Protocol for Transplantation of Healthy Cells Between Adult Drosophila of Different Ages and Sexes

Main Article Content

Jaba Tkemaladze

Abstract

Drosophila melanogaster serves as a powerful and versatile model organism for studying tissue allotransplantation due to its short life cycle, genetic manipulability, and significant homology to mammalian signaling pathways. This protocol outlines a procedure for performing tissue transplants between adult individuals of different ages and sexes. Key steps include dissection of the donor’s midgut tissue, microinjection into the recipient, and tracking engraftment using sex chromosome differences. The protocol demonstrates high short-term survival (over 80%) of host organisms, with transplanted tissues encapsulated by hemocytes. Sexual dimorphism affects transplant outcomes, with females showing stronger immune responses through the Toll pathway, resulting in more frequent rejections, while males exhibit greater tissue tolerance. Age-related factors, including reduced regenerative capacity and oxidative stress in older individuals, impact transplantation success. This methodology also enables modeling of intestinal stem cell regeneration. Despite challenges such as small tissue size and lack of an adaptive immune system, the protocol offers valuable insights into innate immunity, aging, and intercellular interactions, positioning Drosophila as an ideal preclinical model for studying tissue regeneration and immune response.

Article Details

Section

Technology and Innovations

Author Biography

Jaba Tkemaladze, Longevity Clinic

Dr Jaba Tkemaladze is a Professor, a Scientist, and a President of Longevity Alliance Georgia.

Research Director at Longevity Clinic.

Replacing old adult stem cells with induced and safe young adult stem cells.

World-renowned scientist. Developed the Centriolar theory of differentiation and the Centriolar theory of organism ageing. With acquired experience in both academia and industry.

Training in medicine at Tbilisi State Medical University and then at the Psychiatry Research Institute further deepened my knowledge in the laboratory of the Institute of Morphology. Namely, combined experimental and computational methods to study the ageing process and the various ways of manipulating age-related diseases and improvement of human health.

Also served as a Scientific Advisory Board Member in Georgia's Ministry of Defense and Longevity Alliance. Published over 50 scientific articles, given over 100 invited talks and received several awards.

His Rejuvenation Formula: Rejuvenation = Replacement of Old Centrioles with Young Ones.

How to Cite

Tkemaladze, J. (2025). Protocol for Transplantation of Healthy Cells Between Adult Drosophila of Different Ages and Sexes. Longevity Horizon, 1(2). DOI:https://doi.org/10.5281/zenodo.14889948

References

Álvarez-Abril, M. C., García-Alcover, I., Colonques-Bellmunt, J., Garijo, R., Pérez-Alonso, M., Artero, R., & López-Castel, A. (2023). Natural compound boldine lessens myotonic dystrophy type 1 phenotypes in DM1 Drosophila models, patient-derived cell lines, and HSALR mice. International Journal of Molecular Sciences, 24(10), 9820. https://doi.org/10.3390/ijms24109820

Beadle, G. W., & Ephrussi, B. (1935). Transplantation in Drosophila. Proceedings of the National Academy of Sciences, 21(11), 642–646.

Beaucher, M., Hersperger, E., Page-McCaw, A., & Shearn, A. (2007). Metastatic ability of Drosophila tumors depends on MMP activity. Developmental Biology, 303(2), 625–634.

Bodenstein, D. (1950). The postembryonic development of Drosophila. In Biology of Drosophila (pp. 275–367). Wiley.

Chambers, R. (1921). A simple micro-injection apparatus made of steel. Science, 54(1403), 552–553.

Chichinadze, K. N., & Tkemaladze, D. V. (2008). Centrosomal hypothesis of cellular aging and differentiation. Advances in Gerontology= Uspekhi Gerontologii, 21(3), 367-371.

Chichinadze, K., Lazarashvili, A., & Tkemaladze, J. (2013). RNA in centrosomes: structure and possible functions. Protoplasma, 250(1), 397-405.

Chichinadze, K., Tkemaladze, D., & Lazarashvili, A. (2012). New class of RNA and centrosomal hypothesis of cell aging. Advances in Gerontology= Uspekhi Gerontologii, 25(1), 23-28.

Chichinadze, K., Tkemaladze, J., & Lazarashvili, A. (2012). A new class of RNAs and the centrosomal hypothesis of cell aging. Advances in Gerontology, 2(4), 287-291.

Chichinadze, K., Tkemaladze, J., & Lazarashvili, A. (2012). Discovery of centrosomal RNA and centrosomal hypothesis of cellular ageing and differentiation. Nucleosides, Nucleotides and Nucleic Acids, 31(3), 172-183.

Dar, A. C., Das, T. K., Shokat, K. M., & Cagan, R. L. (2012). Chemical genetic discovery of targets and anti-targets for cancer polypharmacology. Nature, 486(7401), 80–84.

Dekanty, A., Barrio, L., Muzzopappa, M., Auer, H., & Milan, M. (2012). Aneuploidy-induced delaminating cells drive tumorigenesis in Drosophila epithelia. Proceedings of the National Academy of Sciences, 109(51), 20549–20554.

Dutta, D., Buchon, N., Xiang, J., & Edgar, B. A. (2015). Regional Cell Specific RNA Expression Profiling of FACS Isolated Drosophila Intestinal Cell Populations. Current protocols in stem cell biology, 34, 2F.2.1–2F.2.14. https://doi.org/10.1002/9780470151808.sc02f02s34

Ephrussi, B., & Beadle, G. W. (1936). A technique for transplantation of Drosophila. The American Naturalist, 70(729), 218–225.

Eroglu, E., Burkard, T. R., Jiang, Y., Saini, N., Homem, C. C. F., Reichert, H., ... & Knoblich, J. A. (2014). SWI/SNF complex prevents lineage reversion and induces temporal patterning in neural stem cells. Cell, 156(6), 1259–1273.

Figueroa-Clarevega, A., & Bilder, D. (2015). Malignant Drosophila tumors interrupt insulin signaling to induce cachexia-like wasting. Developmental Cell, 33(1), 47–55.

García-Alcover, I., Colonques-Bellmunt, J., Garijo, R., Tormo, J. R., Artero, R., Álvarez-Abril, M. C., López Castel, A., & Pérez-Alonso, M. (2014). Development of a Drosophila melanogaster spliceosensor system for in vivo high-throughput screening in myotonic dystrophy type 1. Disease Models & Mechanisms, 7(12), 1297–1306. https://doi.org/10.1242/dmm.017228

García-Alcover, I., et al. (2014). Development of a Drosophila melanogaster spliceosensor system for in vivo screening. Disease Models & Mechanisms, 7(12), 1297–1306. https://doi.org/10.1242/dmm.017228

Gladstone, M., & Su, T. T. (2011). Chemical genetics and drug screening in Drosophila cancer models. Journal of Genetics and Genomics, 38(10), 497–504.

Golubovsky, M. D., Weisman, N. Y., Arbeev, K. G., Ukraintseva, S. V., & Yashin, A. I. (2006). Decrease in the lgl tumor suppressor dose in Drosophila increases survival and longevity in stress conditions. Experimental Gerontology, 41(8), 819–827.

Gong, S., Zhang, Y., Bao, H., Wang, X., Chang, C. H., Huang, Y. C., & Deng, W. M. (2021). Tumor Allotransplantation in Drosophila melanogaster with a Programmable Auto-Nanoliter Injector. Journal of visualized experiments : JoVE, (168), 10.3791/62229. https://doi.org/10.3791/62229

Hadorn, E. (1968). Transdetermination in cells. Scientific American, 219(5), 110–114.

Herranz, H., Hong, X., Hung, N. T., Voorhoeve, P. M., & Cohen, S. M. (2012). Oncogenic cooperation between SOCS family proteins and EGFR identified using a Drosophila epithelial transformation model. Genes & Development, 26(14), 1602–1611.

Hirabayashi, S., Baranski, T. J., & Cagan, R. L. (2013). Transformed Drosophila cells evade diet-mediated insulin resistance through whipless signaling. Cell, 154(3), 664–675.

Jaba, T. (2022). Dasatinib and quercetin: short-term simultaneous administration yields senolytic effect in humans. Issues and Developments in Medicine and Medical Research Vol. 2, 22-31.

Katsuyama, T., & Paro, R. (2013). Innate immune cells are dispensable for regenerative growth of imaginal discs. Mechanisms of Development, 130(2-3), 112–121.

Kipshidze, M., & Tkemaladze, J. (2023). Comparative Analysis of drugs that improve the Quality of Life and Life Expectancy. Junior Researchers, 1(1), 184–193. doi: https://doi.org/10.52340/2023.01.01.19

Kipshidze, M., & Tkemaladze, J. (2023). The planaria Schmidtea mediterranea as a model system for the study of stem cell biology. Junior Researchers, 1(1), 194–218. doi: https://doi.org/10.52340/2023.01.01.20

Kipshidze, M., & Tkemaladze, J. (2024). Abastumani Resort: Balneological Heritage and Modern Potential. Junior Researchers, 2(2), 126–134. doi: https://doi.org/10.52340/jr.2024.02.02.12

Kipshidze, M., & Tkemaladze, J. (2024). Balneology in Georgia: traditions and modern situation. Junior Researchers, 2(2), 78–97. doi: https://doi.org/10.52340/jr.2024.02.02.09

Kipshidze, M., & Tkemaladze, J. (2024). Microelementoses - history and current status. Junior Researchers, 2(2), 108–125. doi: https://doi.org/10.52340/jr.2024.02.02.11

Kwon, Y., Song, W., Droujinine, I. A., Hu, Y., Asara, J. M., & Perrimon, N. (2015). Systemic organ wasting induced by localized expression of the secreted insulin/IGF antagonist Impl2. Developmental Cell, 33(1), 36–46.

Lee, T., & Luo, L. (1999). Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron, 22(3), 451–461.

Lezhava, T., Monaselidze, J., Jokhadze, T., Kakauridze, N., Khodeli, N., Rogava, M., Tkemaladze, J., ... & Gaiozishvili, M. (2011). Gerontology research in Georgia. Biogerontology, 12, 87-91. doi: 10.1007/s10522-010-9283-6. Epub 2010 May 18. PMID: 20480236; PMCID: PMC3063552

Lin, H., & Spradling, A. C. (1993). Germline stem cell division and egg chamber development in transplanted Drosophila germaria. Developmental Biology, 159(1), 140–152.

Marchetti, M., Aparicio, R., & Cordero, J. B. (2022). Ex vivo culture of Drosophila midgut for stem cell analysis. eLife, 11, e76010. https://doi.org/10.7554/eLife.76010

Markstein, M., Dettorre, S., Cho, J., Neumüller, R. A., Craig-Müller, S., & Perrimon, N. (2014). Systematic screen of chemotherapeutics in Drosophila stem cell tumors. Proceedings of the National Academy of Sciences, 111(12), 4530–4535.

Matsaberidze, M., Prangishvili, A., Gasitashvili, Z., Chichinadze, K., & Tkemaladze, J. (2017). TO TOPOLOGY OF ANTI-TERRORIST AND ANTI-CRIMINAL TECHNOLOGY FOR EDUCATIONAL PROGRAMS. International Journal of Terrorism & Political Hot Spots, 12.

Micchelli, C. A., & Perrimon, N. (2006). Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature, 439(7075), 475–479. https://doi.org/10.1038/nature04371

Morais da Silva, S., Moutinho-Santos, T., & Sunkel, C. E. (2013). A tumor suppressor role of the Bub3 spindle checkpoint protein after apoptosis inhibition. Journal of Cell Biology, 201(3), 385–393.

Pan, X., Alvarez, A. N., Ma, M., Lu, S., Crawford, M. W., Briere, L. C., Kanca, O., Yamamoto, S., Sweetser, D. A., & Wilson, J. L. (2023). Allelic strengths of encephalopathy-associated UBA5 variants correlate between in vivo and in vitro assays. eLife, 12, RP89891. https://doi.org/10.7554/eLife.RP89891

Pandey, A., & Jafar-Nejad, H. (2022). Tracing the NGLY1 footprints: Insights from Drosophila. Journal of Biochemistry, 171(2), 153–160. https://doi.org/10.1093/jb/mvab128

Pandey, U. B., & Nichols, C. D. (2011). Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacological Reviews, 63(2), 411–436.

Prangishvili, A., Gasitashvili, Z., Matsaberidze, M., Chkhartishvili, L., Chichinadze, K., Tkemaladze, J., ... & Azmaiparashvili, Z. (2019). SYSTEM COMPONENTS OF HEALTH AND INNOVATION FOR THE ORGANIZATION OF NANO-BIOMEDIC ECOSYSTEM TECHNOLOGICAL PLATFORM. Current Politics and Economics of Russia, Eastern and Central Europe, 34(2/3), 299-305.

Rebollo, E., Llamazares, S., Reina, J., & Gonzalez, C. (2004). Contribution of noncentrosomal microtubules to spindle assembly in Drosophila spermatocytes. PLoS Biology, 2(1), e8.

Roberts, P. A., Tredale, R. B., & Buckley, P. M. (1986). The consequences of fat body transplantation into young and old Drosophila. Experimental Gerontology, 20(2), 123–130.

Roegiers, F., Kavaler, J., Tolwinski, N., Chou, Y. T., Duan, H., Bejarano, F., ... & Lai, E. C. (2009). Frequent unanticipated alleles of lethal giant larvae in Drosophila second chromosome stocks. Genetics, 182(2), 407–410.

Rossi, F., & Gonzalez, C. (2012). Synergism between altered cortical polarity and the PI3K/TOR pathway in the suppression of tumour growth. EMBO Reports, 13(2), 157–162.

Schubiger, G. (1971). Regeneration, duplication and transdetermination in fragments of the leg disc of Drosophila melanogaster. Developmental Biology, 26(2), 277–295.

Schubiger, G., & Hadorn, E. (1968). Auto- and allotypic differentiation in Drosophila blastemas cultured in vivo. Developmental Biology, 17(5), 584–602.

Shearn, A., & Garen, A. (1974). Genetic control of imaginal disc development in Drosophila. Proceedings of the National Academy of Sciences, 71(4), 1393–1397.

Sievers, C., Comoglio, F., Seimiya, M., Merdes, G., & Paro, R. (2014). A deterministic analysis of genome integrity during neoplastic growth in Drosophila. PLoS ONE, 9(1), e87090.

St Johnston, D. (2002). The art and design of genetic screens: Drosophila melanogaster. Nature Reviews Genetics, 3(3), 176–188.

Sullivan, W., Ashburner, M., & Hawley, R. S. (2000). Drosophila protocols. Cold Spring Harbor Laboratory Press.syndromes and papillary thyroid carcinoma. Cancer Research, 65(9), 3538–3541.

Tauc, H. M., Mannervik, M., & Jasper, H. (2014). Isolation of intestinal stem cells in Drosophila melanogaster. Methods in Molecular Biology, 1212, 337–348. https://doi.org/10.1007/7651_2014_79

Thorpe, H. J., Owings, K. G., Aziz, M. C., Haller, M., Coelho, E., & Chow, C. Y. (2024). Drosophila models of phosphatidylinositol glycan biosynthesis class A congenital disorder of glycosylation (PIGA-CDG) mirror patient phenotypes. G3: Genes, Genomes, Genetics, 14, jkad291. https://doi.org/10.1093/g3journal/jkad291

Tkemaladze J. (2024). Editorial: Molecular mechanism of ageing and therapeutic advances through targeting glycative and oxidative stress. Front Pharmacol. 2024 Mar 6;14:1324446. doi: 10.3389/fphar.2023.1324446. PMID: 38510429; PMCID: PMC10953819.

Tkemaladze, J. (2023). Cross-senolytic effects of dasatinib and quercetin in humans. Georgian Scientists, 5(3), 138–152. doi: https://doi.org/10.52340/2023.05.03.15

Tkemaladze, J. (2023). Is the selective accumulation of oldest centrioles in stem cells the main cause of organism ageing?. Georgian Scientists, 5(3), 216–235. doi: https://doi.org/10.52340/2023.05.03.22

Tkemaladze, J. (2023). Long-Term Differences between Regenerations of Head and Tail Fragments in Schmidtea Mediterranea Ciw4. Available at SSRN 4257823.

Tkemaladze, J. (2023). Reduction, proliferation, and differentiation defects of stem cells over time: a consequence of selective accumulation of old centrioles in the stem cells?. Molecular Biology Reports, 50(3), 2751-2761.

Tkemaladze, J. (2023). Structure and possible functions of centriolar RNA with reference to the centriolar hypothesis of differentiation and replicative senescence. Junior Researchers, 1(1), 156–170. doi: https://doi.org/10.52340/2023.01.01.17

Tkemaladze, J. (2023). The centriolar hypothesis of differentiation and replicative senescence. Junior Researchers, 1(1), 123–141. doi: https://doi.org/10.52340/2023.01.01.15

Tkemaladze, J. (2024). Absence of centrioles and regenerative potential of planaria. Georgian Scientists, 6(4), 59–75. doi: https://doi.org/10.52340/gs.2024.06.04.08

Tkemaladze, J. (2024). Cell center and the problem of accumulation of oldest centrioles in stem cells. Georgian Scientists, 6(2), 304–322. doi: https://doi.org/10.52340/gs.2024.06.02.32

Tkemaladze, J. (2024). Elimination of centrioles. Georgian Scientists, 6(4), 291–307. doi: https://doi.org/10.52340/gs.2024.06.04.25

Tkemaladze, J. (2024). Main causes of intelligence decrease and prospects for treatment. Georgian Scientists, 6(2), 425–432. doi: https://doi.org/10.52340/gs.2024.06.02.44

Tkemaladze, J. (2024). The rate of stem cell division decreases with age. Georgian Scientists, 6(4), 228–242. doi: https://doi.org/10.52340/gs.2024.06.04.21

Tkemaladze, J. (2025). A Universal Approach to Curing All Diseases: From Theoretical Foundations to the Prospects of Applying Modern Biotechnologies in Future Medicine. doi: http://dx.doi.org/10.13140/RG.2.2.24481.11366

Tkemaladze, J. (2025). Strategic Importance of the Caucasian Bridge and Global Power Rivalries. doi: http://dx.doi.org/10.13140/RG.2.2.19153.03680

Tkemaladze, J. (2025). The Epistemological Reconfiguration and Transubstantial Reinterpretation of Eucharistic Practices Established by the Divine Figure of Jesus Christ in Relation to Theological Paradigms. doi: http://dx.doi.org/10.13140/RG.2.2.28347.73769/1

Tkemaladze, J. (2025). Transforming the psyche with phoneme frequencies "Habere aliam linguam est possidere secundam animam". doi: http://dx.doi.org/10.13140/RG.2.2.16105.61286

Tkemaladze, J. (2025). Anatomy, Biogenesis, and Role in Cell Biology of Centrioles. , 1(2). doi: https://doi.org/10.5281/zenodo.14742232

Tkemaladze, J. (2025). Asymmetry in the Inheritance of Centrosomes / Centrioles and Its Consequences. , 1(2). doi: https://doi.org/10.5281/zenodo.14837352

Tkemaladze, J. (2025). Centriole Elimination: A Mechanism for Resetting Entropy in the Cell. , 1(2). DOI:https://doi.org/10.5281/zenodo.14876013

Tkemaladze, J. (2025). Concept to The Alive Language. , 1(1). doi: https://doi.org/10.5281/zenodo.14688792

Tkemaladze, J. (2025). Concept to The Caucasian Bridge. , 1(1). doi: https://doi.org/10.5281/zenodo.14689276

Tkemaladze, J. (2025). Concept to The Curing All Diseases. , 1(1). doi: https://doi.org/10.5281/zenodo.14676208

Tkemaladze, J. (2025). Concept to The Eternal Youth. , 1(1). doi: https://doi.org/10.5281/zenodo.14681902

Tkemaladze, J. (2025). Concept to The Food Security. , 1(1). doi: https://doi.org/10.5281/zenodo.14642407

Tkemaladze, J. (2025). Concept to the Living Space. , 1(1). doi: https://doi.org/10.5281/zenodo.14635991

Tkemaladze, J. (2025). Concept to The Restoring Dogmas. , 1(1). doi: https://doi.org/10.5281/zenodo.14708980

Tkemaladze, J. (2025). Differentiation of Somatic Cells in Multicellular Organisms. , 1(2). doi: https://doi.org/10.5281/10.5281/zenodo.14778927

Tkemaladze, J. (2025). Replicative Hayflick Limit. , 1(2). doi: https://doi.org/10.5281/zenodo.14752664

Tkemaladze, J. (2025). Solutions to the Living Space Problem to Overcome the Fear of Resurrection from the Dead. doi: http://dx.doi.org/10.13140/RG.2.2.34655.57768

Tkemaladze, J. (2025). Systemic Resilience and Sustainable Nutritional Paradigms in Anthropogenic Ecosystems. doi: http://dx.doi.org/10.13140/RG.2.2.18943.32169/1

Tkemaladze, J. (2025). The Concept of Data-Driven Automated Governance. Georgian Scientists, 6(4), 399–410. doi: https://doi.org/10.52340/gs.2024.06.04.38

Tkemaladze, J. (2025).Achieving Perpetual Vitality Through Innovation. doi: http://dx.doi.org/10.13140/RG.2.2.31113.35685

Tkemaladze, J. V., & Chichinadze, K. N. (2005). Centriolar mechanisms of differentiation and replicative aging of higher animal cells. Biochemistry (Moscow), 70, 1288-1303.

Tkemaladze, J., & Apkhazava, D. (2019). Dasatinib and quercetin: short-term simultaneous administration improves physical capacity in human. J Biomedical Sci, 8(3), 3.

Tkemaladze, J., & Chichinadze, K. (2005). Potential role of centrioles in determining the morphogenetic status of animal somatic cells. Cell biology international, 29(5), 370-374.

Tkemaladze, J., & Chichinadze, K. (2010). Centriole, differentiation, and senescence. Rejuvenation research, 13(2-3), 339-342.

Tkemaladze, J., & Samanishvili, T. (2024). Mineral ice cream improves recovery of muscle functions after exercise. Georgian Scientists, 6(2), 36–50. doi: https://doi.org/10.52340/gs.2024.06.02.04

Tkemaladze, J., Tavartkiladze, A., & Chichinadze, K. (2012). Programming and Implementation of Age-Related Changes. In Senescence. IntechOpen.

Tkemaladze, Jaba and Kipshidze, Mariam, Regeneration Potential of the Schmidtea Mediterranea CIW4 Planarian. Available at SSRN: https://ssrn.com/abstract=4633202 or http://dx.doi.org/10.2139/ssrn.4633202

Ursprung, H. (1967). In vitro culture of Drosophila imaginal discs. In Methods in developmental biology (pp. 485–492). Thomas Y. Crowell Company.

Watson, K. L., Justice, R. W., & Bryant, P. J. (1994). Drosophila in cancer research: The first fifty tumor suppressor genes. Journal of Cell Science, 1994(Supplement 18), 19–33.

Willoughby, L. F., Schlosser, T., Manning, S. A., Parisot, J. P., Street, I. P., Richardson, H. E., ... & Brumby, A. M. (2013). An in vivo large-scale chemical screening platform using Drosophila for anti-cancer drug discovery. Disease Models & Mechanisms, 6(2), 521–529.

Witte, H. T., Jeibmann, A., Klambt, C., & Paulus, W. (2009). Modeling glioma growth and invasion in Drosophila melanogaster. Neoplasia, 11(9), 882–888.

Woodhouse, E., Hersperger, E., & Shearn, A. (1998). Growth, metastasis, and invasiveness of Drosophila tumors caused by mutations in specific tumor suppressor genes. Development Genes and Evolution, 207(8), 542–550.

Wu, M., Pastor-Pareja, J. C., & Xu, T. (2010). Interaction between Ras(V12) and scribbled clones induces tumour growth and invasion. Nature, 463(7280), 545–548.

Zdobnov, E. M., & Bork, P. (2007). Quantification of insect genome divergence. Trends in Genetics, 23(1), 16–20.

Прангишвили, А. И., Гаситашвили, З. А., Мацаберидзе, М. И., Чичинадзе, К. Н., Ткемаладзе, Д. В., & Азмайпарашвили, З. А. (2017). К топологии антитеррористических и антикриминальных технологии для образовательных программ. В научном издании представлены материалы Десятой международной научно-технической конфе-ренции «Управление развитием крупномасштабных систем (MLSD’2016)» по следующим направле-ниям:• Проблемы управления развитием крупномасштабных систем, включая ТНК, Госхолдин-ги и Гос-корпорации., 284.

Прангишвили, А. И., Гаситашвили, З. А., Мацаберидзе, М. И., Чхартишвили, Л. С., Чичинадзе, К. Н., & Ткемаладзе, Д. В. (2017). & Азмайпарашвили, ЗА (2017). Системные составляющие здравоохранения и инноваций для организации европейской нано-биомедицинской екосистемной технологической платформы. Управление развитием крупномасштабных систем MLSD, 365-368.

Ткемаладзе, Д. (2025). Анатомия, биогенез и роль в клеточной биологии центриолей. doi: http://dx.doi.org/10.13140/RG.2.2.27441.70245/1

Ткемаладзе, Д. (2025). Асимметрия в наследовании центросом / центриолей и ее последствия. doi: http://dx.doi.org/10.13140/RG.2.2.34917.31206

Ткемаладзе, Д. (2025). Дифференциация соматических клеток многоклеточных животных. doi: http://dx.doi.org/10.13140/RG.2.2.23348.97929/1

Ткемаладзе, Д. (2025). Репликативный Лимит Хейфлика. doi: http://dx.doi.org/10.13140/RG.2.2.25803.30249

Ткемаладзе, Д. (2025). Теории, Связывающие Центриоли со Старением Организма. doi: http://dx.doi.org/10.13140/RG.2.2.15014.02887/1

Ткемаладзе, Д. (2025). Элиминация Центриолей: Механизм Обнуления Энтропии в Клетке. doi: http://dx.doi.org/10.13140/RG.2.2.12890.66248/1

Ткемаладзе, Д. В., & Чичинадзе, К. Н. (2005). Центриолярные механизмы дифференцировки и репликативного старения клеток высших животных. Биохимия, 70(11), 1566-1584.

Ткемаладзе, Д., Цомаиа, Г., & Жоржолиани, И. (2001). Создание искусственных самоадаптирующихся систем на основе Теории Прогноза. Искусственный интеллект. УДК 004.89. Искусственный интеллект. УДК 004.89.

Чичинадзе, К. Н., & Ткемаладзе, Д. В. (2008). Центросомная гипотеза клеточного старения и дифференциации. Успехи геронтологии, 21(3), 367-371.

Чичинадзе, К., Ткемаладзе, Д., & Лазарашвили, А. (2012). НОВЫЙ КЛАСС РНК И ЦЕНТРОСОМНАЯ ГИПОТЕЗА СТАРЕНИЯ КЛЕТОК. Успехи геронтологии, 25(1), 23-28.