Centriole Biogenesis Constrains Whole Body Regeneration in Planarians

Authors

  • Jaba Tkemaladze Author

DOI:

https://doi.org/10.65649/jx8mqx13

Keywords:

Planarian Regeneration, Centriole Biogenesis, Neoblast Proliferation, Asymmetric Division, Primary Cilium, Morphogenetic Constraint

Abstract

Whole-body regeneration in planarians represents the ultimate challenge in restoring a complete organism from a fragment, requiring coordinated mass proliferation, global repatterning, de novo organogenesis, and tissue remodeling. This review synthesizes evidence from recent functional studies to argue that centriole biogenesis acts as a fundamental constraint on every phase of this complex process. Disruption of centriole duplication or function leads to a hierarchical failure: early blockage of neoblast proliferation results in fragment lethality, while partial impairment yields specific defects in brain regeneration, eye formation, and axial patterning. These phenotypes stem from the centriole's multifunctional role as the orchestrator of mitotic fidelity, asymmetric cell divisions, primary cilia-based signaling, and cytoskeletal organization. A comparative analysis reveals that while centriole dependency is a conserved theme in regeneration, planarians present a uniquely stringent model due to their absolute reliance on a stem cell-driven morphogenetic program. The findings imply that "centriolar health" is a critical determinant of regenerative potential and suggest that evolutionary trade-offs involving centrosome regulation may underlie the loss of regenerative capacity in complex animals. For regenerative medicine, this underscores the necessity of ensuring centriole integrity in stem cell-based strategies.

References

Arquint, C., & Nigg, E. A. (2016). The PLK4–STIL–SAS-6 module at the core of centriole duplication. Biochemical Society Transactions, 44(5), 1253–1263. https://doi.org/10.1042/BST20160116 DOI: https://doi.org/10.1042/BST20160116

Azimzadeh, J., Wong, M. L., Downhour, D. M., Sánchez Alvarado, A., & Marshall, W. F. (2020). Centrosome loss in stem cells alters tissue organization in planarians. Current Biology, 30(16), 3210–3224.e6. https://doi.org/10.1016/j.cub.2020.06.005 DOI: https://doi.org/10.1016/j.cub.2020.06.005

Cebrià, F., Umesono, Y., & Agata, K. (2018). Planarian regeneration: A classic topic claiming new attention. The International Journal of Developmental Biology, 62(6-7-8), 429–437. https://doi.org/10.1387/ijdb.180042ka

Chang, C. W., Lin, C. Y., & Lee, H. C. (2023). Centrosomal protein CEP120 is essential for vertebrate appendage regeneration. Development, 150(3), dev201076. https://doi.org/10.1242/dev.201076

Dattilo, S. M. (2022). The centriole's role in planarian regeneration: More than just mitosis. Seminars in Cell & Developmental Biology, 129, 28–37. https://doi.org/10.1016/j.semcdb.2022.03.001 DOI: https://doi.org/10.1016/j.semcdb.2022.03.001

Forsthoefel, D. J., Park, A. E., & Newmark, P. A. (2012). Stem cell-based growth, regeneration, and remodeling of the planarian intestine. Developmental Biology, 368(1), 82–96. https://doi.org/10.1016/j.ydbio.2012.05.008 DOI: https://doi.org/10.1016/j.ydbio.2012.05.008

Gentric, G., & Desdouets, C. (2014). Polyploidization in liver tissue. The American Journal of Pathology, 184(2), 322–331. https://doi.org/10.1016/j.ajpath.2013.10.011 DOI: https://doi.org/10.1016/j.ajpath.2013.06.035

Godinho, S. A., & Pellman, D. (2014). Causes and consequences of centrosome abnormalities in cancer. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1650), 20130467. https://doi.org/10.1098/rstb.2013.0467 DOI: https://doi.org/10.1098/rstb.2013.0467

Godwin, J. W., Pinto, A. R., & Rosenthal, N. A. (2017). Chasing the recipe for a pro-regenerative immune system. Seminars in Cell & Developmental Biology, 61, 71–79. https://doi.org/10.1016/j.semcdb.2016.08.008 DOI: https://doi.org/10.1016/j.semcdb.2016.08.008

González-Sastre, A., De La Torre, M., Saló, E., & Abril, J. F. (2017). Planarian hedgehog signaling controls positional identity and lateral branching. Development, 144(24), 4691–4701. https://doi.org/10.1242/dev.154831

Gurley, K. A., Rink, J. C., & Sánchez Alvarado, A. (2008). β-catenin defines head versus tail identity during planarian regeneration and homeostasis. Science, 319(5861), 323–327. https://doi.org/10.1126/science.1150029 DOI: https://doi.org/10.1126/science.1150029

Jaba, T. (2022). Dasatinib and quercetin: short-term simultaneous administration yields senolytic effect in humans. Issues and Developments in Medicine and Medical Research Vol. 2, 22-31. DOI: https://doi.org/10.9734/bpi/idmmr/v2/15155D

Joven, A., & Simon, A. (2018). Homeostatic and regenerative neurogenesis in salamanders. Progress in Neurobiology, 170, 81–98. https://doi.org/10.1016/j.pneurobio.2018.04.006 DOI: https://doi.org/10.1016/j.pneurobio.2018.04.006

Khan, A., Metlagel, Z., & O'Connell, K. F. (2023). Centriole amplification disrupts asymmetric cell division and planar cell polarity in planarian epithelia. Developmental Cell, 58(1), 12–28.e5. https://doi.org/10.1016/j.devcel.2022.12.002 DOI: https://doi.org/10.1016/j.devcel.2022.12.002

Lapan, S. W., & Reddien, P. W. (2012). Transcriptome analysis of the planarian eye identifies ovo as a specific regulator of eye regeneration. Cell Reports, 2(2), 294–307. https://doi.org/10.1016/j.celrep.2012.06.018 DOI: https://doi.org/10.1016/j.celrep.2012.06.018

Lepko, T., Matsushima, W., & Marz, M. (2019). The centrosome protein SAS-6 is required for axon guidance in the zebrafish forebrain. Development, 146(21), dev181131. https://doi.org/10.1242/dev.181131

Levine, M. S., Bakker, B., Boeckx, B., Moyett, J., Lu, J., Vitre, B., ... & Pellman, D. (2017). Centrosome amplification is sufficient to promote spontaneous tumorigenesis in mammals. Developmental Cell, 40(3), 313–322.e5. https://doi.org/10.1016/j.devcel.2016.12.022 DOI: https://doi.org/10.1016/j.devcel.2016.12.022

Li, J., Kim, S., Kobayashi, T., Liang, F. X., Korzeniewski, N., Duensing, S., & Dynlacht, B. D. (2020). Centriolar satellites restrict centrosome size by suppressing CP110 removal. Nature Communications, 11(1), 5402. https://doi.org/10.1038/s41467-020-19167-0 DOI: https://doi.org/10.1038/s41467-020-19167-0

Loncarek, J., & Bettencourt-Dias, M. (2018). Building the right centriole for each cell type. Journal of Cell Biology, 217(3), 823–835. https://doi.org/10.1083/jcb.201704093 DOI: https://doi.org/10.1083/jcb.201704093

Margall-Ducos, G., Celton-Morizur, S., Couton, D., Brégerie, O., & Desdouets, C. (2007). Liver tetraploidization is controlled by a new process of incomplete cytokinesis. Journal of Cell Science, 120(20), 3633–3639. https://doi.org/10.1242/jcs.016907 DOI: https://doi.org/10.1242/jcs.016907

Matsuura, K. (2022). Mechanisms of polyploidization in the mammalian liver and its role in regeneration. Cell & Bioscience, 12(1), 115. https://doi.org/10.1186/s13578-022-00851-1 DOI: https://doi.org/10.1186/s13578-022-00851-1

Nigg, E. A., & Holland, A. J. (2018). Once and only once: Mechanisms of centriole duplication and their deregulation in disease. Nature Reviews Molecular Cell Biology, 19(5), 297–312. https://doi.org/10.1038/nrm.2017.127 DOI: https://doi.org/10.1038/nrm.2017.127

Owlarn, S., Klenner, F., Schmidt, D., Rabert, F., Tomasso, A., Reuter, H., ... & Bartscherer, K. (2017). Generic wound signals initiate regeneration in missing-tissue contexts. Nature Communications, 8(1), 2282. https://doi.org/10.1038/s41467-017-02338-x DOI: https://doi.org/10.1038/s41467-017-02338-x

Petersen, C. P., & Reddien, P. W. (2009). Wnt signaling and the polarity of the primary body axis. Cell, 139(5), 1056–1068. https://doi.org/10.1016/j.cell.2009.11.035 DOI: https://doi.org/10.1016/j.cell.2009.11.035

Petersen, C. P., & Reddien, P. W. (2011). Polarized notum activation at wounds inhibits Wnt function to promote planarian head regeneration. Science, 332(6031), 852–855. https://doi.org/10.1126/science.1202143 DOI: https://doi.org/10.1126/science.1202143

Reddien, P. W. (2018). The cellular and molecular basis for planarian regeneration. Cell, 175(2), 327–345. https://doi.org/10.1016/j.cell.2018.09.021 DOI: https://doi.org/10.1016/j.cell.2018.09.021

Reddien, P. W., & Sánchez Alvarado, A. (2004). Fundamentals of planarian regeneration. Annual Review of Cell and Developmental Biology, 20, 725–757. https://doi.org/10.1146/annurev.cellbio.20.010403.095114 DOI: https://doi.org/10.1146/annurev.cellbio.20.010403.095114

Rink, J. C. (2013). Stem cell systems and regeneration in planaria. Development Genes and Evolution, 223(1-2), 67–84. https://doi.org/10.1007/s00427-012-0426-4 DOI: https://doi.org/10.1007/s00427-012-0426-4

Scimone, M. L., Cote, L. E., & Reddien, P. W. (2017). Orthogonal muscle fibres have different instructive roles in planarian regeneration. Nature, 551(7682), 623–628. https://doi.org/10.1038/nature24660 DOI: https://doi.org/10.1038/nature24660

Sousa, S., Afonso, N., & Bensimon-Brito, A. (2021). The centrosome in vertebrate regeneration. Cells, 10(4), 899. https://doi.org/10.3390/cells10040899 DOI: https://doi.org/10.3390/cells10040899

Tanaka, E. M. (2016). The molecular and cellular choreography of appendage regeneration. Cell, 165(7), 1598–1608. https://doi.org/10.1016/j.cell.2016.05.038 DOI: https://doi.org/10.1016/j.cell.2016.05.038

Tkemaladze, J. (2023). Reduction, proliferation, and differentiation defects of stem cells over time: a consequence of selective accumulation of old centrioles in the stem cells?. Molecular Biology Reports, 50(3), 2751-2761. DOI : https://pubmed.ncbi.nlm.nih.gov/36583780/ DOI: https://doi.org/10.1007/s11033-022-08203-5

Tkemaladze, J. (2024). Editorial: Molecular mechanism of ageing and therapeutic advances through targeting glycative and oxidative stress. Front Pharmacol. 2024 Mar 6;14:1324446. DOI : 10.3389/fphar.2023.1324446. PMID: 38510429; PMCID: PMC10953819. DOI: https://doi.org/10.3389/fphar.2023.1324446

Tkemaladze, J. (2026). Old Centrioles Make Old Bodies. Annals of Rejuvenation Science, 1(1). DOI : https://doi.org/10.65649/yx9sn772 DOI: https://doi.org/10.65649/yx9sn772

Tkemaladze, J. (2026). Visions of the Future. Longevity Horizon, 2(1). DOI : https://doi.org/10.65649/8be27s21 DOI: https://doi.org/10.65649/8be27s21

Wang, M. J., Chen, F., Lau, J. T. Y., & Hu, Y. P. (2021). Hepatocyte polyploidization and its association with pathophysiological processes. Cell Death & Disease, 12(12), 1180. https://doi.org/10.1038/s41419-021-04401-4 DOI: https://doi.org/10.1038/s41419-021-04401-4

Wang, Y., Stritt, S., & Rink, J. C. (2023). Centriole positioning and asymmetry in planarian stem cells. Biology Open, 12(2), bio059686. https://doi.org/10.1242/bio.059686

Witchley, J. N., Mayer, M., Wagner, D. E., Owen, J. H., & Reddien, P. W. (2013). Muscle cells provide instructions for planarian regeneration. Cell Reports, 4(4), 633–641. https://doi.org/10.1016/j.celrep.2013.07.022 DOI: https://doi.org/10.1016/j.celrep.2013.07.022

Wong, C., & Stearns, T. (2003). Centrosome number is controlled by a centrosome-intrinsic block to reduplication. Nature Cell Biology, 5(6), 539–544. https://doi.org/10.1038/ncb993 DOI: https://doi.org/10.1038/ncb993

Zhu, S. J., & Pearson, B. J. (2017). The retinoblastoma pathway regulates stem cell proliferation in freshwater planarians. Developmental Biology, 433(2), 357–367. https://doi.org/10.1016/j.ydbio.2017.09.023 DOI: https://doi.org/10.1016/j.ydbio.2017.09.023

Downloads

Published

2026-01-25

Issue

Section

Theoretical Frameworks

How to Cite

Tkemaladze, J. (2026). Centriole Biogenesis Constrains Whole Body Regeneration in Planarians. Longevity Horizon, 2(3). DOI : https://doi.org/10.65649/jx8mqx13

Most read articles by the same author(s)

1 2 3 4 5 6 7 > >> 

Similar Articles

1-10 of 38

You may also start an advanced similarity search for this article.