Asymmetry in the Inheritance of Centrosomes / Centrioles and Its Consequences

Main Article Content

Jaba Tkemaladze

Abstract

Asymmetric division of stem cells plays a fundamental role in maintaining tissue homeostasis by ensuring a delicate balance between self-renewal and differentiation. Within this process, the centrosome and its components, including centrioles, exhibit both functional and structural asymmetry. The mother and daughter centrioles are inherited in a stereotypical manner, influencing the fate of sibling cells. The mother centriole, possessing a higher microtubule-organizing capacity, often remains in the stem cell, while the daughter centriole is transmitted to the differentiating progeny. This mechanism has been observed in germline stem cells of Drosophila and radial glial cells in mammals. However, in Drosophila neuroblasts, an opposite strategy is maintained: the daughter centriole remains in the stem cell, whereas the mother centriole is passed on to the progenitor cells. These differences may be linked to the regulation of cell fate, aging, and tissue longevity. A deeper understanding of the role of centrioles in these processes could pave the way for new approaches in regenerative medicine and anti-aging therapies.

Article Details

Section

Opinion and Commentary

Author Biography

Jaba Tkemaladze, Longevity Clinic

Dr Jaba Tkemaladze is a Professor, a Scientist, and a President of Longevity Alliance Georgia.

Research Director at Longevity Clinic.

Replacing old adult stem cells with induced and safe young adult stem cells.

World-renowned scientist. Developed the Centriolar theory of differentiation and the Centriolar theory of organism ageing. With acquired experience in both academia and industry.

Training in medicine at Tbilisi State Medical University and then at the Psychiatry Research Institute further deepened my knowledge in the laboratory of the Institute of Morphology. Namely, combined experimental and computational methods to study the ageing process and the various ways of manipulating age-related diseases and improvement of human health.

Also served as a Scientific Advisory Board Member in Georgia's Ministry of Defense and Longevity Alliance. Published over 50 scientific articles, given over 100 invited talks and received several awards.

His Rejuvenation Formula: Rejuvenation = Replacement of old adult stem cells with Young, safe Adult Stem Cells induced from one's own cells.

How to Cite

Tkemaladze, J. (2025). Asymmetry in the Inheritance of Centrosomes / Centrioles and Its Consequences. Longevity Horizons, 1(2). DOI:https://doi.org/10.5281/zenodo.14837352

References

Álvarez-Satta, M., Castro-Sánchez, S., & Valverde, D. (2015). Alström syndrome: current perspectives. The application of clinical genetics, 8, 171–179. https://doi.org/10.2147/TACG.S56612

Anderson, C. T., & Stearns, T. (2009). Centriole age underlies asynchronous primary cilium growth in mammalian cells. Current biology : CB, 19(17), 1498–1502. https://doi.org/10.1016/j.cub.2009.07.034

Basto, R., Lau, J., Vinogradova, T., Gardiol, A., Woods, C. G., Khodjakov, A., & Raff, J. W. (2006). Flies without centrioles. Cell, 125(7), 1375–1386. https://doi.org/10.1016/j.cell.2006.05.025

Chen, C., & Yamashita, Y. M. (2020). Alstrom syndrome gene is a stem-cell-specific regulator of centriole duplication in the Drosophila testis. eLife, 9, e59368. https://doi.org/10.7554/eLife.59368

Chen, C., Inaba, M., Venkei, Z. G., & Yamashita, Y. M. (2016). Klp10A, a stem cell centrosome-enriched kinesin, balances asymmetries in Drosophila male germline stem cell division. eLife, 5, e20977. https://doi.org/10.7554/eLife.20977

Chichinadze, K. N., & Tkemaladze, D. V. (2008). Centrosomal hypothesis of cellular aging and differentiation. Advances in Gerontology= Uspekhi Gerontologii, 21(3), 367-371.

Chichinadze, K., Lazarashvili, A., & Tkemaladze, J. (2013). RNA in centrosomes: structure and possible functions. Protoplasma, 250(1), 397-405.

Chichinadze, K., Tkemaladze, D., & Lazarashvili, A. (2012). New class of RNA and centrosomal hypothesis of cell aging. Advances in Gerontology= Uspekhi Gerontologii, 25(1), 23-28.

Chichinadze, K., Tkemaladze, J., & Lazarashvili, A. (2012). A new class of RNAs and the centrosomal hypothesis of cell aging. Advances in Gerontology, 2(4), 287-291.

Chichinadze, K., Tkemaladze, J., & Lazarashvili, A. (2012). Discovery of centrosomal RNA and centrosomal hypothesis of cellular ageing and differentiation. Nucleosides, Nucleotides and Nucleic Acids, 31(3), 172-183.

Conduit, P. T., Wainman, A., & Raff, J. W. (2015). Centrosome function and assembly in animal cells. Nature reviews. Molecular cell biology, 16(10), 611–624. https://doi.org/10.1038/nrm4062

Dionne, L. K., Wang, X. J., & Prekeris, R. (2015). Midbody: from cellular junk to regulator of cell polarity and cell fate. Current opinion in cell biology, 35, 51–58. https://doi.org/10.1016/j.ceb.2015.04.010

Ettinger, A. W., Wilsch-Bräuninger, M., Marzesco, A. M., Bickle, M., Lohmann, A., Maliga, Z., Karbanová, J., Corbeil, D., Hyman, A. A., & Huttner, W. B. (2011). Proliferating versus differentiating stem and cancer cells exhibit distinct midbody-release behaviour. Nature communications, 2, 503. https://doi.org/10.1038/ncomms1511

Fu, J., Hagan, I. M., & Glover, D. M. (2015). The centrosome and its duplication cycle. Cold Spring Harbor perspectives in biology, 7(2), a015800. https://doi.org/10.1101/cshperspect.a015800

Fuentealba, L. C., Eivers, E., Geissert, D., Taelman, V., & De Robertis, E. M. (2008). Asymmetric mitosis: Unequal segregation of proteins destined for degradation. Proceedings of the National Academy of Sciences of the United States of America, 105(22), 7732–7737. https://doi.org/10.1073/pnas.0803027105

Gallaud, E., Pham, T., & Cabernard, C. (2017). Drosophila melanogaster Neuroblasts: A Model for Asymmetric Stem Cell Divisions. Results and problems in cell differentiation, 61, 183–210. https://doi.org/10.1007/978-3-319-53150-2_8

Gallaud, E., Ramdas Nair, A., Horsley, N., Monnard, A., Singh, P., Pham, T. T., Salvador Garcia, D., Ferrand, A., & Cabernard, C. (2020). Dynamic centriolar localization of Polo and Centrobin in early mitosis primes centrosome asymmetry. PLoS biology, 18(8), e3000762. https://doi.org/10.1371/journal.pbio.3000762

Ganley, A. R., & Kobayashi, T. (2014). Ribosomal DNA and cellular senescence: new evidence supporting the connection between rDNA and aging. FEMS yeast research, 14(1), 49–59. https://doi.org/10.1111/1567-1364.12133

Gönczy, P., & Hatzopoulos, G. N. (2019). Centriole assembly at a glance. Journal of cell science, 132(4), jcs228833. https://doi.org/10.1242/jcs.228833

Gromley, A., Yeaman, C., Rosa, J., Redick, S., Chen, C. T., Mirabelle, S., Guha, M., Sillibourne, J., & Doxsey, S. J. (2005). Centriolin anchoring of exocyst and SNARE complexes at the midbody is required for secretory-vesicle-mediated abscission. Cell, 123(1), 75–87. https://doi.org/10.1016/j.cell.2005.07.027

Homem, C. C., & Knoblich, J. A. (2012). Drosophila neuroblasts: a model for stem cell biology. Development (Cambridge, England), 139(23), 4297–4310. https://doi.org/10.1242/dev.080515

Jaba, T. (2022). Dasatinib and quercetin: short-term simultaneous administration yields senolytic effect in humans. Issues and Developments in Medicine and Medical Research Vol. 2, 22-31.

Januschke, J., Llamazares, S., Reina, J., & Gonzalez, C. (2011). Drosophila neuroblasts retain the daughter centrosome. Nature communications, 2, 243. https://doi.org/10.1038/ncomms1245

Januschke, J., Llamazares, S., Reina, J., & Gonzalez, C. (2011). Drosophila neuroblasts retain the daughter centrosome. Nature communications, 2, 243. https://doi.org/10.1038/ncomms1245

Khodjakov, A., Cole, R. W., Oakley, B. R., & Rieder, C. L. (2000). Centrosome-independent mitotic spindle formation in vertebrates. Current biology : CB, 10(2), 59–67. https://doi.org/10.1016/s0960-9822(99)00276-6

Kiger, A. A., Jones, D. L., Schulz, C., Rogers, M. B., & Fuller, M. T. (2001). Stem cell self-renewal specified by JAK-STAT activation in response to a support cell cue. Science (New York, N.Y.), 294(5551), 2542–2545. https://doi.org/10.1126/science.1066707

Kipshidze, M., & Tkemaladze, J. (2023). Comparative Analysis of drugs that improve the Quality of Life and Life Expectancy. Junior Researchers, 1(1), 184–193. doi: https://doi.org/10.52340/2023.01.01.19

Kipshidze, M., & Tkemaladze, J. (2023). The planaria Schmidtea mediterranea as a model system for the study of stem cell biology. Junior Researchers, 1(1), 194–218. doi: https://doi.org/10.52340/2023.01.01.20

Kipshidze, M., & Tkemaladze, J. (2024). Abastumani Resort: Balneological Heritage and Modern Potential. Junior Researchers, 2(2), 126–134. doi: https://doi.org/10.52340/jr.2024.02.02.12

Kipshidze, M., & Tkemaladze, J. (2024). Balneology in Georgia: traditions and modern situation. Junior Researchers, 2(2), 78–97. doi: https://doi.org/10.52340/jr.2024.02.02.09

Kipshidze, M., & Tkemaladze, J. (2024). Microelementoses - history and current status. Junior Researchers, 2(2), 108–125. doi: https://doi.org/10.52340/jr.2024.02.02.11

Kumar, D., & Reiter, J. (2021). How the centriole builds its cilium: of mothers, daughters, and the acquisition of appendages. Current opinion in structural biology, 66, 41–48. https://doi.org/10.1016/j.sbi.2020.09.006

Lambert, J. D., & Nagy, L. M. (2002). Asymmetric inheritance of centrosomally localized mRNAs during embryonic cleavages. Nature, 420(6916), 682–686. https://doi.org/10.1038/nature01241

Lång, E., Połeć, A., Lång, A., Valk, M., Blicher, P., Rowe, A. D., Tønseth, K. A., Jackson, C. J., Utheim, T. P., Janssen, L. M. C., Eriksson, J., & Bøe, S. O. (2018). Coordinated collective migration and asymmetric cell division in confluent human keratinocytes without wounding. Nature communications, 9(1), 3665. https://doi.org/10.1038/s41467-018-05578-7

Lange, B. M., & Gull, K. (1995). A molecular marker for centriole maturation in the mammalian cell cycle. The Journal of cell biology, 130(4), 919–927. https://doi.org/10.1083/jcb.130.4.919

Lezhava, T., Monaselidze, J., Jokhadze, T., Kakauridze, N., Khodeli, N., Rogava, M., Tkemaladze, J., ... & Gaiozishvili, M. (2011). Gerontology research in Georgia. Biogerontology, 12, 87-91. doi: 10.1007/s10522-010-9283-6. Epub 2010 May 18. PMID: 20480236; PMCID: PMC3063552

Losick, V. P., Morris, L. X., Fox, D. T., & Spradling, A. (2011). Drosophila stem cell niches: a decade of discovery suggests a unified view of stem cell regulation. Developmental cell, 21(1), 159–171. https://doi.org/10.1016/j.devcel.2011.06.018

Manzano-López, J., Matellán, L., Álvarez-Llamas, A., Blanco-Mira, J. C., & Monje-Casas, F. (2019). Asymmetric inheritance of spindle microtubule-organizing centres preserves replicative lifespan. Nature cell biology, 21(8), 952–965. https://doi.org/10.1038/s41556-019-0364-8

Matsaberidze, M., Prangishvili, A., Gasitashvili, Z., Chichinadze, K., & Tkemaladze, J. (2017). TO TOPOLOGY OF ANTI-TERRORIST AND ANTI-CRIMINAL TECHNOLOGY FOR EDUCATIONAL PROGRAMS. International Journal of Terrorism & Political Hot Spots, 12.

Moore, D. L., Pilz, G. A., Araúzo-Bravo, M. J., Barral, Y., & Jessberger, S. (2015). A mechanism for the segregation of age in mammalian neural stem cells. Science (New York, N.Y.), 349(6254), 1334–1338. https://doi.org/10.1126/science.aac9868

Nigg, E. A., & Holland, A. J. (2018). Once and only once: mechanisms of centriole duplication and their deregulation in disease. Nature reviews. Molecular cell biology, 19(5), 297–312. https://doi.org/10.1038/nrm.2017.127

Nigg, E. A., & Raff, J. W. (2009). Centrioles, centrosomes, and cilia in health and disease. Cell, 139(4), 663–678. https://doi.org/10.1016/j.cell.2009.10.036

Paridaen, J. T., Wilsch-Bräuninger, M., & Huttner, W. B. (2013). Asymmetric inheritance of centrosome-associated primary cilium membrane directs ciliogenesis after cell division. Cell, 155(2), 333–344. https://doi.org/10.1016/j.cell.2013.08.060

Pereira, G., Tanaka, T. U., Nasmyth, K., & Schiebel, E. (2001). Modes of spindle pole body inheritance and segregation of the Bfa1p-Bub2p checkpoint protein complex. The EMBO journal, 20(22), 6359–6370. https://doi.org/10.1093/emboj/20.22.6359

Prangishvili, A., Gasitashvili, Z., Matsaberidze, M., Chkhartishvili, L., Chichinadze, K., Tkemaladze, J., ... & Azmaiparashvili, Z. (2019). SYSTEM COMPONENTS OF HEALTH AND INNOVATION FOR THE ORGANIZATION OF NANO-BIOMEDIC ECOSYSTEM TECHNOLOGICAL PLATFORM. Current Politics and Economics of Russia, Eastern and Central Europe, 34(2/3), 299-305.

Rogers, G. C., Rogers, S. L., Schwimmer, T. A., Ems-McClung, S. C., Walczak, C. E., Vale, R. D., Scholey, J. M., & Sharp, D. J. (2004). Two mitotic kinesins cooperate to drive sister chromatid separation during anaphase. Nature, 427(6972), 364–370. https://doi.org/10.1038/nature02256

Rusan, N. M., & Peifer, M. (2007). A role for a novel centrosome cycle in asymmetric cell division. The Journal of cell biology, 177(1), 13–20. https://doi.org/10.1083/jcb.200612140

Salzmann, V., Chen, C., Chiang, C. Y., Tiyaboonchai, A., Mayer, M., & Yamashita, Y. M. (2014). Centrosome-dependent asymmetric inheritance of the midbody ring in Drosophila germline stem cell division. Molecular biology of the cell, 25(2), 267–275. https://doi.org/10.1091/mbc.E13-09-0541

Shcheprova, Z., Baldi, S., Frei, S. B., Gonnet, G., & Barral, Y. (2008). A mechanism for asymmetric segregation of age during yeast budding. Nature, 454(7205), 728–734. https://doi.org/10.1038/nature07212

Singh, P., Ramdas Nair, A., & Cabernard, C. (2014). The centriolar protein Bld10/Cep135 is required to establish centrosome asymmetry in Drosophila neuroblasts. Current biology : CB, 24(13), 1548–1555. https://doi.org/10.1016/j.cub.2014.05.050

Sunchu, B., & Cabernard, C. (2020). Principles and mechanisms of asymmetric cell division. Development (Cambridge, England), 147(13), dev167650. https://doi.org/10.1242/dev.167650

Tian, Y., Wei, C., He, J., Yan, Y., Pang, N., Fang, X., Liang, X., & Fu, J. (2021). Superresolution characterization of core centriole architecture. The Journal of cell biology, 220(4), e202005103. https://doi.org/10.1083/jcb.202005103

Tkemaladze J. (2024). Editorial: Molecular mechanism of ageing and therapeutic advances through targeting glycative and oxidative stress. Front Pharmacol. 2024 Mar 6;14:1324446. doi: 10.3389/fphar.2023.1324446. PMID: 38510429; PMCID: PMC10953819.

Tkemaladze, J. (2023). Cross-senolytic effects of dasatinib and quercetin in humans. Georgian Scientists, 5(3), 138–152. doi: https://doi.org/10.52340/2023.05.03.15

Tkemaladze, J. (2023). Is the selective accumulation of oldest centrioles in stem cells the main cause of organism ageing?. Georgian Scientists, 5(3), 216–235. doi: https://doi.org/10.52340/2023.05.03.22

Tkemaladze, J. (2023). Long-Term Differences between Regenerations of Head and Tail Fragments in Schmidtea Mediterranea Ciw4. Available at SSRN 4257823.

Tkemaladze, J. (2023). Reduction, proliferation, and differentiation defects of stem cells over time: a consequence of selective accumulation of old centrioles in the stem cells?. Molecular Biology Reports, 50(3), 2751-2761.

Tkemaladze, J. (2023). Structure and possible functions of centriolar RNA with reference to the centriolar hypothesis of differentiation and replicative senescence. Junior Researchers, 1(1), 156–170. doi: https://doi.org/10.52340/2023.01.01.17

Tkemaladze, J. (2023). The centriolar hypothesis of differentiation and replicative senescence. Junior Researchers, 1(1), 123–141. doi: https://doi.org/10.52340/2023.01.01.15

Tkemaladze, J. (2024). Absence of centrioles and regenerative potential of planaria. Georgian Scientists, 6(4), 59–75. doi: https://doi.org/10.52340/gs.2024.06.04.08

Tkemaladze, J. (2024). Cell center and the problem of accumulation of oldest centrioles in stem cells. Georgian Scientists, 6(2), 304–322. doi: https://doi.org/10.52340/gs.2024.06.02.32

Tkemaladze, J. (2024). Elimination of centrioles. Georgian Scientists, 6(4), 291–307. doi: https://doi.org/10.52340/gs.2024.06.04.25

Tkemaladze, J. (2024). Main causes of intelligence decrease and prospects for treatment. Georgian Scientists, 6(2), 425–432. doi: https://doi.org/10.52340/gs.2024.06.02.44

Tkemaladze, J. (2024). The rate of stem cell division decreases with age. Georgian Scientists, 6(4), 228–242. doi: https://doi.org/10.52340/gs.2024.06.04.21

Tkemaladze, J. (2025). A Universal Approach to Curing All Diseases: From Theoretical Foundations to the Prospects of Applying Modern Biotechnologies in Future Medicine. doi: http://dx.doi.org/10.13140/RG.2.2.24481.11366

Tkemaladze, J. (2025). Strategic Importance of the Caucasian Bridge and Global Power Rivalries. doi: http://dx.doi.org/10.13140/RG.2.2.19153.03680

Tkemaladze, J. (2025). The Epistemological Reconfiguration and Transubstantial Reinterpretation of Eucharistic Practices Established by the Divine Figure of Jesus Christ in Relation to Theological Paradigms. doi: http://dx.doi.org/10.13140/RG.2.2.28347.73769

Tkemaladze, J. (2025). Transforming the psyche with phoneme frequencies "Habere aliam linguam est possidere secundam animam" Charlemagne. doi: http://dx.doi.org/10.13140/RG.2.2.16105.61286

Tkemaladze, J. (2025). Anatomy, Biogenesis, and Role in Cell Biology of Centrioles. Longevity Horizons, 1(2). doi: https://doi.org/10.5281/zenodo.14742232

Tkemaladze, J. (2025). Concept to The Alive Language. Longevity Horizons, 1(1). doi: https://doi.org/10.5281/zenodo.14688792

Tkemaladze, J. (2025). Concept to The Caucasian Bridge. Longevity Horizons, 1(1). doi: https://doi.org/10.5281/zenodo.14689276

Tkemaladze, J. (2025). Concept to The Curing All Diseases. Longevity Horizons, 1(1). doi: https://doi.org/10.5281/zenodo.14676208

Tkemaladze, J. (2025). Concept to The Eternal Youth. Longevity Horizons, 1(1). doi: https://doi.org/10.5281/zenodo.14681902

Tkemaladze, J. (2025). Concept to The Food Security. Longevity Horizons, 1(1). doi: https://doi.org/10.5281/zenodo.14642407

Tkemaladze, J. (2025). Concept to the Living Space. Longevity Horizons, 1(1). doi: https://doi.org/10.5281/zenodo.14635991

Tkemaladze, J. (2025). Concept to The Restoring Dogmas. Longevity Horizons, 1(1). doi: https://doi.org/10.5281/zenodo.14708980

Tkemaladze, J. (2025). Differentiation of Somatic Cells in Multicellular Organisms. Longevity Horizons, 1(2). doi: https://doi.org/10.5281/10.5281/zenodo.14778927

Tkemaladze, J. (2025). Replicative Hayflick Limit. Longevity Horizons, 1(2). doi: https://doi.org/10.5281/zenodo.14752664

Tkemaladze, J. (2025). Solutions to the Living Space Problem to Overcome the Fear of Resurrection from the Dead. doi: http://dx.doi.org/10.13140/RG.2.2.34655.57768

Tkemaladze, J. (2025). The Concept of Data-Driven Automated Governance. Georgian Scientists, 6(4), 399–410. doi: https://doi.org/10.52340/gs.2024.06.04.38

Tkemaladze, J. (2025).Achieving Perpetual Vitality Through Innovation. doi: http://dx.doi.org/10.13140/RG.2.2.31113.35685

Tkemaladze, J. (2025).Systemic Resilience and Sustainable Nutritional Paradigms in Anthropogenic Ecosystems. doi: http://dx.doi.org/10.13140/RG.2.2.18943.32169/1

Tkemaladze, J. V., & Chichinadze, K. N. (2005). Centriolar mechanisms of differentiation and replicative aging of higher animal cells. Biochemistry (Moscow), 70, 1288-1303.

Tkemaladze, J., & Apkhazava, D. (2019). Dasatinib and quercetin: short-term simultaneous administration improves physical capacity in human. J Biomedical Sci, 8(3), 3.

Tkemaladze, J., & Chichinadze, K. (2005). Potential role of centrioles in determining the morphogenetic status of animal somatic cells. Cell biology international, 29(5), 370-374.

Tkemaladze, J., & Chichinadze, K. (2010). Centriole, differentiation, and senescence. Rejuvenation research, 13(2-3), 339-342.

Tkemaladze, J., & Samanishvili, T. (2024). Mineral ice cream improves recovery of muscle functions after exercise. Georgian Scientists, 6(2), 36–50. doi: https://doi.org/10.52340/gs.2024.06.02.04

Tkemaladze, J., Tavartkiladze, A., & Chichinadze, K. (2012). Programming and Implementation of Age-Related Changes. In Senescence. IntechOpen.

Tkemaladze, Jaba and Kipshidze, Mariam, Regeneration Potential of the Schmidtea Mediterranea CIW4 Planarian. Available at SSRN: https://ssrn.com/abstract=4633202 or http://dx.doi.org/10.2139/ssrn.4633202

Tozer, S., Baek, C., Fischer, E., Goiame, R., & Morin, X. (2017). Differential Routing of Mindbomb1 via Centriolar Satellites Regulates Asymmetric Divisions of Neural Progenitors. Neuron, 93(3), 542–551.e4. https://doi.org/10.1016/j.neuron.2016.12.042

Venkei, Z. G., & Yamashita, Y. M. (2018). Emerging mechanisms of asymmetric stem cell division. The Journal of cell biology, 217(11), 3785–3795. https://doi.org/10.1083/jcb.201807037

Wang, X., Le, N., Denoth-Lippuner, A., Barral, Y., & Kroschewski, R. (2016). Asymmetric partitioning of transfected DNA during mammalian cell division. Proceedings of the National Academy of Sciences of the United States of America, 113(26), 7177–7182. https://doi.org/10.1073/pnas.1606091113

Wang, X., Tsai, J. W., Imai, J. H., Lian, W. N., Vallee, R. B., & Shi, S. H. (2009). Asymmetric centrosome inheritance maintains neural progenitors in the neocortex. Nature, 461(7266), 947–955. https://doi.org/10.1038/nature08435

Yamashita, Y. M., Jones, D. L., & Fuller, M. T. (2003). Orientation of asymmetric stem cell division by the APC tumor suppressor and centrosome. Science (New York, N.Y.), 301(5639), 1547–1550. https://doi.org/10.1126/science.1087795

Yamashita, Y. M., Mahowald, A. P., Perlin, J. R., & Fuller, M. T. (2007). Asymmetric inheritance of mother versus daughter centrosome in stem cell division. Science (New York, N.Y.), 315(5811), 518–521. https://doi.org/10.1126/science.1134910

Прангишвили, А. И., Гаситашвили, З. А., Мацаберидзе, М. И., Чичинадзе, К. Н., Ткемаладзе, Д. В., & Азмайпарашвили, З. А. (2017). К топологии антитеррористических и антикриминальных технологии для образовательных программ. В научном издании представлены материалы Десятой международной научно-технической конфе-ренции «Управление развитием крупномасштабных систем (MLSD’2016)» по следующим направле-ниям:• Проблемы управления развитием крупномасштабных систем, включая ТНК, Госхолдин-ги и Гос-корпорации., 284.

Прангишвили, А. И., Гаситашвили, З. А., Мацаберидзе, М. И., Чхартишвили, Л. С., Чичинадзе, К. Н., & Ткемаладзе, Д. В. (2017). & Азмайпарашвили, ЗА (2017). Системные составляющие здравоохранения и инноваций для организации европейской нано-биомедицинской екосистемной технологической платформы. Управление развитием крупномасштабных систем MLSD, 365-368.

Ткемаладзе, Д. (2025). Анатомия, биогенез и роль в клеточной биологии центриолей. doi: http://dx.doi.org/10.13140/RG.2.2.27441.70245/1

Ткемаладзе, Д. (2025). Дифференциация соматических клеток многоклеточных животных. doi: http://dx.doi.org/10.13140/RG.2.2.23348.97929/1

Ткемаладзе, Д. (2025). Репликативный Лимит Хейфлика. doi: http://dx.doi.org/10.13140/RG.2.2.25803.30249

Ткемаладзе, Д. В., & Чичинадзе, К. Н. (2005). Центриолярные механизмы дифференцировки и репликативного старения клеток высших животных. Биохимия, 70(11), 1566-1584.

Ткемаладзе, Д., Цомаиа, Г., & Жоржолиани, И. (2001). Создание искусственных самоадаптирующихся систем на основе Теории Прогноза. Искусственный интеллект. УДК 004.89. Искусственный интеллект. УДК 004.89.

Чичинадзе, К. Н., & Ткемаладзе, Д. В. (2008). Центросомная гипотеза клеточного старения и дифференциации. Успехи геронтологии, 21(3), 367-371.

Чичинадзе, К., Ткемаладзе, Д., & Лазарашвили, А. (2012). НОВЫЙ КЛАСС РНК И ЦЕНТРОСОМНАЯ ГИПОТЕЗА СТАРЕНИЯ КЛЕТОК. Успехи геронтологии, 25(1), 23-28.