Why do planarian cells without centrioles divide and cells with centrioles do not divide?

Main Article Content

Jaba Tkemaladze

Abstract

Planarians present a unique cellular paradox: their proliferative stem cells (neoblasts) completely lack centrioles, while their post-mitotic, differentiated cells possess them. This review investigates the mechanisms and biological significance of this inverse correlation. We synthesize evidence demonstrating that neoblasts employ a robust, evolutionarily conserved acentrosomal pathway for spindle assembly, reliant on chromatin-mediated nucleation via RanGTP and motor protein-driven self-organization. This adaptation potentially confers advantages including enforced asymmetric division, metabolic economy, and a significantly reduced risk of centrosome amplification-driven genomic instability, which may underpin the planarians' extensive regenerative capabilities and resistance to tumors. Conversely, the quiescence of centriole-bearing somatic cells is not caused by the organelles themselves but is a consequence of terminal differentiation. These cells epigenetically silence the cell cycle machinery and repurpose centrioles as basal bodies for ciliogenesis. The presence of centrioles is thus a marker, not a driver, of the differentiated state. This system represents a profound uncoupling of the mitotic apparatus from the centriole, offering novel insights into stem cell biology, alternative modes of cell division, and providing conceptual frameworks for regenerative medicine and cancer research.

Article Details

Section

Reviews and Perspectives

Author Biography

Jaba Tkemaladze, Longevity Clinic

Professor, Scientist, President of Longevity Alliance Georgia.

HOD at Longevity Clinic Inc.

Replacing old adult stem cells with induced and safe young adult stem cells.

World-renowned scientist. Developed the Centriolar theory of differentiation and the Centriolar theory of organism ageing. With acquired experience in both academia and industry.

Training in medicine at Tbilisi State Medical University and then at the Psychiatry Research Institute further deepened my knowledge in the laboratory of the Institute of Morphology. Namely, combined experimental and computational methods to study the ageing process and the various ways of manipulating age-related diseases and improvement of human health.

Also served as a Scientific Advisory Board Member in Georgia's Ministry of Defense and Longevity Alliance. Published over 100 scientific articles, given over 100 invited talks and received several awards.

How to Cite

Tkemaladze, J. (2025). Why do planarian cells without centrioles divide and cells with centrioles do not divide?. Longevity Horizon, 1(3). DOI:https://doi.org/10.5281/zenodo.17054142

References

Ahmad, F. J., & Baas, P. W. (1995). Microtubules released from the neuronal centrosome are transported into the axon. Journal of Cell Science, *108*(Pt 8), 2761–2769. https://doi.org/10.1242/jcs.108.8.2761

Aphkhazava, D., Sulashvili, N., & Tkemaladze, J. (2025). Stem Cell Systems and Regeneration. Georgian Scientists, 7(1), 271–319. doi: https://doi.org/10.52340/gs.2025.07.01.26

Aphkhazava, D., Sulashvili, N., Maglakelidze, G., & Tkemaladze, J. (2025). Ageless Creatures: Molecular Insights into Organisms That Defy Aging. Georgian Scientists, 7(3), 346–396. doi: https://doi.org/10.52340/gs.2025.07.03.24

Azimzadeh, J., Wong, M. L., Downhour, D. M., Sánchez Alvarado, A., & Marshall, W. F. (2012). Centrosome loss in the evolution of planarians. Science, *335*(6067), 461-463. https://doi.org/10.1126/science.1214457

Basto, R., Brunk, K., Vinadogrova, T., Peel, N., Franz, A., Khodjakov, A., & Raff, J. W. (2008). Centrosome amplification can initiate tumorigenesis in flies. Cell, *133*(6), 1032–1042. https://doi.org/10.1016/j.cell.2008.05.039

Burbank, K. S., Mitchison, T. J., & Fisher, D. S. (2007). Slide-and-cluster models for spindle assembly. Current Biology, *17*(16), 1373–1383. https://doi.org/10.1016/j.cub.2007.07.058

Burkhart, D. L., & Sage, J. (2008). Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nature Reviews Cancer, *8*(9), 671–682. https://doi.org/10.1038/nrc2399

Caudron, M., Bunt, G., Bastiaens, P., & Karsenti, E. (2005). Spatial coordination of spindle assembly by chromosome-mediated signaling gradients. Science, *309*(5739), 1373–1376. https://doi.org/10.1126/science.1115964

Chichinadze, K., Lazarashvili, A., & Tkemaladze, J. (2013). RNA in centrosomes: structure and possible functions. Protoplasma, 250(1), 397-405.

Chichinadze, K., Tkemaladze, D., & Lazarashvili, A. (2012). New class of RNA and centrosomal hypothesis of cell aging. Advances in Gerontology= Uspekhi Gerontologii, 25(1), 23-28.

Chichinadze, K., Tkemaladze, J., & Lazarashvili, A. (2012). A new class of RNAs and the centrosomal hypothesis of cell aging. Advances in Gerontology, 2(4), 287-291.

Chichinadze, K., Tkemaladze, J., & Lazarashvili, A. (2012). Discovery of centrosomal RNA and centrosomal hypothesis of cellular ageing and differentiation. Nucleosides, Nucleotides and Nucleic Acids, 31(3), 172-183.

Chichinadze, K. N., & Tkemaladze, D. V. (2008). Centrosomal hypothesis of cellular aging and differentiation. Advances in Gerontology= Uspekhi Gerontologii, 21(3), 367-371.

Clarke, P. R., & Zhang, C. (2008). Spatial and temporal coordination of mitosis by Ran GTPase. Nature Reviews Molecular Cell Biology, *9*(6), 464–477. https://doi.org/10.1038/nrm2410

Conduit, P. T., Wainman, A., & Raff, J. W. (2015). Centrosome function and assembly in animal cells. Nature Reviews Molecular Cell Biology, *16*(10), 611-624. https://doi.org/10.1038/nrm4062

Courtois, A., Schuh, M., Ellenberg, J., & Hiiragi, T. (2012). The transition from meiotic to mitotic spindle assembly is gradual during early mammalian development. The Journal of Cell Biology, *198*(3), 357–370. https://doi.org/10.1083/jcb.201202135

Cowles, M. W., Brown, D. D., Nisperos, S. V., Stanley, B. N., Pearson, B. J., & Zayas, R. M. (2013). Genome-wide analysis of the bHLH gene family in planarians identifies factors required for adult neurogenesis and neuronal regeneration. Development, *140*(23), 4691-4702. https://doi.org/10.1242/dev.098616

Dumont, J., & Desai, A. (2012). Acentrosomal spindle assembly and chromosome segregation during oocyte meiosis. Trends in Cell Biology, *22*(5), 241-249. https://doi.org/10.1016/j.tcb.2012.02.007

Elfettahi, A. . E., & Tkemaladze, J. (2025). The Neuro-Hepatic-Affective Model (NHAM): A Systems Framework for Liver–Brain Modulation of Emotion in Precision Psychiatry. Preprints. doi: https://doi.org/10.20944/preprints202508.1312.v1

Elliott, S. A., & Sánchez Alvarado, A. (2013). The history and enduring contributions of planarians to the study of animal regeneration. Wiley Interdisciplinary Reviews: Developmental Biology, *2*(3), 301-326. https://doi.org/10.1002/wdev.82

Gaglio, T., Saredi, A., & Compton, D. A. (1996). NuMA is required for the organization of microtubules into aster-like mitotic arrays. The Journal of Cell Biology, *131*(3), 693–708. https://doi.org/10.1083/jcb.131.3.693

Ganem, N. J., Godinho, S. A., & Pellman, D. (2009). A mechanism linking extra centrosomes to chromosomal instability. Nature, *460*(7252), 278–282. https://doi.org/10.1038/nature08136

Gentile, L., Cebrià, F., & Bartscherer, K. (2011). The planarian flatworm: an in vivo model for stem cell biology and nervous system regeneration. Disease Models & Mechanisms, *4*(1), 12-19. https://doi.org/10.1242/dmm.006692

Godinho, S. A., & Pellman, D. (2014). Causes and consequences of centrosome abnormalities in cancer. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, *369*(1650), 20130467. https://doi.org/10.1098/rstb.2013.0467

Gonzalez-Sastre, A., de Sousa, N., Adell, T., & Saló, E. (2017). The mystery of the regeneration of the planarian excretory system. Developmental Biology, *433*(2), 394-403. https://doi.org/10.1016/j.ydbio.2017.07.023

Grill, S. W., Gönczy, P., Stelzer, E. H., & Hyman, A. A. (2001). Polarity controls forces governing asymmetric spindle positioning in the Caenorhabditis elegans embryo. Nature, *409*(6820), 630–633. https://doi.org/10.1038/35054572

Gönczy, P. (2008). Mechanisms of asymmetric cell division: flies and worms pave the way. Nature Reviews Molecular Cell Biology, *9*(11), 855–868. https://doi.org/10.1038/nrm2524

Heald, R., Tournebize, R., Blank, T., Sandaltzopoulos, R., Becker, P., Hyman, A., & Karsenti, E. (1996). Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature, *382*(6590), 420–425. https://doi.org/10.1038/382420a0

Holubcová, Z., Blayney, M., Elder, K., & Schuh, M. (2015). Human oocytes. Error-prone chromosome-mediated spindle assembly favors chromosome segregation defects in human oocytes. Science, *348*(6239), 1143-1147. https://doi.org/10.1126/science.aaa9529

Iismaa, S. E., Kaidonis, X., Nicks, A. M., Bogush, N., Kikuchi, K., Naqvi, N., Harvey, R. P., Husain, A., & Graham, R. M. (2018). Comparative regenerative mechanisms across different mammalian tissues. NPJ Regenerative Medicine, *3*, 6. https://doi.org/10.1038/s41536-018-0044-5

Jaba, T. (2022). Dasatinib and quercetin: short-term simultaneous administration yields senolytic effect in humans. Issues and Developments in Medicine and Medical Research Vol. 2, 22-31.

Juliano, C. E., Swartz, S. Z., & Wessel, G. M. (2011). A conserved germline multipotency program. Development, *138*(24), 5423-5433. https://doi.org/10.1242/dev.068049

Kipshidze, M., & Tkemaladze, J. (2023). Comparative Analysis of drugs that improve the Quality of Life and Life Expectancy. Junior Researchers, 1(1), 184–193. doi: https://doi.org/10.52340/2023.01.01.19

Kipshidze, M., & Tkemaladze, J. (2023). The planaria Schmidtea mediterranea as a model system for the study of stem cell biology. Junior Researchers, 1(1), 194–218. doi: https://doi.org/10.52340/2023.01.01.20

Kipshidze, M., & Tkemaladze, J. (2024). Abastumani Resort: Balneological Heritage and Modern Potential. Junior Researchers, 2(2), 126–134. doi: https://doi.org/10.52340/jr.2024.02.02.12

Kipshidze, M., & Tkemaladze, J. (2024). Balneology in Georgia: traditions and modern situation. Junior Researchers, 2(2), 78–97. doi: https://doi.org/10.52340/jr.2024.02.02.09

Kipshidze, M., & Tkemaladze, J. (2024). Microelementoses - history and current status. Junior Researchers, 2(2), 108–125. doi: https://doi.org/10.52340/jr.2024.02.02.11

Knoblich, J. A. (2010). Asymmetric cell division: recent developments and their implications for tumour biology. Nature Reviews Molecular Cell Biology, *11*(12), 849–860. https://doi.org/10.1038/nrm3010

Kwon, M., Godinho, S. A., Chandhok, N. S., Ganem, N. J., Azioune, A., Thery, M., & Pellman, D. (2008). Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes & Development, *22*(16), 2189–2203. https://doi.org/10.1101/gad.1700908

Labbe, R. M., Irimia, M., Currie, K. W., Lin, A., Zhu, S. J., Brown, D. D., Ross, E. J., Voisin, V., Bader, G. D., Blencowe, B. J., & Pearson, B. J. (2012). A comparative transcriptomic analysis reveals conserved features of stem cell pluripotency in planarians and mammals. Stem Cells, *30*(8), 1734-1745. https://doi.org/10.1002/stem.1144

Levine, M. S., & Holland, A. J. (2018). The impact of mitotic errors on cell proliferation and tumorigenesis. Genes & Development, *32*(9-10), 620-638. https://doi.org/10.1101/gad.314351.118

Lezhava, T., Monaselidze, J., Jokhadze, T., Kakauridze, N., Khodeli, N., Rogava, M., Tkemaladze, J., ... & Gaiozishvili, M. (2011). Gerontology research in Georgia. Biogerontology, 12, 87-91. doi: 10.1007/s10522-010-9283-6. Epub 2010 May 18. PMID: 20480236; PMCID: PMC3063552

Loncarek, J., & Khodjakov, A. (2009). Ab ovo or de novo? Mechanisms of centriole duplication. Molecular Cells, *27*(2), 135–142. https://doi.org/10.1007/s10059-009-0017-z

Malumbres, M., & Barbacid, M. (2009). Cell cycle, CDKs and cancer: a changing paradigm. Nature Reviews Cancer, *9*(3), 153–166. https://doi.org/10.1038/nrc2602

Matsaberidze, M., Prangishvili, A., Gasitashvili, Z., Chichinadze, K., & Tkemaladze, J. (2017). TO TOPOLOGY OF ANTI-TERRORIST AND ANTI-CRIMINAL TECHNOLOGY FOR EDUCATIONAL PROGRAMS. International Journal of Terrorism & Political Hot Spots, 12.

McKim, K. S., & Hawley, R. S. (1995). Chromosomal control of meiotic cell division. Science, *270*(5242), 1595–1601. https://doi.org/10.1126/science.270.5242.1595

Merdes, A., Ramyar, K., Vechio, J. D., & Cleveland, D. W. (1996). A complex of NuMA and cytoplasmic dynein is essential for mitotic spindle assembly. Cell, *87*(3), 447–458. https://doi.org/10.1016/s0092-8674(00)81365-3

Meunier, S., & Vernos, I. (2012). Microtubule assembly during mitosis - from distinct origins to distinct functions? Journal of Cell Science, *125*(Pt 12), 2805–2814. https://doi.org/10.1242/jcs.092429

Morrison, S. J., & Kimble, J. (2006). Asymmetric and symmetric stem-cell divisions in development and cancer. Nature, *441*(7097), 1068–1074. https://doi.org/10.1038/nature04956

Mountain, V., Simerly, C., Howard, L., Ando, A., Schatten, G., & Compton, D. A. (1999). The kinesin-related protein, HSET, opposes the activity of Eg5 and cross-links microtubules in the mammalian mitotic spindle. The Journal of Cell Biology, *147*(2), 351–366. https://doi.org/10.1083/jcb.147.2.351

Musacchio, A., & Desai, A. (2017). A molecular view of kinetochore assembly and function. Biology, *6*(1), 5. https://doi.org/10.3390/biology6010005

Müller-Reichert, T., Rüthmann, M., Matos, I., & Ozlü, N. (2022). The ultrastructure of the mitotic spindle and its implications for chromosome segregation in planarian stem cells. Cells, *11*(10), 1603. https://doi.org/10.3390/cells11101603

Newmark, P. A., & Sánchez Alvarado, A. (2002). Not your father's planarian: a classic model enters the era of functional genomics. Nature Reviews Genetics, *3*(3), 210-219. https://doi.org/10.1038/nrg759

Nigg, E. A., & Holland, A. J. (2018). Once and only once: mechanisms of centriole duplication and their deregulation in disease. Nature Reviews Molecular Cell Biology, *19*(5), 297-312. https://doi.org/10.1038/nrm.2017.127

Nigg, E. A., & Raff, J. W. (2009). Centrioles, centrosomes, and cilia in health and disease. Cell, *139*(4), 663-678. https://doi.org/10.1016/j.cell.2009.10.036

Onal, P., Grün, D., Adamidi, C., Rybak, A., Solana, J., Mastrobuoni, G., Wang, Y., Rahn, H. P., Chen, W., Kempa, S., Ziebold, U., & Rajewsky, N. (2012). Gene expression of pluripotency determinants is conserved between mammalian and planarian stem cells. The EMBO Journal, *31*(12), 2755-2769. https://doi.org/10.1038/emboj.2012.110

Pearson, B. J., & Sánchez Alvarado, A. (2010). A planarian p53 homolog regulates proliferation and self-renewal in adult stem cell lineages. Development, *137*(2), 213-221. https://doi.org/10.1242/dev.044297

Petrovská, B., Černá, H., & Seifertová, D. (2014). From microtubule to the cell shape: the role of plant-specific microtubule-associated proteins in shaping plant cells. New Phytologist, *203*(1), 66–80. https://doi.org/10.1111/nph.12789

Plass, M., Solana, J., Wolf, F. A., Ayoub, S., Misios, A., Glažar, P., Obermayer, B., Theis, F. J., Kocks, C., & Rajewsky, N. (2018). Cell type atlas and lineage tree of a whole complex animal by single-cell transcriptomics. Science, *360*(6391), eaaq1723. https://doi.org/10.1126/science.aaq1723

Prangishvili, A., Gasitashvili, Z., Matsaberidze, M., Chkhartishvili, L., Chichinadze, K., Tkemaladze, J., ... & Azmaiparashvili, Z. (2019). SYSTEM COMPONENTS OF HEALTH AND INNOVATION FOR THE ORGANIZATION OF NANO-BIOMEDIC ECOSYSTEM TECHNOLOGICAL PLATFORM. Current Politics and Economics of Russia, Eastern and Central Europe, 34(2/3), 299-305.

Prosser, S. L., & Pelletier, L. (2017). Mitotic spindle assembly in animal cells: a fine balancing act. Nature Reviews Molecular Cell Biology, *18*(3), 187-201. https://doi.org/10.1038/nrm.2016.162

Reddien, P. W. (2018). The cellular and molecular basis for planarian regeneration. Cell, *175*(2), 327-345. https://doi.org/10.1016/j.cell.2018.09.021

Reddien, P. W., Bermange, A. L., Murfitt, K. J., Jennings, J. R., & Sánchez Alvarado, A. (2005). Identification of genes needed for regeneration, stem cell function, and tissue homeostasis by systematic gene perturbation in planaria. Developmental Cell, *8*(5), 635-649. https://doi.org/10.1016/j.devcel.2005.02.014

Rink, J. C., Gurley, K. A., Elliott, S. A., & Sánchez Alvarado, A. (2009). Planarian Hh signaling regulates regeneration polarity and links Hh pathway evolution to cilia. Science, *326*(5958), 1406-1410.

Schuh, M., & Ellenberg, J. (2007). Self-organization of MTOCs replaces centrosome function during acentrosomal spindle assembly in live mouse oocytes. Cell, *130*(3), 484–498. https://doi.org/10.1016/j.cell.2007.06.025

Shcherbik, N., Pestov, D. G., & Pearson, B. J. (2016). Planarian stem cells sense the identity of the missing pharynx to launch its targeted regeneration. eLife, *5*, e14140. https://doi.org/10.7554/eLife.14140

Tanenbaum, M. E., Macůrek, L., Janssen, A., Geers, E. F., Alvarez-Fernández, M., & Medema, R. H. (2008). Kif15 cooperates with eg5 to promote bipolar spindle assembly. Current Biology, *19*(20), 1703–1711. https://doi.org/10.1016/j.cub.2009.08.027

Tkemaladze, J. (2023). Cross-senolytic effects of dasatinib and quercetin in humans. Georgian Scientists, 5(3), 138–152. doi: https://doi.org/10.52340/2023.05.03.15

Tkemaladze, J. (2023). Is the selective accumulation of oldest centrioles in stem cells the main cause of organism ageing?. Georgian Scientists, 5(3), 216–235. doi: https://doi.org/10.52340/2023.05.03.22

Tkemaladze, J. (2023). Long-Term Differences between Regenerations of Head and Tail Fragments in Schmidtea Mediterranea Ciw4. Available at SSRN 4257823.

Tkemaladze, J. (2023). Reduction, proliferation, and differentiation defects of stem cells over time: a consequence of selective accumulation of old centrioles in the stem cells?. Molecular Biology Reports, 50(3), 2751-2761.

Tkemaladze, J. (2023). Structure and possible functions of centriolar RNA with reference to the centriolar hypothesis of differentiation and replicative senescence. Junior Researchers, 1(1), 156–170. doi: https://doi.org/10.52340/2023.01.01.17

Tkemaladze, J. (2023). The centriolar hypothesis of differentiation and replicative senescence. Junior Researchers, 1(1), 123–141. doi: https://doi.org/10.52340/2023.01.01.15

Tkemaladze, J. (2024). Absence of centrioles and regenerative potential of planaria. Georgian Scientists, 6(4), 59–75. doi: https://doi.org/10.52340/gs.2024.06.04.08

Tkemaladze, J. (2024). Cell center and the problem of accumulation of oldest centrioles in stem cells. Georgian Scientists, 6(2), 304–322. doi: https://doi.org/10.52340/gs.2024.06.02.32

Tkemaladze, J. (2024). Editorial: Molecular mechanism of ageing and therapeutic advances through targeting glycative and oxidative stress. Front Pharmacol. 2024 Mar 6;14:1324446. doi: 10.3389/fphar.2023.1324446. PMID: 38510429; PMCID: PMC10953819.

Tkemaladze, J. (2024). Elimination of centrioles. Georgian Scientists, 6(4), 291–307. doi: https://doi.org/10.52340/gs.2024.06.04.25

Tkemaladze, J. (2024). Main causes of intelligence decrease and prospects for treatment. Georgian Scientists, 6(2), 425–432. doi: https://doi.org/10.52340/gs.2024.06.02.44

Tkemaladze, J. (2024). The rate of stem cell division decreases with age. Georgian Scientists, 6(4), 228–242. doi: https://doi.org/10.52340/gs.2024.06.04.21

Tkemaladze, J. (2025).Achieving Perpetual Vitality Through Innovation. doi: http://dx.doi.org/10.13140/RG.2.2.31113.35685

Tkemaladze, J. (2025). Activated Wheat: The Power of Super Grains. Preprints. doi: https://doi.org/10.20944/preprints202508.1724.v1

Tkemaladze, J. (2025). Adaptive Cognitive System Ze. Longevity Horizon, 1(3). doi: https://doi.org/10.5281/zenodo.15309162

Tkemaladze, J. (2025). Adaptive Systems and World Models. doi: http://dx.doi.org/10.13140/RG.2.2.13617.90720

Tkemaladze, J. (2025). Aging Model - Drosophila Melanogaster. doi: http://dx.doi.org/10.13140/RG.2.2.16706.49607

Tkemaladze, J. (2025). Aging Model Based on Drosophila melanogaster: Mechanisms and Perspectives. Longevity Horizon, 1(3). doi: https://doi.org/10.5281/zenodo.14955643

Tkemaladze, J. (2025). Allotransplantation Between Adult Drosophila of Different Ages and Sexes. doi: http://dx.doi.org/10.13140/RG.2.2.27711.62884

Tkemaladze, J. (2025). Anatomy, Biogenesis, and Role in Cell Biology of Centrioles. Longevity Horizon, 1(2). doi: https://doi.org/10.5281/zenodo.14742232

Tkemaladze, J. (2025). A Novel Integrated Bioprocessing Strategy for the Manufacturing of Shelf-Stable, Nutritionally Upgraded Activated Wheat: Development of a Comprehensive Protocol, In-Depth Nutritional Characterization, and Evaluation of Biofunctional Properties. Longevity Horizon, 1(3). DOI:https://doi.org/10.5281/zenodo.16950787

Tkemaladze, J. (2025). Anti-Blastomic Substances in the Blood Plasma of Schizophrenia Patients. doi: http://dx.doi.org/10.13140/RG.2.2.12721.08807

Tkemaladze, J. (2025). Anti-Blastomic Substances in the Plasma of Schizophrenia Patients: A Dual Role of Complement C4 in Synaptic Pruning and Tumor Suppression. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.15042448

Tkemaladze, J. (2025). Asymmetry in the Inheritance of Centrosomes / Centrioles and Its Consequences. Longevity Horizon, 1(2). doi: https://doi.org/10.5281/zenodo.14837352

Tkemaladze, J. (2025). A Universal Approach to Curing All Diseases: From Theoretical Foundations to the Prospects of Applying Modern Biotechnologies in Future Medicine. doi: http://dx.doi.org/10.13140/RG.2.2.24481.11366

Tkemaladze, J. (2025). Centriole Elimination: A Mechanism for Resetting Entropy in the Cell. Longevity Horizon, 1(2). doi: https://doi.org/10.5281/zenodo.14876013

Tkemaladze, J. (2025). Centriole Elimination as a Mechanism for Restoring Cellular Order. doi: http://dx.doi.org/10.13140/RG.2.2.12890.66248/1

Tkemaladze, J. (2025). Concept to The Alive Language. Longevity Horizon, 1(1). doi: https://doi.org/10.5281/zenodo.14688792

Tkemaladze, J. (2025). Concept to The Caucasian Bridge. Longevity Horizon, 1(1). doi: https://doi.org/10.5281/zenodo.14689276

Tkemaladze, J. (2025). Concept to The Curing All Diseases. Longevity Horizon, 1(1). doi: https://doi.org/10.5281/zenodo.14676208

Tkemaladze, J. (2025). Concept to The Eternal Youth. Longevity Horizon, 1(1). doi: https://doi.org/10.5281/zenodo.14681902

Tkemaladze, J. (2025). Concept to The Food Security. Longevity Horizon, 1(1). doi: https://doi.org/10.5281/zenodo.14642407

Tkemaladze, J. (2025). Concept to the Living Space. Longevity Horizon, 1(1). doi: https://doi.org/10.5281/zenodo.14635991

Tkemaladze, J. (2025). Concept to The Restoring Dogmas. Longevity Horizon, 1(1). doi: https://doi.org/10.5281/zenodo.14708980

Tkemaladze, J. (2025). Differentiation of Somatic Cells in Multicellular Organisms. Longevity Horizon, 1(2). doi: https://doi.org/10.5281/10.5281/zenodo.14778927

Tkemaladze, J. (2025). Hypotheses on the Role of Centrioles in Aging Processes. doi: http://dx.doi.org/10.13140/RG.2.2.15014.02887/1

Tkemaladze, J. (2025). Induction of germline-like cells (PGCLCs). Longevity Horizon, 1(3). doi: https://doi.org/10.5281/zenodo.16414775

Tkemaladze, J. (2025). Limits of Cellular Division: The Hayflick Phenomenon. doi: http://dx.doi.org/10.13140/RG.2.2.25803.30249

Tkemaladze, J. (2025). Long-Lived Non-Renewable Structures in the Human Body. doi: http://dx.doi.org/10.13140/RG.2.2.14826.43206

Tkemaladze, J. (2025). Mechanisms of Learning Through the Actualization of Discrepancies. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.15200612

Tkemaladze, J. (2025). Memorizing an Infinite Stream of Information in a Limited.

Tkemaladze, J. (2025). Memorizing an Infinite Stream of Information in a Limited Memory Space: The Ze Method of a Plastic Counter of Chronotropic Number Frequencies. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.15170931

Tkemaladze, J. (2025). Molecular Insights and Radical Longevity from Ancient Elixirs to Mars Colonies. Longevity Horizon, 1(2). doi: https://doi.org/10.5281/zenodo.14895222

Tkemaladze, J. (2025). Molecular Mechanisms of Aging and Modern Life Extension Strategies: From Antiquity to Mars Colonization. doi: http://dx.doi.org/10.13140/RG.2.2.13208.51204

Tkemaladze, J. (2025). Ontogenetic Permanence of Non-Renewable Biomechanical Configurations in Homo Sapiens Anatomy. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.15086387

Tkemaladze, J. (2025). Pathways of Somatic Cell Specialization in Multicellular Organisms. doi: http://dx.doi.org/10.13140/RG.2.2.23348.97929/1

Tkemaladze, J. (2025). Protocol for Transplantation of Healthy Cells Between Adult Drosophila of Different Ages and Sexes. Longevity Horizon, 1(2). doi: https://doi.org/10.5281/zenodo.14889948

Tkemaladze, J. (2025). Replicative Hayflick Limit. Longevity Horizon, 1(2). doi: https://doi.org/10.5281/zenodo.14752664

Tkemaladze, J. (2025). Solutions to the Living Space Problem to Overcome the Fear of Resurrection from the Dead. doi: http://dx.doi.org/10.13140/RG.2.2.34655.57768

Tkemaladze, J. (2025). Strategic Importance of the Caucasian Bridge and Global Power Rivalries. doi: http://dx.doi.org/10.13140/RG.2.2.19153.03680

Tkemaladze, J. (2025). Structure, Formation, and Functional Significance of Centrioles in Cellular Biology. doi: http://dx.doi.org/10.13140/RG.2.2.27441.70245/1

Tkemaladze, J. (2025). Systemic Resilience and Sustainable Nutritional Paradigms in Anthropogenic Ecosystems. doi: http://dx.doi.org/10.13140/RG.2.2.18943.32169/1

Tkemaladze, J. (2025). The Centriolar Theory of Differentiation Explains the Biological Meaning of the.

Tkemaladze, J. (2025). The Centriole Paradox in Planarian Biology: Why Acentriolar Stem Cells Divide and Centriolar Somatic Cells Do Not. Preprints. https://doi.org/10.20944/preprints202509.0382.v1

Tkemaladze, J. (2025). The Concept of Data-Driven Automated Governance. Georgian Scientists, 6(4), 399–410. doi: https://doi.org/10.52340/gs.2024.06.04.38

Tkemaladze, J. (2025). The Epistemological Reconfiguration and Transubstantial Reinterpretation of Eucharistic Practices Established by the Divine Figure of Jesus Christ in Relation to Theological Paradigms. doi: http://dx.doi.org/10.13140/RG.2.2.28347.73769/1

Tkemaladze, J. (2025). The Stage of Differentiation Into Mature Gametes During Gametogenesis in Vitro. Longevity Horizon, 1(3). doi: https://doi.org/10.5281/zenodo.16808827

Tkemaladze, J. (2025). The Tkemaladze Method: A Modernized Caucasian Technology for the Production of Shelf-Stable Activated Wheat with Enhanced Nutritional Properties. Longevity Horizon, 1(3). doi: https://doi.org/10.5281/zenodo.16905079

Tkemaladze, J. (2025). Through In Vitro Gametogenesis — Young Stem Cells. Longevity Horizon, 1(3). doi:https://doi.org/10.5281/zenodo.15847116

Tkemaladze, J. (2025). Transforming the psyche with phoneme frequencies "Habere aliam linguam est possidere secundam animam". doi: http://dx.doi.org/10.13140/RG.2.2.16105.61286

Tkemaladze, J. (2025). Uneven Centrosome Inheritance and Its Impact on Cell Fate. doi: http://dx.doi.org/10.13140/RG.2.2.34917.31206

Tkemaladze, J. (2025). Voynich Manuscript Decryption: A Novel Compression-Based Hypothesis and Computational Framework. Preprints. https://doi.org/10.20944/preprints202509.0403.v1

Tkemaladze, J. (2025). Ze World Model with Predicate Actualization and Filtering. doi: http://dx.doi.org/10.13140/RG.2.2.15218.62407

Tkemaladze, J. (2025). Ze метод создания пластичного счетчика хронотропных частот чисел бесконечного потока информации. doi: http://dx.doi.org/10.13140/RG.2.2.29162.43207

Tkemaladze, J. (2025). Гаметогенез In Vitro: современное состояние, технологии и перспективы применения. Research Gate. http://dx.doi.org/10.13140/RG.2.2.28647.36000

Tkemaladze, J., & Apkhazava, D. (2019). Dasatinib and quercetin: short-term simultaneous administration improves physical capacity in human. J Biomedical Sci, 8(3), 3.

Tkemaladze, J., & Chichinadze, K. (2005). Potential role of centrioles in determining the morphogenetic status of animal somatic cells. Cell biology international, 29(5), 370-374.

Tkemaladze, J., & Chichinadze, K. (2010). Centriole, differentiation, and senescence. Rejuvenation research, 13(2-3), 339-342.

Tkemaladze, J., & Gakely, G. (2025). A Novel Biotechnological Approach for the Production of Shelf-Stable, Nutritionally Enhanced Activated Wheat: Protocol Development, Nutritional Profiling, and Bioactivity Assessment. Preprints. https://doi.org/10.20944/preprints202508.1997.v1

Tkemaladze, J., & Samanishvili, T. (2024). Mineral ice cream improves recovery of muscle functions after exercise. Georgian Scientists, 6(2), 36–50. doi: https://doi.org/10.52340/gs.2024.06.02.04

Tkemaladze, J., Tavartkiladze, A., & Chichinadze, K. (2012). Programming and Implementation of Age-Related Changes. In Senescence. IntechOpen.

Tkemaladze, J. V., & Chichinadze, K. N. (2005). Centriolar mechanisms of differentiation and replicative aging of higher animal cells. Biochemistry (Moscow), 70, 1288-1303.

Tkemaladze, Jaba and Kipshidze, Mariam, Regeneration Potential of the Schmidtea Mediterranea CIW4 Planarian. Available at SSRN: https://ssrn.com/abstract=4633202 or http://dx.doi.org/10.2139/ssrn.4633202

Vander Heiden, M. G., Cantley, L. C., & Thompson, C. B. (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, *324*(5930), 1029–1033. https://doi.org/10.1126/science.1160809

van Wolfswinkel, J. C., Wagner, D. E., & Reddien, P. W. (2014). Single-cell analysis reveals functionally distinct classes within the planarian stem cell compartment. Cell Stem Cell, *15*(3), 326-339. https://doi.org/10.1016/j.stem.2014.06.007

Venkei, Z. G., & Yamashita, Y. M. (2018). The centrosome orientation checkpoint is germline stem cell specific and operates prior to the spindle assembly checkpoint in Drosophila testis. Development, *145*(14), dev162511. https://doi.org/10.1242/dev.162511

Vertii, A., Hehnly, H., & Doxsey, S. (2016). The centrosome, a multitalented renaissance organelle. Cold Spring Harbor Perspectives in Biology, *8*(12), a025049. https://doi.org/10.1101/cshperspect.a025049

Vladar, E. K., & Brody, S. L. (2013). Analysis of ciliogenesis in primary culture mouse tracheal epithelial cells. Methods in Enzymology, *525*, 285–309. https://doi.org/10.1016/B978-0-12-397944-5.00014-6

Wagner, D. E., Wang, I. E., & Reddien, P. W. (2011). Clonogenic neoblasts are pluripotent adult stem cells that underlie planarian regeneration. Science, *332*(6031), 811-816. https://doi.org/10.1126/science.1203983

Walczak, C. E., Vernos, I., Mitchison, T. J., Karsenti, E., & Heald, R. (1998). A model for the proposed roles of different microtubule-based motor proteins in establishing spindle bipolarity. Current Biology, *8*(16), 903–913. https://doi.org/10.1016/s0960-9822(07)00370-3

Wenemoser, D., & Reddien, P. W. (2010). Planarian regeneration involves distinct stem cell responses to wounds and tissue absence. Developmental Biology, *344*(2), 979-991. https://doi.org/10.1016/j.ydbio.2010.06.017

Witchley, J. N., Mayer, M., Wagner, D. E., Owen, J. H., & Reddien, P. W. (2013). Muscle cells provide instructions for planarian regeneration. Cell Reports, *4*(4), 633-641. https://doi.org/10.1016/j.celrep.2013.07.022

Woodruff, J. B., Wueseke, O., & Hyman, A. A. (2014). Pericentriolar material structure and dynamics. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, *369*(1650), 20130459. https://doi.org/10.1098/rstb.2013.0459

Yamashita, Y. M., Mahowald, A. P., Perlin, J. R., & Fuller, M. T. (2007). Asymmetric inheritance of mother versus daughter centrosome in stem cell division. Science, *315*(5811), 518–521. https://doi.org/10.1126/science.1134910

Zayas, R. M., Hernández, A., Habermann, B., Wang, Y., Stary, J. M., & Newmark, P. A. (2005). The planarian Schmidtea mediterranea as a model for epigenetic germ cell specification: analysis of ESTs from the hermaphroditic strain. Proceedings of the National Academy of Sciences, *102*(51), 18491-18496. https://doi.org/10.1073/pnas.0509507102

Zhu, S. J., Hallows, S. E., Currie, K. W., Xu, C., & Pearson, B. J. (2015). A mex3 homolog is required for differentiation during planarian stem cell lineage development. eLife, *4*, e07025. https://doi.org/10.7554/eLife.07025

Прангишвили, А. И., Гаситашвили, З. А., Мацаберидзе, М. И., Чичинадзе, К. Н., Ткемаладзе, Д. В., & Азмайпарашвили, З. А. (2017). К топологии антитеррористических и антикриминальных технологии для образовательных программ. В научном издании представлены материалы Десятой международной научно-технической конфе-ренции «Управление развитием крупномасштабных систем (MLSD’2016)» по следующим направле-ниям:• Проблемы управления развитием крупномасштабных систем, включая ТНК, Госхолдин-ги и Гос-корпорации., 284.

Прангишвили, А. И., Гаситашвили, З. А., Мацаберидзе, М. И., Чхартишвили, Л. С., Чичинадзе, К. Н., & Ткемаладзе, Д. В. (2017). & Азмайпарашвили, ЗА (2017). Системные составляющие здравоохранения и инноваций для организации европейской нано-биомедицинской екосистемной технологической платформы. Управление развитием крупномасштабных систем MLSD, 365-368.

Ткемаладзе, Д. (2025). Анатомия, биогенез и роль в клеточной биологии центриолей. doi: http://dx. doi. org/10.13140. RG, 2(27441.70245), 1

Ткемаладзе, Д. (2025). Асимметрия в наследовании центросом/центриолей и ее последствия. doi: http://dx. doi. org/10.13140. RG, 2(34917.312), 06.

Ткемаладзе, Д. (2025). Гаметогенез in vitro (IVG) -Этап дифференцировки в зрелые гаметы. http://dx.doi.org/10.13140/RG.2.2.20429.96482

Ткемаладзе, Д. (2025). Дифференциация соматических клеток многоклеточных животных. doi: http://dx. doi. org/10.13140. RG, 2(23348.97929), 1.

Ткемаладзе, Д. (2025). Индукция примордиальных клеток, подобных зародышевым клеткам (PGCLCs) современные достижения, механизмы и перспективы применения. http://dx.doi.org/10.13140/RG.2.2.27152.32004

Ткемаладзе, Д. (2025). Репликативный Лимит Хейфлика. doi: http://dx. doi. org/10.13140. RG, 2(25803.302), 49.

Ткемаладзе, Д. (2025). Элиминация Центриолей: Механизм Обнуления Энтропии в Клетке. doi: http://dx. doi. org/10.13140. RG, 2(12890.66248), 1.

Ткемаладзе, Д., Цомаиа, Г., & Жоржолиани, И. (2001). Создание искусственных самоадаптирующихся систем на основе Теории Прогноза. Искусственный интеллект. УДК 004.89. Искусственный интеллект. УДК 004.89.

Ткемаладзе, Д. В., & Чичинадзе, К. Н. (2005). Центриолярные механизмы дифференцировки и репликативного старения клеток высших животных. Биохимия, 70(11), 1566-1584.

Чичинадзе, К., Ткемаладзе, Д., & Лазарашвили, А. (2012). Новый класс рнк и центросомная гипотеза старения клеток. Успехи геронтологии, 25(1), 23-28.

Чичинадзе, К. Н., & Ткемаладзе, Д. В. (2008). Центросомная гипотеза клеточного старения и дифференциации. Успехи геронтологии, 21(3), 367-371.