaling: links with the cell cycle. Trends in cell biology, 31(12), 954–964. https://doi.org/10.1016/j.tcb.2021.07.009

Khire, A., Jo, K. H., Kong, D., Akhshi, T., Blachon, S., Cekic, A. R., Hynek, S., Ha, A., Loncarek, J., Mennella, V., & Avidor-Reiss, T. (2016). Centriole Remodeling during Spermiogenesis in Drosophila. Current biology : CB, 26(23), 3183–3189. https://doi.org/10.1016/j.cub.2016.07.006

Khire, A., Vizuet, A. A., Davila, E., & Avidor-Reiss, T. (2015). Asterless Reduction during Spermiogenesis Is Regulated by Plk4 and Is Essential for Zygote Development in Drosophila. Current biology : CB, 25(22), 2956–2963. https://doi.org/10.1016/j.cub.2015.09.045

Khodjakov, A., Rieder, C. L., Sluder, G., Cassels, G., Sibon, O., & Wang, C. L. (2002). De novo formation of centrosomes in vertebrate cells arrested during S phase. The Journal of cell biology, 158(7), 1171–1181. https://doi.org/10.1083/jcb.200205102

Kipshidze, M., & Tkemaladze, J. (2023). Comparative Analysis of drugs that improve the Quality of Life and Life Expectancy. Junior Researchers, 1(1), 184–193. doi: https://doi.org/10.52340/2023.01.01.19

Kipshidze, M., & Tkemaladze, J. (2023). The planaria Schmidtea mediterranea as a model system for the study of stem cell biology. Junior Researchers, 1(1), 194–218. doi: https://doi.org/10.52340/2023.01.01.20

Kipshidze, M., & Tkemaladze, J. (2024). Abastumani Resort: Balneological Heritage and Modern Potential. Junior Researchers, 2(2), 126–134. doi: https://doi.org/10.52340/jr.2024.02.02.12

Kipshidze, M., & Tkemaladze, J. (2024). Balneology in Georgia: traditions and modern situation. Junior Researchers, 2(2), 78–97. doi: https://doi.org/10.52340/jr.2024.02.02.09

Kipshidze, M., & Tkemaladze, J. (2024). Microelementoses - history and current status. Junior Researchers, 2(2), 108–125. doi: https://doi.org/10.52340/jr.2024.02.02.11

Kochanski, R. S., & Borisy, G. G. (1990). Mode of centriole duplication and distribution. The Journal of cell biology, 110(5), 1599–1605. https://doi.org/10.1083/jcb.110.5.1599

Kong, D., Farmer, V., Shukla, A., James, J., Gruskin, R., Kiriyama, S., & Loncarek, J. (2014). Centriole maturation requires regulated Plk1 activity during two consecutive cell cycles. The Journal of cell biology, 206(7), 855–865. https://doi.org/10.1083/jcb.201407087

Kong, D., Sahabandu, N., Sullenberger, C., Vásquez-Limeta, A., Luvsanjav, D., Lukasik, K., & Loncarek, J. (2020). Prolonged mitosis results in structurally aberrant and over-elongated centrioles. The Journal of cell biology, 219(6), e201910019. https://doi.org/10.1083/jcb.201910019

Lambrus, B. G., Uetake, Y., Clutario, K. M., Daggubati, V., Snyder, M., Sluder, G., & Holland, A. J. (2015). p53 protects against genome instability following centriole duplication failure. The Journal of cell biology, 210(1), 63–77. https://doi.org/10.1083/jcb.201502089

Le Clech M. (2008). Role of CAP350 in centriolar tubule stability and centriole assembly. PloS one, 3(12), e3855. https://doi.org/10.1371/journal.pone.0003855

Levine, M. S., Bakker, B., Boeckx, B., Moyett, J., Lu, J., Vitre, B., Spierings, D. C., Lansdorp, P. M., Cleveland, D. W., Lambrechts, D., Foijer, F., & Holland, A. J. (2017). Centrosome Amplification Is Sufficient to Promote Spontaneous Tumorigenesis in Mammals. Developmental cell, 40(3), 313–322.e5. https://doi.org/10.1016/j.devcel.2016.12.022

Lezhava, T., Monaselidze, J., Jokhadze, T., Kakauridze, N., Khodeli, N., Rogava, M., Tkemaladze, J., ... & Gaiozishvili, M. (2011). Gerontology research in Georgia. Biogerontology, 12, 87-91. doi: 10.1007/s10522-010-9283-6. Epub 2010 May 18. PMID: 20480236; PMCID: PMC3063552

Li, W., Yi, P., Zhu, Z., Zhang, X., Li, W., & Ou, G. (2017). Centriole translocation and degeneration during ciliogenesis in Caenorhabditis elegans neurons. The EMBO journal, 36(17), 2553–2566. https://doi.org/10.15252/embj.201796883

Lu, Y., & Roy, R. (2014). Centrosome/Cell cycle uncoupling and elimination in the endoreduplicating intestinal cells of C. elegans. PloS one, 9(10), e110958. https://doi.org/10.1371/journal.pone.0110958

Lukinavičius, G., Lavogina, D., Orpinell, M., Umezawa, K., Reymond, L., Garin, N., Gönczy, P., & Johnsson, K. (2013). Selective chemical crosslinking reveals a Cep57-Cep63-Cep152 centrosomal complex. Current biology : CB, 23(3), 265–270. https://doi.org/10.1016/j.cub.2012.12.030

Magescas, J., Eskinazi, S., Tran, M. V., & Feldman, J. L. (2021). Centriole-less pericentriolar material serves as a microtubule organizing center at the base of C. elegans sensory cilia. Current biology : CB, 31(11), 2410–2417.e6. https://doi.org/10.1016/j.cub.2021.03.022

Maller, J., Poccia, D., Nishioka, D., Kidd, P., Gerhart, J., & Hartman, H. (1976). Spindle formation and cleavage in Xenopus eggs injected with centriole-containing fractions from sperm. Experimental cell research, 99(2), 285–294. https://doi.org/10.1016/0014-4827(76)90585-1

Manandhar, G., Schatten, H., & Sutovsky, P. (2005). Centrosome reduction during gametogenesis and its significance. Biology of reproduction, 72(1), 2–13. https://doi.org/10.1095/biolreprod.104.031245

Matsaberidze, M., Prangishvili, A., Gasitashvili, Z., Chichinadze, K., & Tkemaladze, J. (2017). TO TOPOLOGY OF ANTI-TERRORIST AND ANTI-CRIMINAL TECHNOLOGY FOR EDUCATIONAL PROGRAMS. International Journal of Terrorism & Political Hot Spots, 12.

Matsuura, K., Lefebvre, P. A., Kamiya, R., & Hirono, M. (2004). Bld10p, a novel protein essential for basal body assembly in Chlamydomonas: localization to the cartwheel, the first ninefold symmetrical structure appearing during assembly. The Journal of cell biology, 165(5), 663–671. https://doi.org/10.1083/jcb.200402022

Matsuura, R., Ashikawa, T., Nozaki, Y., & Kitagawa, D. (2016). LIN-41 inactivation leads to delayed centrosome elimination and abnormal chromosome behavior during female meiosis in Caenorhabditis elegans. Molecular biology of the cell, 27(5), 799–811. https://doi.org/10.1091/mbc.E15-10-0713

Mikeladze-Dvali, T., von Tobel, L., Strnad, P., Knott, G., Leonhardt, H., Schermelleh, L., & Gönczy, P. (2012). Analysis of centriole elimination during C. elegans oogenesis. Development (Cambridge, England), 139(9), 1670–1679. https://doi.org/10.1242/dev.075440

Mikule, K., Delaval, B., Kaldis, P., Jurcyzk, A., Hergert, P., & Doxsey, S. (2007). Loss of centrosome integrity induces p38-p53-p21-dependent G1-S arrest. Nature cell biology, 9(2), 160–170. https://doi.org/10.1038/ncb1529

Nakashima, S., & Kato, K. H. (2001). Centriole behavior during meiosis in oocytes of the sea urchin Hemicentrotus pulcherrimus. Development, growth & differentiation, 43(4), 437–445. https://doi.org/10.1046/j.1440-169x.2001.00580.x

Nandi, D., Tahiliani, P., Kumar, A., & Chandu, D. (2006). The ubiquitin-proteasome system. Journal of biosciences, 31(1), 137–155. https://doi.org/10.1007/BF02705243

Neumann, B., Walter, T., Hériché, J. K., Bulkescher, J., Erfle, H., Conrad, C., Rogers, P., Poser, I., Held, M., Liebel, U., Cetin, C., Sieckmann, F., Pau, G., Kabbe, R., Wünsche, A., Satagopam, V., Schmitz, M. H., Chapuis, C., Gerlich, D. W., Schneider, R., … Ellenberg, J. (2010). Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. Nature, 464(7289), 721–727. https://doi.org/10.1038/nature08869

Nössing, C., & Ryan, K. M. (2023). 50 years on and still very much alive: 'Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics'. British journal of cancer, 128(3), 426–431. https://doi.org/10.1038/s41416-022-02020-0

Pelletier, L., O'Toole, E., Schwager, A., Hyman, A. A., & Müller-Reichert, T. (2006). Centriole assembly in Caenorhabditis elegans. Nature, 444(7119), 619–623. https://doi.org/10.1038/nature05318

Pierron, M., Woglar, A., Busso, C., Jha, K., Mikeladze-Dvali, T., Croisier, M., & Gönczy, P. (2023). Centriole elimination during Caenorhabditis elegans oogenesis initiates with loss of the central tube protein SAS-1. The EMBO journal, 42(24), e115076. https://doi.org/10.15252/embj.2023115076

Pimenta-Marques, A., Bento, I., Lopes, C. A., Duarte, P., Jana, S. C., & Bettencourt-Dias, M. (2016). A mechanism for the elimination of the female gamete centrosome in Drosophila melanogaster. Science (New York, N.Y.), 353(6294), aaf4866. https://doi.org/10.1126/science.aaf4866

Pimenta-Marques, A., Perestrelo, T., Reis-Rodrigues, P., Duarte, P., Ferreira-Silva, A., Lince-Faria, M., & Bettencourt-Dias, M. (2024). Ana1/CEP295 is an essential player in the centrosome maintenance program regulated by Polo kinase and the PCM. EMBO reports, 25(1), 102–127. https://doi.org/10.1038/s44319-023-00020-6

Pintard, L., & Bowerman, B. (2019). Mitotic Cell Division in Caenorhabditis elegans. Genetics, 211(1), 35–73. https://doi.org/10.1534/genetics.118.301367

Prangishvili, A., Gasitashvili, Z., Matsaberidze, M., Chkhartishvili, L., Chichinadze, K., Tkemaladze, J., ... & Azmaiparashvili, Z. (2019). SYSTEM COMPONENTS OF HEALTH AND INNOVATION FOR THE ORGANIZATION OF NANO-BIOMEDIC ECOSYSTEM TECHNOLOGICAL PLATFORM. Current Politics and Economics of Russia, Eastern and Central Europe, 34(2/3), 299-305.

Rouvière, C., Houliston, E., Carré, D., Chang, P., & Sardet, C. (1994). Characteristics of pronuclear migration in Beroe ovata. Cell motility and the cytoskeleton, 29(4), 301–311. https://doi.org/10.1002/cm.970290403

Sanchez, A. D., & Feldman, J. L. (2017). Microtubule-organizing centers: from the centrosome to non-centrosomal sites. Current opinion in cell biology, 44, 93–101. https://doi.org/10.1016/j.ceb.2016.09.003

Saxton, W. M., Stemple, D. L., Leslie, R. J., Salmon, E. D., Zavortink, M., & McIntosh, J. R. (1984). Tubulin dynamics in cultured mammalian cells. The Journal of cell biology, 99(6), 2175–2186. https://doi.org/10.1083/jcb.99.6.2175

Schweizer, N., Haren, L., Dutto, I., Viais, R., Lacasa, C., Merdes, A., & Lüders, J. (2021). Sub-centrosomal mapping identifies augmin-γTuRC as part of a centriole-stabilizing scaffold. Nature communications, 12(1), 6042. https://doi.org/10.1038/s41467-021-26252-5

Serwas, D., Su, T. Y., Roessler, M., Wang, S., & Dammermann, A. (2017). Centrioles initiate cilia assembly but are dispensable for maturation and maintenance in C. elegans. The Journal of cell biology, 216(6), 1659–1671. https://doi.org/10.1083/jcb.201610070

Shang, Y., Li, B., & Gorovsky, M. A. (2002). Tetrahymena thermophila contains a conventional gamma-tubulin that is differentially required for the maintenance of different microtubule-organizing centers. The Journal of cell biology, 158(7), 1195–1206. https://doi.org/10.1083/jcb.200205101

Snook, R. R., Hosken, D. J., & Karr, T. L. (2011). The biology and evolution of polyspermy: insights from cellular and functional studies of sperm and centrosomal behavior in the fertilized egg. Reproduction (Cambridge, England), 142(6), 779–792. https://doi.org/10.1530/REP-11-0255

Sönnichsen, B., Koski, L. B., Walsh, A., Marschall, P., Neumann, B., Brehm, M., Alleaume, A. M., Artelt, J., Bettencourt, P., Cassin, E., Hewitson, M., Holz, C., Khan, M., Lazik, S., Martin, C., Nitzsche, B., Ruer, M., Stamford, J., Winzi, M., Heinkel, R., … Echeverri, C. J. (2005). Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature, 434(7032), 462–469. https://doi.org/10.1038/nature03353

Takumi, K., & Kitagawa, D. (2022). Experimental and Natural Induction of de novo Centriole Formation. Frontiers in cell and developmental biology, 10, 861864. https://doi.org/10.3389/fcell.2022.861864

Tkemaladze J. (2024). Editorial: Molecular mechanism of ageing and therapeutic advances through targeting glycative and oxidative stress. Front Pharmacol. 2024 Mar 6;14:1324446. doi: 10.3389/fphar.2023.1324446. PMID: 38510429; PMCID: PMC10953819.

Tkemaladze, J. (2023). Cross-senolytic effects of dasatinib and quercetin in humans. Georgian Scientists, 5(3), 138–152. doi: https://doi.org/10.52340/2023.05.03.15

Tkemaladze, J. (2023). Is the selective accumulation of oldest centrioles in stem cells the main cause of organism ageing?. Georgian Scientists, 5(3), 216–235. doi: https://doi.org/10.52340/2023.05.03.22

Tkemaladze, J. (2023). Long-Term Differences between Regenerations of Head and Tail Fragments in Schmidtea Mediterranea Ciw4. Available at SSRN 4257823.

Tkemaladze, J. (2023). Reduction, proliferation, and differentiation defects of stem cells over time: a consequence of selective accumulation of old centrioles in the stem cells?. Molecular Biology Reports, 50(3), 2751-2761.

Tkemaladze, J. (2023). Structure and possible functions of centriolar RNA with reference to the centriolar hypothesis of differentiation and replicative senescence. Junior Researchers, 1(1), 156–170. doi: https://doi.org/10.52340/2023.01.01.17

Tkemaladze, J. (2023). The centriolar hypothesis of differentiation and replicative senescence. Junior Researchers, 1(1), 123–141. doi: https://doi.org/10.52340/2023.01.01.15

Tkemaladze, J. (2024). Absence of centrioles and regenerative potential of planaria. Georgian Scientists, 6(4), 59–75. doi: https://doi.org/10.52340/gs.2024.06.04.08

Tkemaladze, J. (2024). Cell center and the problem of accumulation of oldest centrioles in stem cells. Georgian Scientists, 6(2), 304–322. doi: https://doi.org/10.52340/gs.2024.06.02.32

Tkemaladze, J. (2024). Elimination of centrioles. Georgian Scientists, 6(4), 291–307. doi: https://doi.org/10.52340/gs.2024.06.04.25

Tkemaladze, J. (2024). Main causes of intelligence decrease and prospects for treatment. Georgian Scientists, 6(2), 425–432. doi: https://doi.org/10.52340/gs.2024.06.02.44

Tkemaladze, J. (2024). The rate of stem cell division decreases with age. Georgian Scientists, 6(4), 228–242. doi: https://doi.org/10.52340/gs.2024.06.04.21

Tkemaladze, J. (2025). A Universal Approach to Curing All Diseases: From Theoretical Foundations to the Prospects of Applying Modern Biotechnologies in Future Medicine. doi: http://dx.doi.org/10.13140/RG.2.2.24481.11366

Tkemaladze, J. (2025). Strategic Importance of the Caucasian Bridge and Global Power Rivalries. doi: http://dx.doi.org/10.13140/RG.2.2.19153.03680

Tkemaladze, J. (2025). The Epistemological Reconfiguration and Transubstantial Reinterpretation of Eucharistic Practices Established by the Divine Figure of Jesus Christ in Relation to Theological Paradigms. doi: http://dx.doi.org/10.13140/RG.2.2.28347.73769

Tkemaladze, J. (2025). Transforming the psyche with phoneme frequencies "Habere aliam linguam est possidere secundam animam" Charlemagne. doi: http://dx.doi.org/10.13140/RG.2.2.16105.61286

Tkemaladze, J. (2025). Anatomy, Biogenesis, and Role in Cell Biology of Centrioles. Longevity Horizons, 1(2). doi: https://doi.org/10.5281/zenodo.14742232

Tkemaladze, J. (2025). Asymmetry in the Inheritance of Centrosomes / Centrioles and Its Consequences. Longevity Horizons, 1(2). doi: https://doi.org/10.5281/zenodo.14837352

Tkemaladze, J. (2025). Concept to The Alive Language. Longevity Horizons, 1(1). doi: https://doi.org/10.5281/zenodo.14688792

Tkemaladze, J. (2025). Concept to The Caucasian Bridge. Longevity Horizons, 1(1). doi: https://doi.org/10.5281/zenodo.14689276

Tkemaladze, J. (2025). Concept to The Curing All Diseases. Longevity Horizons, 1(1). doi: https://doi.org/10.5281/zenodo.14676208

Tkemaladze, J. (2025). Concept to The Eternal Youth. Longevity Horizons, 1(1). doi: https://doi.org/10.5281/zenodo.14681902

Tkemaladze, J. (2025). Concept to The Food Security. Longevity Horizons, 1(1). doi: https://doi.org/10.5281/zenodo.14642407

Tkemaladze, J. (2025). Concept to the Living Space. Longevity Horizons, 1(1). doi: https://doi.org/10.5281/zenodo.14635991

Tkemaladze, J. (2025). Concept to The Restoring Dogmas. Longevity Horizons, 1(1). doi: https://doi.org/10.5281/zenodo.14708980

Tkemaladze, J. (2025). Differentiation of Somatic Cells in Multicellular Organisms. Longevity Horizons, 1(2). doi: https://doi.org/10.5281/10.5281/zenodo.14778927

Tkemaladze, J. (2025). Replicative Hayflick Limit. Longevity Horizons, 1(2). doi: https://doi.org/10.5281/zenodo.14752664

Tkemaladze, J. (2025). Solutions to the Living Space Problem to Overcome the Fear of Resurrection from the Dead. doi: http://dx.doi.org/10.13140/RG.2.2.34655.57768

Tkemaladze, J. (2025). The Concept of Data-Driven Automated Governance. Georgian Scientists, 6(4), 399–410. doi: https://doi.org/10.52340/gs.2024.06.04.38

Tkemaladze, J. (2025).Achieving Perpetual Vitality Through Innovation. doi: http://dx.doi.org/10.13140/RG.2.2.31113.35685

Tkemaladze, J. (2025).Systemic Resilience and Sustainable Nutritional Paradigms in Anthropogenic Ecosystems. doi: http://dx.doi.org/10.13140/RG.2.2.18943.32169/1

Tkemaladze, J. V., & Chichinadze, K. N. (2005). Centriolar mechanisms of differentiation and replicative aging of higher animal cells. Biochemistry (Moscow), 70, 1288-1303.

Tkemaladze, J., & Apkhazava, D. (2019). Dasatinib and quercetin: short-term simultaneous administration improves physical capacity in human. J Biomedical Sci, 8(3), 3.

Tkemaladze, J., & Chichinadze, K. (2005). Potential role of centrioles in determining the morphogenetic status of animal somatic cells. Cell biology international, 29(5), 370-374.

Tkemaladze, J., & Chichinadze, K. (2010). Centriole, differentiation, and senescence. Rejuvenation research, 13(2-3), 339-342.

Tkemaladze, J., & Samanishvili, T. (2024). Mineral ice cream improves recovery of muscle functions after exercise. Georgian Scientists, 6(2), 36–50. doi: https://doi.org/10.52340/gs.2024.06.02.04

Tkemaladze, J., Tavartkiladze, A., & Chichinadze, K. (2012). Programming and Implementation of Age-Related Changes. In Senescence. IntechOpen.

Tkemaladze, Jaba and Kipshidze, Mariam, Regeneration Potential of the Schmidtea Mediterranea CIW4 Planarian. Available at SSRN: https://ssrn.com/abstract=4633202 or http://dx.doi.org/10.2139/ssrn.4633202

Uetake, Y., Kato, K. H., Washitani-Nemoto, S., & Nemoto Si, S. (2002). Nonequivalence of maternal centrosomes/centrioles in starfish oocytes: selective casting-off of reproductive centrioles into polar bodies. Developmental biology, 247(1), 149–164. https://doi.org/10.1006/dbio.2002.0682

Uzbekov, R., Singina, G. N., Shedova, E. N., Banliat, C., Avidor-Reiss, T., & Uzbekova, S. (2023). Centrosome Formation in the Bovine Early Embryo. Cells, 12(9), 1335. https://doi.org/10.3390/cells12091335

von Tobel, L., Mikeladze-Dvali, T., Delattre, M., Balestra, F. R., Blanchoud, S., Finger, S., Knott, G., Müller-Reichert, T., & Gönczy, P. (2014). SAS-1 is a C2 domain protein critical for centriole integrity in C. elegans. PLoS genetics, 10(11), e1004777. https://doi.org/10.1371/journal.pgen.1004777

Wang, M., Nagle, R. B., Knudsen, B. S., Cress, A. E., & Rogers, G. C. (2020). Centrosome loss results in an unstable genome and malignant prostate tumors. Oncogene, 39(2), 399–413. https://doi.org/10.1038/s41388-019-0995-z

Wolf, N., Hirsh, D., & McIntosh, J. R. (1978). Spermatogenesis in males of the free-living nematode, Caenorhabditis elegans. Journal of ultrastructure research, 63(2), 155–169. https://doi.org/10.1016/s0022-5320(78)80071-9

Wong, Y. L., Anzola, J. V., Davis, R. L., Yoon, M., Motamedi, A., Kroll, A., Seo, C. P., Hsia, J. E., Kim, S. K., Mitchell, J. W., Mitchell, B. J., Desai, A., Gahman, T. C., Shiau, A. K., & Oegema, K. (2015). Cell biology. Reversible centriole depletion with an inhibitor of Polo-like kinase 4. Science (New York, N.Y.), 348(6239), 1155–1160. https://doi.org/10.1126/science.aaa5111

Zou, C., Li, J., Bai, Y., Gunning, W. T., Wazer, D. E., Band, V., & Gao, Q. (2005). Centrobin: a novel daughter centriole-associated protein that is required for centriole duplication. The Journal of cell biology, 171(3), 437–445. https://doi.org/10.1083/jcb.200506185

Прангишвили, А. И., Гаситашвили, З. А., Мацаберидзе, М. И., Чичинадзе, К. Н., Ткемаладзе, Д. В., & Азмайпарашвили, З. А. (2017). К топологии антитеррористических и антикриминальных технологии для образовательных программ. В научном издании представлены материалы Десятой международной научно-технической конфе-ренции «Управление развитием крупномасштабных систем (MLSD’2016)» по следующим направле-ниям:• Проблемы управления развитием крупномасштабных систем, включая ТНК, Госхолдин-ги и Гос-корпорации., 284.

Прангишвили, А. И., Гаситашвили, З. А., Мацаберидзе, М. И., Чхартишвили, Л. С., Чичинадзе, К. Н., & Ткемаладзе, Д. В. (2017). & Азмайпарашвили, ЗА (2017). Системные составляющие здравоохранения и инноваций для организации европейской нано-биомедицинской екосистемной технологической платформы. Управление развитием крупномасштабных систем MLSD, 365-368.

Ткемаладзе, Д. (2025). Анатомия, биогенез и роль в клеточной биологии центриолей. doi: http://dx.doi.org/10.13140/RG.2.2.27441.70245/1

Ткемаладзе, Д. (2025). Асимметрия в наследовании центросом / центриолей и ее последствия. doi: http://dx.doi.org/10.13140/RG.2.2.34917.31206

Ткемаладзе, Д. (2025). Дифференциация соматических клеток многоклеточных животных. doi: http://dx.doi.org/10.13140/RG.2.2.23348.97929/1

Ткемаладзе, Д. (2025). Репликативный Лимит Хейфлика. doi: http://dx.doi.org/10.13140/RG.2.2.25803.30249

Ткемаладзе, Д. В., & Чичинадзе, К. Н. (2005). Центриолярные механизмы дифференцировки и репликативного старения клеток высших животных. Биохимия, 70(11), 1566-1584.

Ткемаладзе, Д., Цомаиа, Г., & Жоржолиани, И. (2001). Создание искусственных самоадаптирующихся систем на основе Теории Прогноза. Искусственный интеллект. УДК 004.89. Искусственный интеллект. УДК 004.89.

Чичинадзе, К., Ткемаладзе, Д., & Лазарашвили, А. (2012). НОВЫЙ КЛАСС РНК И ЦЕНТРОСОМНАЯ ГИПОТЕЗА СТАРЕНИЯ КЛЕТОК. Успехи геронтологии, 25(1), 23-28.