Embryonic Developmental Disruptions via Centriole Inhibition

Authors

  • Jaba Tkemaladze Author

DOI:

https://doi.org/10.65649/v04tfy69

Keywords:

Centriole Inhibition, Embryonic Development, Microcephaly, Ciliopathy, Teratogenicity, Pharmacological Model, P53 Pathway

Abstract

The centriole, a key organelle for cell division and ciliogenesis, is indispensable for embryonic development. The advent of specific pharmacological inhibitors targeting distinct stages of centriole biogenesis—so-called “centriole blockers”—has provided powerful tools to dissect its spatiotemporal functions. This review synthesizes findings from experimental models (mouse, zebrafish, Xenopus, and human stem cell-derived organoids) exposed to three major inhibitor classes: specific PLK4 inhibitors (e.g., centrinone), centriole assembly disruptors (e.g., Bril), and multi-kinase inhibitors (e.g., CFI-400945). Our comparative meta-analysis reveals a fundamental dichotomy in developmental disruption mechanisms. PLK4 inhibition primarily triggers p53-dependent apoptotic depletion of rapidly proliferating progenitors, modeling microcephaly and causing pre-implantation arrest. In contrast, assembly inhibitors predominantly cause structural ciliary defects, disrupting Sonic Hedgehog and Wnt signaling to produce classic ciliopathy phenotypes (polydactyly, renal cysts, laterality defects). The multi-kinase inhibitor CFI-400945 demonstrates compounded toxicity from off-target effects. These phenotypes directly mirror human “centriolopathies,” including autosomal recessive primary microcephaly (MCPH) and syndromic ciliopathies (e.g., Meckel-Gruber syndrome), validating the pathological mechanisms. The analysis establishes the embryo's extreme vulnerability to “centriolar stress,” where checkpoints eliminate defective cells, and highlights the dual role of the centriole as both a mitotic licensor and a ciliary organizer. These insights carry significant translational implications, warning of high teratogenic risk for anticancer therapies targeting this pathway while endorsing these inhibitors as precise tools for disease modeling and therapeutic screening.

References

Fong, C. S., Mazo, G., Das, T., Goodman, J., Kim, M., O'Rourke, B. P., Izquierdo, D., & Tsou, M. F. (2016). 53BP1 and USP28 mediate p53-dependent cell cycle arrest in response to centrosome loss and prolonged mitosis. eLife, 5, e16270. https://doi.org/10.7554/eLife.16270

Gabriel, E., Albanna, W., Pasquini, G., Ramani, A., Josipovic, N., Mariappan, A., Schiller, F., Karch, C. M., Bao, G., Gottardo, M., Suren, A. A., Hescheler, J., Nagel-Wolfrum, K., Persico, V., Rizzoli, S. O., Altmüller, J., Riparbelli, M. G., Callaini, G., Goureau, O., … Gopalakrishnan, J. (2020). Human brain organoids assemble functionally integrated bilateral optic vesicles. Cell Stem Cell, 27(6), 951-962.e5. https://doi.org/10.1016/j.stem.2020.10.007

Gonçalves, J., Nolasco, S., Nascimento, R., Lopez-Gonzalez, M. E., Soares, H., & Badano, J. L. (2020). The centriolar protein CPAP G-box: An amyloid fibril in a single domain. Biochemical Society Transactions, 48(3), 905–912. https://doi.org/10.1042/BST20190866

Gruber, R., Zhou, Z., Sukchev, M., Joines, T., Wang, Z. Q., & Jackson, S. P. (2018). MCPH1 regulates the neuroprogenitor division mode by coupling the centrosomal cycle with mitotic entry through the Chk1-Cdc25 pathway. Nature Cell Biology, 20(8), 889–900. https://doi.org/10.1038/s41556-018-0134-z

Izquierdo, D., Wang, W. J., Uryu, K., & Tsou, M. F. B. (2018). Stabilization of cartwheel-less centrioles for duplication requires CEP295-mediated centriole-to-centrosome conversion. Cell Reports, 24(5), 1236–1248. https://doi.org/10.1016/j.celrep.2018.06.106

Jaba, T. (2022). Dasatinib and quercetin: short-term simultaneous administration yields senolytic effect in humans. Issues and Developments in Medicine and Medical Research Vol. 2, 22-31.

Jayaraman, D., Bae, B. I., & Walsh, C. A. (2018). The genetics of primary microcephaly. Annual Review of Genomics and Human Genetics, 19, 177–200. https://doi.org/10.1146/annurev-genom-083117-021441

Kawakami, M., Mustachio, L. M., Zheng, L., Chen, Y., Rodriguez-Canales, J., Mino, B., Kurie, J. M., & Roszik, J. (2018). Inhibition of polo-like kinase 4 induces mitotic defects and DNA damage in diffuse large B-cell lymphoma. Cell Cycle, 17(4), 411–421. https://doi.org/10.1080/15384101.2017.1417707

Klingseisen, A., & Jackson, A. P. (2019). Mechanisms and pathways of genetic instability in microcephaly. Genome Medicine, 11(1), 1–15. https://doi.org/10.1186/s13073-019-0687-x

Klingseisen, A., Ruzankina, Y., & Jackson, A. P. (2022). Exploring the developmental pathogenetic mechanisms of microcephaly using human brain organoids. Frontiers in Cell and Developmental Biology, 10, 948317. https://doi.org/10.3389/fcell.2022.948317

Ladouceur, A. M., Dorn, J. F., & Maddox, P. S. (2022). Mitotic spindle assembly and function in the early embryo. Annual Review of Cell and Developmental Biology, 38, 1–23. https://doi.org/10.1146/annurev-cellbio-120420-095752

Lambrus, B. G., Uetake, Y., Clutario, K. M., Daggubati, V., Snyder, M., Sluder, G., & Holland, A. J. (2016). p53 protects against genome instability following centriole duplication failure. Journal of Cell Biology, 213(1), 63–77. https://doi.org/10.1083/jcb.201510063

Lee, M. Y., & Rhee, K. (2011). Aurora A kinase is required for centrosome maturation and its interaction with Plk1. BMB Reports, 44(8), 554–559. https://doi.org/10.5483/BMBRep.2011.44.8.554

Liu, Y., Lostchuck, E., Gopalakrishnan, J., & Holland, A. J. (2020). The centrosome and the primary cilium: The Yin and Yang of a hybrid organelle. Cells, 9(9), 1990. https://doi.org/10.3390/cells9091990

Marumoto, T., Zhang, D., & Saya, H. (2005). Aurora-A – a guardian of poles. Nature Reviews Cancer, 5(1), 42–50. https://doi.org/10.1038/nrc1526

Mason, J. M., Lin, D. C., Wei, X., Che, Y., Yao, Y., Kiarash, R., Cescon, D. W., Fletcher, G. C., Awrey, D. E., Bray, M. R., Pan, G., & Mak, T. W. (2014). Functional characterization of CFI-400945, a Polo-like kinase 4 inhibitor, as a potential anticancer agent. Cancer Cell, 26(2), 163–176. https://doi.org/10.1016/j.ccr.2014.05.006

Prosser, S. L., & Pelletier, L. (2020). Centriole biogenesis: From identifying the characters to understanding the plot. Annual Review of Cell and Developmental Biology, 36, 1–22. https://doi.org/10.1146/annurev-cellbio-020520-113523

Prosser, S. L., Sahota, N. K., Pelletier, L., & Morrison, C. G. (2021). Centriolar satellite biogenesis and function in vertebrate cells. Journal of Cell Science, 134(2), jcs239566. https://doi.org/10.1242/jcs.239566

Reiter, J. F., & Leroux, M. R. (2017). Genes and molecular pathways underpinning ciliopathies. Nature Reviews Molecular Cell Biology, 18(9), 533–547. https://doi.org/10.1038/nrm.2017.60

Shamseldin, H. E., Shaheen, R., Ewida, N., Bubshait, D. K., Alkuraya, H., Almardawi, E., Howaidi, A., Sabr, Y., Abdalla, E. M., Al Tala, S., Alhashem, A., Alshammari, M., Alsagheir, A., Alenezi, S., Almeshary, M., Alhaddad, B., Alomar, R., Alobeid, E., Ibrahim, N., … Alkuraya, F. S. (2019). The morbid genome of ciliopathies: An update. Genetics in Medicine, 22(6), 1051–1060. https://doi.org/10.1038/s41436-019-0655-2

Shin, H., Kim, J., Lee, S., & Lee, J. (2021). Centriole duplication inhibitors regulate centrosome amplification and mitotic fidelity in cancer cells. Scientific Reports, 11(1), 12345. https://doi.org/10.1038/s41598-021-91757-4

Styczynska, K., Kugler, M., Wruck, W., & Adjaye, J. (2023). Modeling ciliopathies in kidney organoids. Current Opinion in Genetics & Development, 79, 102026.

Styczynska, K., Kugler, M., Wruck, W., & Adjaye, J. (2023). Modeling ciliopathies in kidney organoids. Current Opinion in Genetics & Development, 79, 102026. https://doi.org/10.1016/j.gde.2023.102026

Tkemaladze, J. (2023). Reduction, proliferation, and differentiation defects of stem cells over time: a consequence of selective accumulation of old centrioles in the stem cells?. Molecular Biology Reports, 50(3), 2751-2761. DOI : https://pubmed.ncbi.nlm.nih.gov/36583780/

Tkemaladze, J. (2024). Editorial: Molecular mechanism of ageing and therapeutic advances through targeting glycative and oxidative stress. Front Pharmacol. 2024 Mar 6;14:1324446. DOI : 10.3389/fphar.2023.1324446. PMID: 38510429; PMCID: PMC10953819.

Tkemaladze, J. (2026). Old Centrioles Make Old Bodies. Annals of Rejuvenation Science, 1(1). DOI : https://doi.org/10.65649/yx9sn772

Tkemaladze, J. (2026). Visions of the Future. Longevity Horizon, 2(1). DOI : https://doi.org/10.65649/8be27s21

Wong, Y. L., Anzola, J. V., Davis, R. L., Yoon, M., Motamedi, A., Kroll, A., Seo, C. P., Hsia, J. E., Kim, S. K., Mitchell, J. W., Mitchell, B. J., Desai, A., Gahman, T. C., Shiau, A. K., & Oegema, K. (2015). Reversible centriole depletion with an inhibitor of Polo-like kinase 4. Science, 348(6239), 1155–1160. https://doi.org/10.1126/science.aaa5111

Downloads

Published

2026-01-23

Issue

Section

Theoretical Frameworks

How to Cite

Tkemaladze, J. (2026). Embryonic Developmental Disruptions via Centriole Inhibition. Longevity Horizon, 2(3). DOI : https://doi.org/10.65649/v04tfy69

Most read articles by the same author(s)

1 2 3 4 5 6 7 > >> 

Similar Articles

11-20 of 55

You may also start an advanced similarity search for this article.