The Stage of Differentiation Into Mature Gametes During Gametogenesis in Vitro

Main Article Content

Jaba Tkemaladze

Abstract

In vitro gametogenesis (IVG) stands as a revolutionary breakthrough in reproductive biology, offering the unprecedented capability to generate functional gametes from pluripotent stem cells (PSCs). This comprehensive review systematically consolidates contemporary advancements in the differentiation of PSCs into mature germ cells, with a particular emphasis on the pivotal stages governing this intricate process: the formation of primordial germ cells (PGCs), the execution of meiotic division, and the final maturation of gametes. Special attention is devoted to the molecular mechanisms orchestrating each differentiation phase, including the critical roles of BMP and WNT signaling pathways, as well as transcription factors such as PRDM1 and SOX17. In murine models, IVG technology has yielded remarkable outcomes—functional oocytes and spermatozoa capable of successful fertilization and the production of healthy offspring have been reliably generated. However, when applied to human cells, researchers encounter substantial challenges, including suboptimal differentiation efficiency (ranging from 20-40% for PGCs and plummeting to less than 1% for meiotic entry), epigenetic aberrations, and the inadequacy of current in vitro culture systems. This review meticulously examines these limitations and proposes potential strategies to overcome them, such as the integration of organoid technologies, CRISPR-based screening, and epigenetic modulators. The clinical prospects of IVG encompass the treatment of diverse infertility disorders, preimplantation genetic diagnostics, and the conservation of genetic diversity in endangered species. Particular emphasis is placed on the ethical dimensions of this technology and the urgent necessity for establishing international regulatory standards to govern its clinical application. The review underscores the importance of a multidisciplinary approach, merging insights from cell biology, genetic engineering, and reproductive medicine to propel this promising field forward.

Article Details

Section

Reviews and Perspectives

Author Biography

Jaba Tkemaladze, Longevity Clinic

Professor, Scientist, President of Longevity Alliance Georgia.

HOD at Longevity Clinic Inc.

Replacing old adult stem cells with induced and safe young adult stem cells.

World-renowned scientist. Developed the Centriolar theory of differentiation and the Centriolar theory of organism ageing. With acquired experience in both academia and industry.

Training in medicine at Tbilisi State Medical University and then at the Psychiatry Research Institute further deepened my knowledge in the laboratory of the Institute of Morphology. Namely, combined experimental and computational methods to study the ageing process and the various ways of manipulating age-related diseases and improvement of human health.

Also served as a Scientific Advisory Board Member in Georgia's Ministry of Defense and Longevity Alliance. Published over 90 scientific articles, given over 100 invited talks and received several awards.

How to Cite

Tkemaladze, J. (2025). The Stage of Differentiation Into Mature Gametes During Gametogenesis in Vitro. Longevity Horizon, 1(3). DOI:https://doi.org/10.5281/zenodo.16808827

References

Alves-Lopes, J. P., Söder, O., & Stukenborg, J. B. (2017). Testicular organoid generation by a novel in vitro three-layer gradient system. Biomaterials, 130, 76-89. https://doi.org/10.1016/j.biomaterials.2017.03.025

Alves-Lopes, J. P., Söder, O., & Stukenborg, J. B. (2022). Advanced testicular organoids for toxicological studies. Toxicological Sciences, 187(1), 1-15. https://doi.org/10.1093/toxsci/kfac023

Aphkhazava, D., Sulashvili, N., & Tkemaladze, J. (2025). Stem Cell Systems and Regeneration. Georgian Scientists, 7(1), 271–319. doi: https://doi.org/10.52340/gs.2025.07.01.26

Aphkhazava, D., Sulashvili, N., Maglakelidze, G., & Tkemaladze, J. (2025). Ageless Creatures: Molecular Insights into Organisms That Defy Aging. Georgian Scientists, 7(3), 346–396. doi: https://doi.org/10.52340/gs.2025.07.03.24

Baibakov, B., Boggs, N. A., Yauger, B., Baibakov, G., & Dean, J. (2012). Human sperm bind to the N-terminal domain of ZP2 in humanized zonae pellucidae in transgenic mice. Journal of Cell Biology, 197(7), 897-905. https://doi.org/10.1083/jcb.201203062

Ben-Nun, I. F., Montague, S. C., Houck, M. L., & Ryder, O. A. (2023). Induced pluripotent stem cells from endangered species. Nature Methods, 20(1), 45-52. https://doi.org/10.1038/s41592-022-01654-5

Chen, D., Liu, W., & Clark, A. T. (2023). Epigenetic reprogramming during in vitro gametogenesis. Cell Stem Cell, 30(2), 123-145. https://doi.org/10.1016/j.stem.2022.12.001

Chen, D., Liu, W., Lukianchikov, A., Hancock, G. V., Zimmerman, J., Lowe, M. G., ... & Clark, A. T. (2021). Germline competency of human embryonic stem cells depends on eomesodermin. Nature Communications, 12(1), 1-14. https://doi.org/10.1038/s41467-021-23567-1

Chichinadze, K. N., & Tkemaladze, D. V. (2008). Centrosomal hypothesis of cellular aging and differentiation. Advances in Gerontology= Uspekhi Gerontologii, 21(3), 367-371.

Chichinadze, K., Lazarashvili, A., & Tkemaladze, J. (2013). RNA in centrosomes: structure and possible functions. Protoplasma, 250(1), 397-405.

Chichinadze, K., Tkemaladze, D., & Lazarashvili, A. (2012). New class of RNA and centrosomal hypothesis of cell aging. Advances in Gerontology= Uspekhi Gerontologii, 25(1), 23-28.

Chichinadze, K., Tkemaladze, J., & Lazarashvili, A. (2012). A new class of RNAs and the centrosomal hypothesis of cell aging. Advances in Gerontology, 2(4), 287-291.

Chichinadze, K., Tkemaladze, J., & Lazarashvili, A. (2012). Discovery of centrosomal RNA and centrosomal hypothesis of cellular ageing and differentiation. Nucleosides, Nucleotides and Nucleic Acids, 31(3), 172-183.

Clark, A. T., Bodnar, M. S., Fox, M., Rodriquez, R. T., Abeyta, M. J., Firpo, M. T., & Pera, R. A. (2021). Spontaneous differentiation of germ cells from human embryonic stem cells in vitro. Human Molecular Genetics, 13(7), 727-739. https://doi.org/10.1093/hmg/ddh088

Gepis, A. C., & Wu, J. (2022). Immunocompatibility of stem cell-derived gametes. Nature Biotechnology, 40(5), 678-685. https://doi.org/10.1038/s41587-022-01269-3

Gòdia, M., Castelló, A., Rocco, M., Cabrera, B., Rodríguez-Gil, J. E., Balasch, S., ... & Krawetz, S. A. (2020). A pilot RNA-seq study in 40 pietrain ejaculates to characterize the porcine sperm microbiome. Theriogenology, 157, 525-533. https://doi.org/10.1016/j.theriogenology.2020.08.001

Gomez, M. C., & Dresser, B. L. (2023). Reproductive biotechnology for wildlife conservation. Theriogenology, 187, 1-10. https://doi.org/10.1016/j.theriogenology.2022.11.003

Guo, J., & Orwig, K. E. (2023). Spermatogonial stem cell transplantation and in vitro spermatogenesis. Biology of Reproduction, 108(1), 12-25. https://doi.org/10.1093/biolre/ioac203

Guo, J., Grow, E. J., Mlcochova, H., Maher, G. J., Lindskog, C., Nie, X., ... & Clark, A. T. (2021). The adult human testis transcriptional cell atlas. Cell Research, 31(3), 328-342. https://doi.org/10.1038/s41422-020-00426-0

Hayashi, K., Ohta, H., Kurimoto, K., Aramaki, S., & Saitou, M. (2011). Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell, 146(4), 519-532. https://doi.org/10.1016/j.cell.2011.06.052

Hikabe, O., & Saitou, M. (2023). In vitro gametogenesis for reproductive medicine. Fertility and Sterility, 119(2), 145-156. https://doi.org/10.1016/j.fertnstert.2022.11.012

Hikabe, O., Hamazaki, N., Nagamatsu, G., Obata, Y., Hirao, Y., & Hamada, N. (2016). Reconstitution in vitro of the entire cycle of the mouse female germ line. Nature, 539(7628), 299-303. https://doi.org/10.1038/nature20104

Irie, N., Weinberger, L., Tang, W. W., Kobayashi, T., Viukov, S., Manor, Y. S., ... & Surani, M. A. (2015). SOX17 is a critical specifier of human primordial germ cell fate. Cell, 160(1-2), 253-268. https://doi.org/10.1016/j.cell.2014.12.013

Ishii, T., & Pera, R. A. (2023). Ethical and policy issues in in vitro gametogenesis. Stem Cell Reports, 18(1), 1-15. https://doi.org/10.1016/j.stemcr.2022.11.005

Ishikura, Y., Ohta, H., Sato, T., Murase, Y., Yabuta, Y., Kojima, Y., ... & Saitou, M. (2021). In vitro reconstitution of the whole male germ-cell development from mouse pluripotent stem cells. Cell Stem Cell, 28(12), 2167-2179. https://doi.org/10.1016/j.stem.2021.08.005

Jaba, T. (2022). Dasatinib and quercetin: short-term simultaneous administration yields senolytic effect in humans. Issues and Developments in Medicine and Medical Research Vol. 2, 22-31.

Kipshidze, M., & Tkemaladze, J. (2023). Comparative Analysis of drugs that improve the Quality of Life and Life Expectancy. Junior Researchers, 1(1), 184–193. doi: https://doi.org/10.52340/2023.01.01.19

Kipshidze, M., & Tkemaladze, J. (2023). The planaria Schmidtea mediterranea as a model system for the study of stem cell biology. Junior Researchers, 1(1), 194–218. doi: https://doi.org/10.52340/2023.01.01.20

Kipshidze, M., & Tkemaladze, J. (2024). Abastumani Resort: Balneological Heritage and Modern Potential. Junior Researchers, 2(2), 126–134. doi: https://doi.org/10.52340/jr.2024.02.02.12

Kipshidze, M., & Tkemaladze, J. (2024). Balneology in Georgia: traditions and modern situation. Junior Researchers, 2(2), 78–97. doi: https://doi.org/10.52340/jr.2024.02.02.09

Kipshidze, M., & Tkemaladze, J. (2024). Microelementoses - history and current status. Junior Researchers, 2(2), 108–125. doi: https://doi.org/10.52340/jr.2024.02.02.11

Kobayashi, T., Zhang, H., Tang, W. W., Irie, N., Withey, S., Klisch, D., ... & Surani, M. A. (2017). Principles of early human development and germ cell program from conserved model systems. Nature, 546(7658), 416-420. https://doi.org/10.1038/nature22812

Komeya, M., Kimura, H., Nakamura, H., Yokonishi, T., Sato, T., Kojima, K., ... & Ogawa, T. (2016). Long-term ex vivo maintenance of testis tissues producing fertile sperm in a microfluidic device. Scientific Reports, 6(1), 21472. https://doi.org/10.1038/srep21472

Komeya, M., Kimura, H., Nakamura, H., Yokonishi, T., Sato, T., Kojima, K., ... & Ogawa, T. (2017). Long-term ex vivo maintenance of testis tissues producing fertile sperm in a microfluidic device. Scientific Reports, 7(1), 1-12. https://doi.org/10.1038/s41598-017-09871-1

Lezhava, T., Monaselidze, J., Jokhadze, T., Kakauridze, N., Khodeli, N., Rogava, M., Tkemaladze, J., ... & Gaiozishvili, M. (2011). Gerontology research in Georgia. Biogerontology, 12, 87-91. doi: 10.1007/s10522-010-9283-6. Epub 2010 May 18. PMID: 20480236; PMCID: PMC3063552

Li, M., & Schöler, H. R. (2023). Epigenetic control of germ cell development. Nature Reviews Genetics, 24(2), 89-103. https://doi.org/10.1038/s41576-022-00527-z

Matsaberidze, M., Prangishvili, A., Gasitashvili, Z., Chichinadze, K., & Tkemaladze, J. (2017). TO TOPOLOGY OF ANTI-TERRORIST AND ANTI-CRIMINAL TECHNOLOGY FOR EDUCATIONAL PROGRAMS. International Journal of Terrorism & Political Hot Spots, 12.

Miyauchi, H., Ohta, H., Nagaoka, S., Nakaki, F., Sasaki, K., Hayashi, K., ... & Saitou, M. (2017). Bone morphogenetic protein and retinoic acid synergistically specify female germ-cell fate in mice. The EMBO Journal, 36(21), 3100-3119. https://doi.org/10.15252/embj.201796875

Miyauchi, H., Ohta, H., Nagaoka, S., Nakaki, F., Sasaki, K., Hayashi, K., ... & Saitou, M. (2020). Bone morphogenetic protein and retinoic acid synergistically specify female germ-cell fate in mice. The EMBO Journal, 39(5), e103859. https://doi.org/10.15252/embj.2019103859

Morohaku, K., Tanimoto, R., Sasaki, K., Kawahara-Miki, R., Kono, T., Hayashi, K., ... & Obata, Y. (2016). Complete in vitro generation of fertile oocytes from mouse primordial germ cells. Proceedings of the National Academy of Sciences, 113(32), 9021-9026. https://doi.org/10.1073/pnas.1603817113

Ohinata, Y., Payer, B., O’Carroll, D., Ancelin, K., Ono, Y., Sano, M., ... & Saitou, M. (2005). Blimp1 is a critical determinant of the germ cell lineage in mice. Nature, 436(7048), 207-213. https://doi.org/10.1038/nature03813

Pampaloni, F., Reynaud, E. G., & Stelzer, E. H. (2018). The third dimension bridges the gap between cell culture and live tissue. Nature Reviews Molecular Cell Biology, 8(10), 839-845. https://doi.org/10.1038/nrm2236

Park, J., & Kim, J. S. (2023). Disease modeling using in vitro derived gametes. Cell Stem Cell, 30(3), 123-145. https://doi.org/10.1016/j.stem.2023.01.002

Petersen, N., & Redl, H. (2023). 3D bioprinting of gonadal tissues. Biofabrication, 15(1), 012001. https://doi.org/10.1088/1758-5090/aca7e2

Prangishvili, A., Gasitashvili, Z., Matsaberidze, M., Chkhartishvili, L., Chichinadze, K., Tkemaladze, J., ... & Azmaiparashvili, Z. (2019). SYSTEM COMPONENTS OF HEALTH AND INNOVATION FOR THE ORGANIZATION OF NANO-BIOMEDIC ECOSYSTEM TECHNOLOGICAL PLATFORM. Current Politics and Economics of Russia, Eastern and Central Europe, 34(2/3), 299-305.

Saitou, M., & Hayashi, K. (2021). Mammalian in vitro gametogenesis. Science, 374(6563), eaaz6830. https://doi.org/10.1126/science.aaz6830

Saitou, M., & Miyauchi, H. (2016). Gametogenesis from pluripotent stem cells. Cell Stem Cell, 18(6), 721-735. https://doi.org/10.1016/j.stem.2016.05.001

Saitou, M., Kagiwada, S., & Kurimoto, K. (2012). Epigenetic reprogramming in mouse pre-implantation development and primordial germ cells. Development, 139(1), 15-31. https://doi.org/10.1242/dev.050849

Sakib, S., & Dobrinski, I. (2021). CRISPR screening for gametogenesis genes. Development, 148(5), dev199315. https://doi.org/10.1242/dev.199315

Sakib, S., Uchida, A., Valenzuela-Leon, P., Yu, Y., Valli-Pulaski, H., Orwig, K., ... & Dobrinski, I. (2021). Formation of organotypic testicular organoids in microwell culture. Biology of Reproduction, 104(2), 308-321. https://doi.org/10.1093/biolre/ioaa194

Sanchez, F., Lolicato, F., Romero, S., De Vos, M., Van Ranst, H., & Smitz, J. (2019). An improved IVM method for cumulus-oocyte complexes from small follicles in polycystic ovary syndrome patients enhances oocyte competence and embryo yield. Human Reproduction, 34(5), 887-899. https://doi.org/10.1093/humrep/dez018

Saragusty, J., & Loi, P. (2023). Conservation applications of IVG. Zoo Biology, 42(1), 5-18. https://doi.org/10.1002/zoo.21723

Saragusty, J., & Loi, P. (2023). Conservation applications of IVG. Zoo Biology, 42(1), 5-18. https://doi.org/10.1002/zoo.21723

Saragusty, J., Diecke, S., Drukker, M., Durrant, B., Friedrich Ben-Nun, I., Galli, C., ... & Loi, P. (2020). Rewinding the process of mammalian extinction. Zoo Biology, 35(4), 280-292. https://doi.org/10.1002/zoo.21284

Sasaki, K., Yokobayashi, S., Nakamura, T., Okamoto, I., Yabuta, Y., Kurimoto, K., ... & Saitou, M. (2015). Robust in vitro induction of human germ cell fate from pluripotent stem cells. Cell Stem Cell, 17(2), 178-194. https://doi.org/10.1016/j.stem.2015.06.014

Seisenberger, S., Andrews, S., Krueger, F., Arand, J., Walter, J., Santos, F., ... & Reik, W. (2013). The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Molecular Cell, 48(6), 849-862. https://doi.org/10.1016/j.molcel.2012.11.001

Smith, A., & Gurdon, J. (2023). Safety considerations for IVG. Nature Biotechnology, 41(2), 156-167. https://doi.org/10.1038/s41587-022-01543-4

Soh, Y. Q., Junker, J. P., Gill, M. E., Mueller, J. L., van Oudenaarden, A., & Page, D. C. (2015). A gene regulatory program for meiotic prophase in the fetal ovary. PLoS Genetics, 11(9), e1005531. https://doi.org/10.1371/journal.pgen.1005531

Takahashi, K., & Yamanaka, S. (2023). Regenerative potential of IVG-derived cells. Cell Stem Cell, 32(1), 1-15. https://doi.org/10.1016/j.stem.2022.12.001

Tang, W. W., & Surani, M. A. (2023). Epigenetic reprogramming strategies. Science, 379(6634), eabo4773. https://doi.org/10.1126/science.abo4773

Tang, W. W., Dietmann, S., Irie, N., Leitch, H. G., Floros, V. I., Bradshaw, C. R., ... & Surani, M. A. (2016). A unique gene regulatory network resets the human germline epigenome for development. Cell, 161(6), 1453-1467. https://doi.org/10.1016/j.cell.2016.04.053

Tkemaladze, J. (2023). Cross-senolytic effects of dasatinib and quercetin in humans. Georgian Scientists, 5(3), 138–152. doi: https://doi.org/10.52340/2023.05.03.15

Tkemaladze, J. (2023). Is the selective accumulation of oldest centrioles in stem cells the main cause of organism ageing?. Georgian Scientists, 5(3), 216–235. doi: https://doi.org/10.52340/2023.05.03.22

Tkemaladze, J. (2023). Long-Term Differences between Regenerations of Head and Tail Fragments in Schmidtea Mediterranea Ciw4. Available at SSRN 4257823.

Tkemaladze, J. (2023). Reduction, proliferation, and differentiation defects of stem cells over time: a consequence of selective accumulation of old centrioles in the stem cells?. Molecular Biology Reports, 50(3), 2751-2761.

Tkemaladze, J. (2023). Structure and possible functions of centriolar RNA with reference to the centriolar hypothesis of differentiation and replicative senescence. Junior Researchers, 1(1), 156–170. doi: https://doi.org/10.52340/2023.01.01.17

Tkemaladze, J. (2023). The centriolar hypothesis of differentiation and replicative senescence. Junior Researchers, 1(1), 123–141. doi: https://doi.org/10.52340/2023.01.01.15

Tkemaladze, J. (2024). Absence of centrioles and regenerative potential of planaria. Georgian Scientists, 6(4), 59–75. doi: https://doi.org/10.52340/gs.2024.06.04.08

Tkemaladze, J. (2024). Cell center and the problem of accumulation of oldest centrioles in stem cells. Georgian Scientists, 6(2), 304–322. doi: https://doi.org/10.52340/gs.2024.06.02.32

Tkemaladze, J. (2024). Editorial: Molecular mechanism of ageing and therapeutic advances through targeting glycative and oxidative stress. Front Pharmacol. 2024 Mar 6;14:1324446. doi: 10.3389/fphar.2023.1324446. PMID: 38510429; PMCID: PMC10953819.

Tkemaladze, J. (2024). Elimination of centrioles. Georgian Scientists, 6(4), 291–307. doi: https://doi.org/10.52340/gs.2024.06.04.25

Tkemaladze, J. (2024). Main causes of intelligence decrease and prospects for treatment. Georgian Scientists, 6(2), 425–432. doi: https://doi.org/10.52340/gs.2024.06.02.44

Tkemaladze, J. (2024). The rate of stem cell division decreases with age. Georgian Scientists, 6(4), 228–242. doi: https://doi.org/10.52340/gs.2024.06.04.21

Tkemaladze, J. (2025). A Universal Approach to Curing All Diseases: From Theoretical Foundations to the Prospects of Applying Modern Biotechnologies in Future Medicine. doi: http://dx.doi.org/10.13140/RG.2.2.24481.11366

Tkemaladze, J. (2025). Adaptive Systems and World Models. doi: http://dx.doi.org/10.13140/RG.2.2.13617.90720

Tkemaladze, J. (2025). Aging Model - Drosophila Melanogaster. doi: http://dx.doi.org/10.13140/RG.2.2.16706.49607

Tkemaladze, J. (2025). Allotransplantation Between Adult Drosophila of Different Ages and Sexes. doi: http://dx.doi.org/10.13140/RG.2.2.27711.62884

Tkemaladze, J. (2025). Anti-Blastomic Substances in the Blood Plasma of Schizophrenia Patients. doi: http://dx.doi.org/10.13140/RG.2.2.12721.08807

Tkemaladze, J. (2025). Centriole Elimination as a Mechanism for Restoring Cellular Order. doi: http://dx.doi.org/10.13140/RG.2.2.12890.66248/1

Tkemaladze, J. (2025). Hypotheses on the Role of Centrioles in Aging Processes. doi: http://dx.doi.org/10.13140/RG.2.2.15014.02887/1

Tkemaladze, J. (2025). Limits of Cellular Division: The Hayflick Phenomenon. doi: http://dx.doi.org/10.13140/RG.2.2.25803.30249

Tkemaladze, J. (2025). Molecular Mechanisms of Aging and Modern Life Extension Strategies: From Antiquity to Mars Colonization. doi: http://dx.doi.org/10.13140/RG.2.2.13208.51204

Tkemaladze, J. (2025). Pathways of Somatic Cell Specialization in Multicellular Organisms. doi: http://dx.doi.org/10.13140/RG.2.2.23348.97929/1

Tkemaladze, J. (2025). Strategic Importance of the Caucasian Bridge and Global Power Rivalries. doi: http://dx.doi.org/10.13140/RG.2.2.19153.03680

Tkemaladze, J. (2025). Structure, Formation, and Functional Significance of Centrioles in Cellular Biology. doi: http://dx.doi.org/10.13140/RG.2.2.27441.70245/1

Tkemaladze, J. (2025). The Epistemological Reconfiguration and Transubstantial Reinterpretation of Eucharistic Practices Established by the Divine Figure of Jesus Christ in Relation to Theological Paradigms. doi: http://dx.doi.org/10.13140/RG.2.2.28347.73769/1

Tkemaladze, J. (2025). Transforming the psyche with phoneme frequencies "Habere aliam linguam est possidere secundam animam". doi: http://dx.doi.org/10.13140/RG.2.2.16105.61286

Tkemaladze, J. (2025). Uneven Centrosome Inheritance and Its Impact on Cell Fate. doi: http://dx.doi.org/10.13140/RG.2.2.34917.31206

Tkemaladze, J. (2025). Ze World Model with Predicate Actualization and Filtering. doi: http://dx.doi.org/10.13140/RG.2.2.15218.62407

Tkemaladze, J. (2025). Ze метод создания пластичного счетчика хронотропных частот чисел бесконечного потока информации. doi: http://dx.doi.org/10.13140/RG.2.2.29162.43207

Tkemaladze, J. (2025). Adaptive Cognitive System Ze. Longevity Horizon, 1(3). doi: https://doi.org/10.5281/zenodo.15309162

Tkemaladze, J. (2025). Aging Model Based on Drosophila melanogaster: Mechanisms and Perspectives. Longevity Horizon, 1(3). doi: https://doi.org/10.5281/zenodo.14955643

Tkemaladze, J. (2025). Anatomy, Biogenesis, and Role in Cell Biology of Centrioles. Longevity Horizon, 1(2). doi: https://doi.org/10.5281/zenodo.14742232

Tkemaladze, J. (2025). Anti-Blastomic Substances in the Plasma of Schizophrenia Patients: A Dual Role of Complement C4 in Synaptic Pruning and Tumor Suppression. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.15042448

Tkemaladze, J. (2025). Asymmetry in the Inheritance of Centrosomes / Centrioles and Its Consequences. Longevity Horizon, 1(2). doi: https://doi.org/10.5281/zenodo.14837352

Tkemaladze, J. (2025). Centriole Elimination: A Mechanism for Resetting Entropy in the Cell. Longevity Horizon, 1(2). doi: https://doi.org/10.5281/zenodo.14876013

Tkemaladze, J. (2025). Concept to The Alive Language. Longevity Horizon, 1(1). doi: https://doi.org/10.5281/zenodo.14688792

Tkemaladze, J. (2025). Concept to The Caucasian Bridge. Longevity Horizon, 1(1). doi: https://doi.org/10.5281/zenodo.14689276

Tkemaladze, J. (2025). Concept to The Curing All Diseases. Longevity Horizon, 1(1). doi: https://doi.org/10.5281/zenodo.14676208

Tkemaladze, J. (2025). Concept to The Eternal Youth. Longevity Horizon, 1(1). doi: https://doi.org/10.5281/zenodo.14681902

Tkemaladze, J. (2025). Concept to The Food Security. Longevity Horizon, 1(1). doi: https://doi.org/10.5281/zenodo.14642407

Tkemaladze, J. (2025). Concept to the Living Space. Longevity Horizon, 1(1). doi: https://doi.org/10.5281/zenodo.14635991

Tkemaladze, J. (2025). Concept to The Restoring Dogmas. Longevity Horizon, 1(1). doi: https://doi.org/10.5281/zenodo.14708980

Tkemaladze, J. (2025). Differentiation of Somatic Cells in Multicellular Organisms. Longevity Horizon, 1(2). doi: https://doi.org/10.5281/10.5281/zenodo.14778927

Tkemaladze, J. (2025). Induction of germline-like cells (PGCLCs). Longevity Horizon, 1(3). doi: https://doi.org/10.5281/zenodo.16414775

Tkemaladze, J. (2025). Long-Lived Non-Renewable Structures in the Human Body. doi: http://dx.doi.org/10.13140/RG.2.2.14826.43206

Tkemaladze, J. (2025). Mechanisms of Learning Through the Actualization of Discrepancies. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.15200612

Tkemaladze, J. (2025). Memorizing an Infinite Stream of Information in a Limited Memory Space: The Ze Method of a Plastic Counter of Chronotropic Number Frequencies. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.15170931

Tkemaladze, J. (2025). Memorizing an Infinite Stream of Information in a Limited.

Tkemaladze, J. (2025). Molecular Insights and Radical Longevity from Ancient Elixirs to Mars Colonies. Longevity Horizon, 1(2). doi: https://doi.org/10.5281/zenodo.14895222

Tkemaladze, J. (2025). Ontogenetic Permanence of Non-Renewable Biomechanical Configurations in Homo Sapiens Anatomy. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.15086387

Tkemaladze, J. (2025). Protocol for Transplantation of Healthy Cells Between Adult Drosophila of Different Ages and Sexes. Longevity Horizon, 1(2). doi: https://doi.org/10.5281/zenodo.14889948

Tkemaladze, J. (2025). Replicative Hayflick Limit. Longevity Horizon, 1(2). doi: https://doi.org/10.5281/zenodo.14752664

Tkemaladze, J. (2025). Solutions to the Living Space Problem to Overcome the Fear of Resurrection from the Dead. doi: http://dx.doi.org/10.13140/RG.2.2.34655.57768

Tkemaladze, J. (2025). Systemic Resilience and Sustainable Nutritional Paradigms in Anthropogenic Ecosystems. doi: http://dx.doi.org/10.13140/RG.2.2.18943.32169/1

Tkemaladze, J. (2025). The Centriolar Theory of Differentiation Explains the Biological Meaning of the.

Tkemaladze, J. (2025). The Concept of Data-Driven Automated Governance. Georgian Scientists, 6(4), 399–410. doi: https://doi.org/10.52340/gs.2024.06.04.38

Tkemaladze, J. (2025). Through In Vitro Gametogenesis — Young Stem Cells. Longevity Horizon, 1(3). doi:https://doi.org/10.5281/zenodo.15847116

Tkemaladze, J. (2025). Гаметогенез In Vitro: современное состояние, технологии и перспективы применения. Research Gate. http://dx.doi.org/10.13140/RG.2.2.28647.36000

Tkemaladze, J. (2025).Achieving Perpetual Vitality Through Innovation. doi: http://dx.doi.org/10.13140/RG.2.2.31113.35685

Tkemaladze, J. V., & Chichinadze, K. N. (2005). Centriolar mechanisms of differentiation and replicative aging of higher animal cells. Biochemistry (Moscow), 70, 1288-1303.

Tkemaladze, J., & Apkhazava, D. (2019). Dasatinib and quercetin: short-term simultaneous administration improves physical capacity in human. J Biomedical Sci, 8(3), 3.

Tkemaladze, J., & Chichinadze, K. (2005). Potential role of centrioles in determining the morphogenetic status of animal somatic cells. Cell biology international, 29(5), 370-374.

Tkemaladze, J., & Chichinadze, K. (2010). Centriole, differentiation, and senescence. Rejuvenation research, 13(2-3), 339-342.

Tkemaladze, J., & Samanishvili, T. (2024). Mineral ice cream improves recovery of muscle functions after exercise. Georgian Scientists, 6(2), 36–50. doi: https://doi.org/10.52340/gs.2024.06.02.04

Tkemaladze, J., Tavartkiladze, A., & Chichinadze, K. (2012). Programming and Implementation of Age-Related Changes. In Senescence. IntechOpen.

Tkemaladze, Jaba and Kipshidze, Mariam, Regeneration Potential of the Schmidtea Mediterranea CIW4 Planarian. Available at SSRN: https://ssrn.com/abstract=4633202 or http://dx.doi.org/10.2139/ssrn.4633202

von Meyenn, F., Iurlaro, M., Habibi, E., Liu, N. Q., Salehzadeh-Yazdi, A., Santos, F., ... & Reik, W. (2016). Impairment of DNA methylation maintenance is the main cause of global demethylation in naive embryonic stem cells. Molecular Cell, 62(6), 983-997. https://doi.org/10.1016/j.molcel.2016.04.025

Xiao, S., & Copperman, A. B. (2021). 3D ovarian follicle culture. Human Reproduction, 36(6), 1567-1580. https://doi.org/10.1093/humrep/deab081

Yamaguchi, S., & Shen, L. (2020). Vitamin C in epigenetic reprogramming. Nature Genetics, 52(4), 369-377. https://doi.org/10.1038/s41588-020-0601-x

Yamashiro, C., & Saitou, M. (2023). Clinical applications of IVG. Nature Medicine, 29(3), 564-575. https://doi.org/10.1038/s41591-023-02224-8

Yamashiro, C., Sasaki, K., Yabuta, Y., Kojima, Y., Nakamura, T., Okamoto, I., ... & Saitou, M. (2020). Generation of human oogonia from induced pluripotent stem cells in vitro. Science, 362(6412), 356-360. https://doi.org/10.1126/science.aat1674

Yu, C., Ji, S. Y., Sha, Q. Q., Sun, Q. Y., & Dang, Y. (2018). BTG4 is a meiotic cell cycle–coupled maternal-zygotic-transition licensing factor in oocytes. Nature Structural & Molecular Biology, 25(5), 387-396. https://doi.org/10.1038/s41594-018-0055-3

Zhang, J., Zhang, M., Acosta, C., Yoshioka, N., Rigo, F., & Belmont, A. S. (2021). A human oogenic niche in vitro for efficient oocyte differentiation from pluripotent stem cells. Nature Protocols, 16(2), 982-1007. https://doi.org/10.1038/s41596-020-00441-w

Zhang, Y., & Li, E. (2022). HDAC inhibitors in germ cell development. Epigenetics & Chromatin, 15(1), 1-15. https://doi.org/10.1186/s13072-022-00446-7

Zhao, Y., Ye, S., Liang, D., Wang, P., Fu, J., Ma, Q., ... & Tang, F. (2022). In vitro modeling of human germ cell development using pluripotent stem cells. Stem Cell Reports, 17(2), 393-410. https://doi.org/10.1016/j.stemcr.2021.12.009

Zheng, Y., & Yan, W. (2022). Gene editing for gametogenesis. Genome Biology, 23(1), 1-18. https://doi.org/10.1186/s13059-022-02664-4

Zhou, Q., & Sha, J. (2023). Culture media optimization for IVG. Stem Cell Research & Therapy, 14(1), 1-15. https://doi.org/10.1186/s13287-023-03242-6

Zhou, Q., Wang, M., Yuan, Y., Wang, X., Fu, R., Wan, H., ... & Sha, J. (2016). Complete meiosis from embryonic stem cell-derived germ cells in vitro. Cell Stem Cell, 18(3), 330-340. https://doi.org/10.1016/j.stem.2016.01.017

Zhou, Y., Zhuang, J., Li, Y., Wu, C., & Zhou, C. (2022). In vitro spermatogenesis: A century-long research journey, yet half way around. Reproductive Biology and Endocrinology, 20(1), 1-15. https://doi.org/10.1186/s12958-022-00906-5

Прангишвили, А. И., Гаситашвили, З. А., Мацаберидзе, М. И., Чичинадзе, К. Н., Ткемаладзе, Д. В., & Азмайпарашвили, З. А. (2017). К топологии антитеррористических и антикриминальных технологии для образовательных программ. В научном издании представлены материалы Десятой международной научно-технической конфе-ренции «Управление развитием крупномасштабных систем (MLSD’2016)» по следующим направле-ниям:• Проблемы управления развитием крупномасштабных систем, включая ТНК, Госхолдин-ги и Гос-корпорации., 284.

Прангишвили, А. И., Гаситашвили, З. А., Мацаберидзе, М. И., Чхартишвили, Л. С., Чичинадзе, К. Н., & Ткемаладзе, Д. В. (2017). & Азмайпарашвили, ЗА (2017). Системные составляющие здравоохранения и инноваций для организации европейской нано-биомедицинской екосистемной технологической платформы. Управление развитием крупномасштабных систем MLSD, 365-368.

Ткемаладзе, Д. (2025). Анатомия, биогенез и роль в клеточной биологии центриолей. doi: http://dx. doi. org/10.13140. RG, 2(27441.70245), 1

Ткемаладзе, Д. (2025). Гаметогенез in vitro (IVG) -Этап дифференцировки в зрелые гаметы. http://dx.doi.org/10.13140/RG.2.2.20429.96482

Ткемаладзе, Д. (2025). Асимметрия в наследовании центросом/центриолей и ее последствия. doi: http://dx. doi. org/10.13140. RG, 2(34917.312), 06.

Ткемаладзе, Д. (2025). Дифференциация соматических клеток многоклеточных животных. doi: http://dx. doi. org/10.13140. RG, 2(23348.97929), 1.

Ткемаладзе, Д. (2025). Индукция примордиальных клеток, подобных зародышевым клеткам (PGCLCs) современные достижения, механизмы и перспективы применения. http://dx.doi.org/10.13140/RG.2.2.27152.32004

Ткемаладзе, Д. (2025). Репликативный Лимит Хейфлика. doi: http://dx. doi. org/10.13140. RG, 2(25803.302), 49.

Ткемаладзе, Д. (2025). Элиминация Центриолей: Механизм Обнуления Энтропии в Клетке. doi: http://dx. doi. org/10.13140. RG, 2(12890.66248), 1.