Why do planarian cells without centrioles divide and cells with centrioles do not divide?
DOI:
https://doi.org/10.5281/zenodo.17054142Keywords:
Planarian, Neoblast, Centriole, Acentrosomal Spindle Assembly, Regeneration, Stem Cell, Differentiation, Chromosomal Instability, Asymmetric Cell DivisionAbstract
Planarians present a unique cellular paradox: their proliferative stem cells (neoblasts) completely lack centrioles, while their post-mitotic, differentiated cells possess them. This review investigates the mechanisms and biological significance of this inverse correlation. We synthesize evidence demonstrating that neoblasts employ a robust, evolutionarily conserved acentrosomal pathway for spindle assembly, reliant on chromatin-mediated nucleation via RanGTP and motor protein-driven self-organization. This adaptation potentially confers advantages including enforced asymmetric division, metabolic economy, and a significantly reduced risk of centrosome amplification-driven genomic instability, which may underpin the planarians' extensive regenerative capabilities and resistance to tumors. Conversely, the quiescence of centriole-bearing somatic cells is not caused by the organelles themselves but is a consequence of terminal differentiation. These cells epigenetically silence the cell cycle machinery and repurpose centrioles as basal bodies for ciliogenesis. The presence of centrioles is thus a marker, not a driver, of the differentiated state. This system represents a profound uncoupling of the mitotic apparatus from the centriole, offering novel insights into stem cell biology, alternative modes of cell division, and providing conceptual frameworks for regenerative medicine and cancer research.
References
Ahmad, F. J., & Baas, P. W. (1995). Microtubules released from the neuronal centrosome are transported into the axon. Journal of Cell Science, *108*(Pt 8), 2761–2769. https://doi.org/10.1242/jcs.108.8.2761
Aphkhazava, D., Sulashvili, N., & Tkemaladze, J. (2025). Stem Cell Systems and Regeneration. Georgian Scientists, 7(1), 271–319. doi: https://doi.org/10.52340/gs.2025.07.01.26
Aphkhazava, D., Sulashvili, N., Maglakelidze, G., & Tkemaladze, J. (2025). Ageless Creatures: Molecular Insights into Organisms That Defy Aging. Georgian Scientists, 7(3), 346–396. doi: https://doi.org/10.52340/gs.2025.07.03.24
Azimzadeh, J., Wong, M. L., Downhour, D. M., Sánchez Alvarado, A., & Marshall, W. F. (2012). Centrosome loss in the evolution of planarians. Science, *335*(6067), 461-463. https://doi.org/10.1126/science.1214457
Basto, R., Brunk, K., Vinadogrova, T., Peel, N., Franz, A., Khodjakov, A., & Raff, J. W. (2008). Centrosome amplification can initiate tumorigenesis in flies. Cell, *133*(6), 1032–1042. https://doi.org/10.1016/j.cell.2008.05.039
Burbank, K. S., Mitchison, T. J., & Fisher, D. S. (2007). Slide-and-cluster models for spindle assembly. Current Biology, *17*(16), 1373–1383. https://doi.org/10.1016/j.cub.2007.07.058
Burkhart, D. L., & Sage, J. (2008). Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nature Reviews Cancer, *8*(9), 671–682. https://doi.org/10.1038/nrc2399
Caudron, M., Bunt, G., Bastiaens, P., & Karsenti, E. (2005). Spatial coordination of spindle assembly by chromosome-mediated signaling gradients. Science, *309*(5739), 1373–1376. https://doi.org/10.1126/science.1115964
Chichinadze, K., Lazarashvili, A., & Tkemaladze, J. (2013). RNA in centrosomes: structure and possible functions. Protoplasma, 250(1), 397-405.
Chichinadze, K., Tkemaladze, D., & Lazarashvili, A. (2012). New class of RNA and centrosomal hypothesis of cell aging. Advances in Gerontology= Uspekhi Gerontologii, 25(1), 23-28.
Chichinadze, K., Tkemaladze, J., & Lazarashvili, A. (2012). A new class of RNAs and the centrosomal hypothesis of cell aging. Advances in Gerontology, 2(4), 287-291.
Chichinadze, K., Tkemaladze, J., & Lazarashvili, A. (2012). Discovery of centrosomal RNA and centrosomal hypothesis of cellular ageing and differentiation. Nucleosides, Nucleotides and Nucleic Acids, 31(3), 172-183.
Chichinadze, K. N., & Tkemaladze, D. V. (2008). Centrosomal hypothesis of cellular aging and differentiation. Advances in Gerontology= Uspekhi Gerontologii, 21(3), 367-371.
Clarke, P. R., & Zhang, C. (2008). Spatial and temporal coordination of mitosis by Ran GTPase. Nature Reviews Molecular Cell Biology, *9*(6), 464–477. https://doi.org/10.1038/nrm2410
Conduit, P. T., Wainman, A., & Raff, J. W. (2015). Centrosome function and assembly in animal cells. Nature Reviews Molecular Cell Biology, *16*(10), 611-624. https://doi.org/10.1038/nrm4062
Courtois, A., Schuh, M., Ellenberg, J., & Hiiragi, T. (2012). The transition from meiotic to mitotic spindle assembly is gradual during early mammalian development. The Journal of Cell Biology, *198*(3), 357–370. https://doi.org/10.1083/jcb.201202135
Cowles, M. W., Brown, D. D., Nisperos, S. V., Stanley, B. N., Pearson, B. J., & Zayas, R. M. (2013). Genome-wide analysis of the bHLH gene family in planarians identifies factors required for adult neurogenesis and neuronal regeneration. Development, *140*(23), 4691-4702. https://doi.org/10.1242/dev.098616
Dumont, J., & Desai, A. (2012). Acentrosomal spindle assembly and chromosome segregation during oocyte meiosis. Trends in Cell Biology, *22*(5), 241-249. https://doi.org/10.1016/j.tcb.2012.02.007
Elfettahi, A. . E., & Tkemaladze, J. (2025). The Neuro-Hepatic-Affective Model (NHAM): A Systems Framework for Liver–Brain Modulation of Emotion in Precision Psychiatry. Preprints. doi: https://doi.org/10.20944/preprints202508.1312.v1
Elliott, S. A., & Sánchez Alvarado, A. (2013). The history and enduring contributions of planarians to the study of animal regeneration. Wiley Interdisciplinary Reviews: Developmental Biology, *2*(3), 301-326. https://doi.org/10.1002/wdev.82
Gaglio, T., Saredi, A., & Compton, D. A. (1996). NuMA is required for the organization of microtubules into aster-like mitotic arrays. The Journal of Cell Biology, *131*(3), 693–708. https://doi.org/10.1083/jcb.131.3.693
Ganem, N. J., Godinho, S. A., & Pellman, D. (2009). A mechanism linking extra centrosomes to chromosomal instability. Nature, *460*(7252), 278–282. https://doi.org/10.1038/nature08136
Gentile, L., Cebrià, F., & Bartscherer, K. (2011). The planarian flatworm: an in vivo model for stem cell biology and nervous system regeneration. Disease Models & Mechanisms, *4*(1), 12-19. https://doi.org/10.1242/dmm.006692
Godinho, S. A., & Pellman, D. (2014). Causes and consequences of centrosome abnormalities in cancer. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, *369*(1650), 20130467. https://doi.org/10.1098/rstb.2013.0467
Gonzalez-Sastre, A., de Sousa, N., Adell, T., & Saló, E. (2017). The mystery of the regeneration of the planarian excretory system. Developmental Biology, *433*(2), 394-403. https://doi.org/10.1016/j.ydbio.2017.07.023
Grill, S. W., Gönczy, P., Stelzer, E. H., & Hyman, A. A. (2001). Polarity controls forces governing asymmetric spindle positioning in the Caenorhabditis elegans embryo. Nature, *409*(6820), 630–633. https://doi.org/10.1038/35054572
Gönczy, P. (2008). Mechanisms of asymmetric cell division: flies and worms pave the way. Nature Reviews Molecular Cell Biology, *9*(11), 855–868. https://doi.org/10.1038/nrm2524
Heald, R., Tournebize, R., Blank, T., Sandaltzopoulos, R., Becker, P., Hyman, A., & Karsenti, E. (1996). Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature, *382*(6590), 420–425. https://doi.org/10.1038/382420a0
Holubcová, Z., Blayney, M., Elder, K., & Schuh, M. (2015). Human oocytes. Error-prone chromosome-mediated spindle assembly favors chromosome segregation defects in human oocytes. Science, *348*(6239), 1143-1147. https://doi.org/10.1126/science.aaa9529
Iismaa, S. E., Kaidonis, X., Nicks, A. M., Bogush, N., Kikuchi, K., Naqvi, N., Harvey, R. P., Husain, A., & Graham, R. M. (2018). Comparative regenerative mechanisms across different mammalian tissues. NPJ Regenerative Medicine, *3*, 6. https://doi.org/10.1038/s41536-018-0044-5
Jaba, T. (2022). Dasatinib and quercetin: short-term simultaneous administration yields senolytic effect in humans. Issues and Developments in Medicine and Medical Research Vol. 2, 22-31.
Juliano, C. E., Swartz, S. Z., & Wessel, G. M. (2011). A conserved germline multipotency program. Development, *138*(24), 5423-5433. https://doi.org/10.1242/dev.068049
Kipshidze, M., & Tkemaladze, J. (2023). Comparative Analysis of drugs that improve the Quality of Life and Life Expectancy. Junior Researchers, 1(1), 184–193. doi: https://doi.org/10.52340/2023.01.01.19
Kipshidze, M., & Tkemaladze, J. (2023). The planaria Schmidtea mediterranea as a model system for the study of stem cell biology. Junior Researchers, 1(1), 194–218. doi: https://doi.org/10.52340/2023.01.01.20
Kipshidze, M., & Tkemaladze, J. (2024). Abastumani Resort: Balneological Heritage and Modern Potential. Junior Researchers, 2(2), 126–134. doi: https://doi.org/10.52340/jr.2024.02.02.12
Kipshidze, M., & Tkemaladze, J. (2024). Balneology in Georgia: traditions and modern situation. Junior Researchers, 2(2), 78–97. doi: https://doi.org/10.52340/jr.2024.02.02.09
Kipshidze, M., & Tkemaladze, J. (2024). Microelementoses - history and current status. Junior Researchers, 2(2), 108–125. doi: https://doi.org/10.52340/jr.2024.02.02.11
Knoblich, J. A. (2010). Asymmetric cell division: recent developments and their implications for tumour biology. Nature Reviews Molecular Cell Biology, *11*(12), 849–860. https://doi.org/10.1038/nrm3010
Kwon, M., Godinho, S. A., Chandhok, N. S., Ganem, N. J., Azioune, A., Thery, M., & Pellman, D. (2008). Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes & Development, *22*(16), 2189–2203. https://doi.org/10.1101/gad.1700908
Labbe, R. M., Irimia, M., Currie, K. W., Lin, A., Zhu, S. J., Brown, D. D., Ross, E. J., Voisin, V., Bader, G. D., Blencowe, B. J., & Pearson, B. J. (2012). A comparative transcriptomic analysis reveals conserved features of stem cell pluripotency in planarians and mammals. Stem Cells, *30*(8), 1734-1745. https://doi.org/10.1002/stem.1144
Levine, M. S., & Holland, A. J. (2018). The impact of mitotic errors on cell proliferation and tumorigenesis. Genes & Development, *32*(9-10), 620-638. https://doi.org/10.1101/gad.314351.118
Lezhava, T., Monaselidze, J., Jokhadze, T., Kakauridze, N., Khodeli, N., Rogava, M., Tkemaladze, J., ... & Gaiozishvili, M. (2011). Gerontology research in Georgia. Biogerontology, 12, 87-91. doi: 10.1007/s10522-010-9283-6. Epub 2010 May 18. PMID: 20480236; PMCID: PMC3063552
Loncarek, J., & Khodjakov, A. (2009). Ab ovo or de novo? Mechanisms of centriole duplication. Molecular Cells, *27*(2), 135–142. https://doi.org/10.1007/s10059-009-0017-z
Malumbres, M., & Barbacid, M. (2009). Cell cycle, CDKs and cancer: a changing paradigm. Nature Reviews Cancer, *9*(3), 153–166. https://doi.org/10.1038/nrc2602
Matsaberidze, M., Prangishvili, A., Gasitashvili, Z., Chichinadze, K., & Tkemaladze, J. (2017). TO TOPOLOGY OF ANTI-TERRORIST AND ANTI-CRIMINAL TECHNOLOGY FOR EDUCATIONAL PROGRAMS. International Journal of Terrorism & Political Hot Spots, 12.
McKim, K. S., & Hawley, R. S. (1995). Chromosomal control of meiotic cell division. Science, *270*(5242), 1595–1601. https://doi.org/10.1126/science.270.5242.1595
Merdes, A., Ramyar, K., Vechio, J. D., & Cleveland, D. W. (1996). A complex of NuMA and cytoplasmic dynein is essential for mitotic spindle assembly. Cell, *87*(3), 447–458. https://doi.org/10.1016/s0092-8674(00)81365-3
Meunier, S., & Vernos, I. (2012). Microtubule assembly during mitosis - from distinct origins to distinct functions? Journal of Cell Science, *125*(Pt 12), 2805–2814. https://doi.org/10.1242/jcs.092429
Morrison, S. J., & Kimble, J. (2006). Asymmetric and symmetric stem-cell divisions in development and cancer. Nature, *441*(7097), 1068–1074. https://doi.org/10.1038/nature04956
Mountain, V., Simerly, C., Howard, L., Ando, A., Schatten, G., & Compton, D. A. (1999). The kinesin-related protein, HSET, opposes the activity of Eg5 and cross-links microtubules in the mammalian mitotic spindle. The Journal of Cell Biology, *147*(2), 351–366. https://doi.org/10.1083/jcb.147.2.351
Musacchio, A., & Desai, A. (2017). A molecular view of kinetochore assembly and function. Biology, *6*(1), 5. https://doi.org/10.3390/biology6010005
Müller-Reichert, T., Rüthmann, M., Matos, I., & Ozlü, N. (2022). The ultrastructure of the mitotic spindle and its implications for chromosome segregation in planarian stem cells. Cells, *11*(10), 1603. https://doi.org/10.3390/cells11101603
Newmark, P. A., & Sánchez Alvarado, A. (2002). Not your father's planarian: a classic model enters the era of functional genomics. Nature Reviews Genetics, *3*(3), 210-219. https://doi.org/10.1038/nrg759
Nigg, E. A., & Holland, A. J. (2018). Once and only once: mechanisms of centriole duplication and their deregulation in disease. Nature Reviews Molecular Cell Biology, *19*(5), 297-312. https://doi.org/10.1038/nrm.2017.127
Nigg, E. A., & Raff, J. W. (2009). Centrioles, centrosomes, and cilia in health and disease. Cell, *139*(4), 663-678. https://doi.org/10.1016/j.cell.2009.10.036
Onal, P., Grün, D., Adamidi, C., Rybak, A., Solana, J., Mastrobuoni, G., Wang, Y., Rahn, H. P., Chen, W., Kempa, S., Ziebold, U., & Rajewsky, N. (2012). Gene expression of pluripotency determinants is conserved between mammalian and planarian stem cells. The EMBO Journal, *31*(12), 2755-2769. https://doi.org/10.1038/emboj.2012.110
Pearson, B. J., & Sánchez Alvarado, A. (2010). A planarian p53 homolog regulates proliferation and self-renewal in adult stem cell lineages. Development, *137*(2), 213-221. https://doi.org/10.1242/dev.044297
Petrovská, B., Černá, H., & Seifertová, D. (2014). From microtubule to the cell shape: the role of plant-specific microtubule-associated proteins in shaping plant cells. New Phytologist, *203*(1), 66–80. https://doi.org/10.1111/nph.12789
Plass, M., Solana, J., Wolf, F. A., Ayoub, S., Misios, A., Glažar, P., Obermayer, B., Theis, F. J., Kocks, C., & Rajewsky, N. (2018). Cell type atlas and lineage tree of a whole complex animal by single-cell transcriptomics. Science, *360*(6391), eaaq1723. https://doi.org/10.1126/science.aaq1723
Prangishvili, A., Gasitashvili, Z., Matsaberidze, M., Chkhartishvili, L., Chichinadze, K., Tkemaladze, J., ... & Azmaiparashvili, Z. (2019). SYSTEM COMPONENTS OF HEALTH AND INNOVATION FOR THE ORGANIZATION OF NANO-BIOMEDIC ECOSYSTEM TECHNOLOGICAL PLATFORM. Current Politics and Economics of Russia, Eastern and Central Europe, 34(2/3), 299-305.
Prosser, S. L., & Pelletier, L. (2017). Mitotic spindle assembly in animal cells: a fine balancing act. Nature Reviews Molecular Cell Biology, *18*(3), 187-201. https://doi.org/10.1038/nrm.2016.162
Reddien, P. W. (2018). The cellular and molecular basis for planarian regeneration. Cell, *175*(2), 327-345. https://doi.org/10.1016/j.cell.2018.09.021
Reddien, P. W., Bermange, A. L., Murfitt, K. J., Jennings, J. R., & Sánchez Alvarado, A. (2005). Identification of genes needed for regeneration, stem cell function, and tissue homeostasis by systematic gene perturbation in planaria. Developmental Cell, *8*(5), 635-649. https://doi.org/10.1016/j.devcel.2005.02.014
Rink, J. C., Gurley, K. A., Elliott, S. A., & Sánchez Alvarado, A. (2009). Planarian Hh signaling regulates regeneration polarity and links Hh pathway evolution to cilia. Science, *326*(5958), 1406-1410.
Schuh, M., & Ellenberg, J. (2007). Self-organization of MTOCs replaces centrosome function during acentrosomal spindle assembly in live mouse oocytes. Cell, *130*(3), 484–498. https://doi.org/10.1016/j.cell.2007.06.025
Shcherbik, N., Pestov, D. G., & Pearson, B. J. (2016). Planarian stem cells sense the identity of the missing pharynx to launch its targeted regeneration. eLife, *5*, e14140. https://doi.org/10.7554/eLife.14140
Tanenbaum, M. E., Macůrek, L., Janssen, A., Geers, E. F., Alvarez-Fernández, M., & Medema, R. H. (2008). Kif15 cooperates with eg5 to promote bipolar spindle assembly. Current Biology, *19*(20), 1703–1711. https://doi.org/10.1016/j.cub.2009.08.027
Tkemaladze, J. (2023). Cross-senolytic effects of dasatinib and quercetin in humans. Georgian Scientists, 5(3), 138–152. doi: https://doi.org/10.52340/2023.05.03.15
Tkemaladze, J. (2023). Is the selective accumulation of oldest centrioles in stem cells the main cause of organism ageing?. Georgian Scientists, 5(3), 216–235. doi: https://doi.org/10.52340/2023.05.03.22
Tkemaladze, J. (2023). Long-Term Differences between Regenerations of Head and Tail Fragments in Schmidtea Mediterranea Ciw4. Available at SSRN 4257823.
Tkemaladze, J. (2023). Reduction, proliferation, and differentiation defects of stem cells over time: a consequence of selective accumulation of old centrioles in the stem cells?. Molecular Biology Reports, 50(3), 2751-2761.
Tkemaladze, J. (2023). Structure and possible functions of centriolar RNA with reference to the centriolar hypothesis of differentiation and replicative senescence. Junior Researchers, 1(1), 156–170. doi: https://doi.org/10.52340/2023.01.01.17
Tkemaladze, J. (2023). The centriolar hypothesis of differentiation and replicative senescence. Junior Researchers, 1(1), 123–141. doi: https://doi.org/10.52340/2023.01.01.15
Tkemaladze, J. (2024). Absence of centrioles and regenerative potential of planaria. Georgian Scientists, 6(4), 59–75. doi: https://doi.org/10.52340/gs.2024.06.04.08
Tkemaladze, J. (2024). Cell center and the problem of accumulation of oldest centrioles in stem cells. Georgian Scientists, 6(2), 304–322. doi: https://doi.org/10.52340/gs.2024.06.02.32
Tkemaladze, J. (2024). Editorial: Molecular mechanism of ageing and therapeutic advances through targeting glycative and oxidative stress. Front Pharmacol. 2024 Mar 6;14:1324446. doi: 10.3389/fphar.2023.1324446. PMID: 38510429; PMCID: PMC10953819.
Tkemaladze, J. (2024). Elimination of centrioles. Georgian Scientists, 6(4), 291–307. doi: https://doi.org/10.52340/gs.2024.06.04.25
Tkemaladze, J. (2024). Main causes of intelligence decrease and prospects for treatment. Georgian Scientists, 6(2), 425–432. doi: https://doi.org/10.52340/gs.2024.06.02.44
Tkemaladze, J. (2024). The rate of stem cell division decreases with age. Georgian Scientists, 6(4), 228–242. doi: https://doi.org/10.52340/gs.2024.06.04.21
Tkemaladze, J. (2025).Achieving Perpetual Vitality Through Innovation. doi: http://dx.doi.org/10.13140/RG.2.2.31113.35685
Tkemaladze, J. (2025). Activated Wheat: The Power of Super Grains. Preprints. doi: https://doi.org/10.20944/preprints202508.1724.v1
Tkemaladze, J. (2025). Adaptive Cognitive System Ze. Longevity Horizon, 1(3). doi: https://doi.org/10.5281/zenodo.15309162
Tkemaladze, J. (2025). Adaptive Systems and World Models. doi: http://dx.doi.org/10.13140/RG.2.2.13617.90720
Tkemaladze, J. (2025). Aging Model - Drosophila Melanogaster. doi: http://dx.doi.org/10.13140/RG.2.2.16706.49607
Tkemaladze, J. (2025). Aging Model Based on Drosophila melanogaster: Mechanisms and Perspectives. Longevity Horizon, 1(3). doi: https://doi.org/10.5281/zenodo.14955643
Tkemaladze, J. (2025). Allotransplantation Between Adult Drosophila of Different Ages and Sexes. doi: http://dx.doi.org/10.13140/RG.2.2.27711.62884
Tkemaladze, J. (2025). Anatomy, Biogenesis, and Role in Cell Biology of Centrioles. Longevity Horizon, 1(2). doi: https://doi.org/10.5281/zenodo.14742232
Tkemaladze, J. (2025). A Novel Integrated Bioprocessing Strategy for the Manufacturing of Shelf-Stable, Nutritionally Upgraded Activated Wheat: Development of a Comprehensive Protocol, In-Depth Nutritional Characterization, and Evaluation of Biofunctional Properties. Longevity Horizon, 1(3). DOI:https://doi.org/10.5281/zenodo.16950787
Tkemaladze, J. (2025). Anti-Blastomic Substances in the Blood Plasma of Schizophrenia Patients. doi: http://dx.doi.org/10.13140/RG.2.2.12721.08807
Tkemaladze, J. (2025). Anti-Blastomic Substances in the Plasma of Schizophrenia Patients: A Dual Role of Complement C4 in Synaptic Pruning and Tumor Suppression. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.15042448
Tkemaladze, J. (2025). Asymmetry in the Inheritance of Centrosomes / Centrioles and Its Consequences. Longevity Horizon, 1(2). doi: https://doi.org/10.5281/zenodo.14837352
Tkemaladze, J. (2025). A Universal Approach to Curing All Diseases: From Theoretical Foundations to the Prospects of Applying Modern Biotechnologies in Future Medicine. doi: http://dx.doi.org/10.13140/RG.2.2.24481.11366
Tkemaladze, J. (2025). Centriole Elimination: A Mechanism for Resetting Entropy in the Cell. Longevity Horizon, 1(2). doi: https://doi.org/10.5281/zenodo.14876013
Tkemaladze, J. (2025). Centriole Elimination as a Mechanism for Restoring Cellular Order. doi: http://dx.doi.org/10.13140/RG.2.2.12890.66248/1
Tkemaladze, J. (2025). Concept to The Alive Language. Longevity Horizon, 1(1). doi: https://doi.org/10.5281/zenodo.14688792
Tkemaladze, J. (2025). Concept to The Caucasian Bridge. Longevity Horizon, 1(1). doi: https://doi.org/10.5281/zenodo.14689276
Tkemaladze, J. (2025). Concept to The Curing All Diseases. Longevity Horizon, 1(1). doi: https://doi.org/10.5281/zenodo.14676208
Tkemaladze, J. (2025). Concept to The Eternal Youth. Longevity Horizon, 1(1). doi: https://doi.org/10.5281/zenodo.14681902
Tkemaladze, J. (2025). Concept to The Food Security. Longevity Horizon, 1(1). doi: https://doi.org/10.5281/zenodo.14642407
Tkemaladze, J. (2025). Concept to the Living Space. Longevity Horizon, 1(1). doi: https://doi.org/10.5281/zenodo.14635991
Tkemaladze, J. (2025). Concept to The Restoring Dogmas. Longevity Horizon, 1(1). doi: https://doi.org/10.5281/zenodo.14708980
Tkemaladze, J. (2025). Differentiation of Somatic Cells in Multicellular Organisms. Longevity Horizon, 1(2). doi: https://doi.org/10.5281/10.5281/zenodo.14778927
Tkemaladze, J. (2025). Hypotheses on the Role of Centrioles in Aging Processes. doi: http://dx.doi.org/10.13140/RG.2.2.15014.02887/1
Tkemaladze, J. (2025). Induction of germline-like cells (PGCLCs). Longevity Horizon, 1(3). doi: https://doi.org/10.5281/zenodo.16414775
Tkemaladze, J. (2025). Limits of Cellular Division: The Hayflick Phenomenon. doi: http://dx.doi.org/10.13140/RG.2.2.25803.30249
Tkemaladze, J. (2025). Long-Lived Non-Renewable Structures in the Human Body. doi: http://dx.doi.org/10.13140/RG.2.2.14826.43206
Tkemaladze, J. (2025). Mechanisms of Learning Through the Actualization of Discrepancies. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.15200612
Tkemaladze, J. (2025). Memorizing an Infinite Stream of Information in a Limited.
Tkemaladze, J. (2025). Memorizing an Infinite Stream of Information in a Limited Memory Space: The Ze Method of a Plastic Counter of Chronotropic Number Frequencies. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.15170931
Tkemaladze, J. (2025). Molecular Insights and Radical Longevity from Ancient Elixirs to Mars Colonies. Longevity Horizon, 1(2). doi: https://doi.org/10.5281/zenodo.14895222
Tkemaladze, J. (2025). Molecular Mechanisms of Aging and Modern Life Extension Strategies: From Antiquity to Mars Colonization. doi: http://dx.doi.org/10.13140/RG.2.2.13208.51204
Tkemaladze, J. (2025). Ontogenetic Permanence of Non-Renewable Biomechanical Configurations in Homo Sapiens Anatomy. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.15086387
Tkemaladze, J. (2025). Pathways of Somatic Cell Specialization in Multicellular Organisms. doi: http://dx.doi.org/10.13140/RG.2.2.23348.97929/1
Tkemaladze, J. (2025). Protocol for Transplantation of Healthy Cells Between Adult Drosophila of Different Ages and Sexes. Longevity Horizon, 1(2). doi: https://doi.org/10.5281/zenodo.14889948
Tkemaladze, J. (2025). Replicative Hayflick Limit. Longevity Horizon, 1(2). doi: https://doi.org/10.5281/zenodo.14752664
Tkemaladze, J. (2025). Solutions to the Living Space Problem to Overcome the Fear of Resurrection from the Dead. doi: http://dx.doi.org/10.13140/RG.2.2.34655.57768
Tkemaladze, J. (2025). Strategic Importance of the Caucasian Bridge and Global Power Rivalries. doi: http://dx.doi.org/10.13140/RG.2.2.19153.03680
Tkemaladze, J. (2025). Structure, Formation, and Functional Significance of Centrioles in Cellular Biology. doi: http://dx.doi.org/10.13140/RG.2.2.27441.70245/1
Tkemaladze, J. (2025). Systemic Resilience and Sustainable Nutritional Paradigms in Anthropogenic Ecosystems. doi: http://dx.doi.org/10.13140/RG.2.2.18943.32169/1
Tkemaladze, J. (2025). The Centriolar Theory of Differentiation Explains the Biological Meaning of the.
Tkemaladze, J. (2025). The Centriole Paradox in Planarian Biology: Why Acentriolar Stem Cells Divide and Centriolar Somatic Cells Do Not. Preprints. https://doi.org/10.20944/preprints202509.0382.v1
Tkemaladze, J. (2025). The Concept of Data-Driven Automated Governance. Georgian Scientists, 6(4), 399–410. doi: https://doi.org/10.52340/gs.2024.06.04.38
Tkemaladze, J. (2025). The Epistemological Reconfiguration and Transubstantial Reinterpretation of Eucharistic Practices Established by the Divine Figure of Jesus Christ in Relation to Theological Paradigms. doi: http://dx.doi.org/10.13140/RG.2.2.28347.73769/1
Tkemaladze, J. (2025). The Stage of Differentiation Into Mature Gametes During Gametogenesis in Vitro. Longevity Horizon, 1(3). doi: https://doi.org/10.5281/zenodo.16808827
Tkemaladze, J. (2025). The Tkemaladze Method: A Modernized Caucasian Technology for the Production of Shelf-Stable Activated Wheat with Enhanced Nutritional Properties. Longevity Horizon, 1(3). doi: https://doi.org/10.5281/zenodo.16905079
Tkemaladze, J. (2025). Through In Vitro Gametogenesis — Young Stem Cells. Longevity Horizon, 1(3). doi:https://doi.org/10.5281/zenodo.15847116
Tkemaladze, J. (2025). Transforming the psyche with phoneme frequencies "Habere aliam linguam est possidere secundam animam". doi: http://dx.doi.org/10.13140/RG.2.2.16105.61286
Tkemaladze, J. (2025). Uneven Centrosome Inheritance and Its Impact on Cell Fate. doi: http://dx.doi.org/10.13140/RG.2.2.34917.31206
Tkemaladze, J. (2025). Voynich Manuscript Decryption: A Novel Compression-Based Hypothesis and Computational Framework. Preprints. https://doi.org/10.20944/preprints202509.0403.v1
Tkemaladze, J. (2025). Ze World Model with Predicate Actualization and Filtering. doi: http://dx.doi.org/10.13140/RG.2.2.15218.62407
Tkemaladze, J. (2025). Ze метод создания пластичного счетчика хронотропных частот чисел бесконечного потока информации. doi: http://dx.doi.org/10.13140/RG.2.2.29162.43207
Tkemaladze, J. (2025). Гаметогенез In Vitro: современное состояние, технологии и перспективы применения. Research Gate. http://dx.doi.org/10.13140/RG.2.2.28647.36000
Tkemaladze, J., & Apkhazava, D. (2019). Dasatinib and quercetin: short-term simultaneous administration improves physical capacity in human. J Biomedical Sci, 8(3), 3.
Tkemaladze, J., & Chichinadze, K. (2005). Potential role of centrioles in determining the morphogenetic status of animal somatic cells. Cell biology international, 29(5), 370-374.
Tkemaladze, J., & Chichinadze, K. (2010). Centriole, differentiation, and senescence. Rejuvenation research, 13(2-3), 339-342.
Tkemaladze, J., & Gakely, G. (2025). A Novel Biotechnological Approach for the Production of Shelf-Stable, Nutritionally Enhanced Activated Wheat: Protocol Development, Nutritional Profiling, and Bioactivity Assessment. Preprints. https://doi.org/10.20944/preprints202508.1997.v1
Tkemaladze, J., & Samanishvili, T. (2024). Mineral ice cream improves recovery of muscle functions after exercise. Georgian Scientists, 6(2), 36–50. doi: https://doi.org/10.52340/gs.2024.06.02.04
Tkemaladze, J., Tavartkiladze, A., & Chichinadze, K. (2012). Programming and Implementation of Age-Related Changes. In Senescence. IntechOpen.
Tkemaladze, J. V., & Chichinadze, K. N. (2005). Centriolar mechanisms of differentiation and replicative aging of higher animal cells. Biochemistry (Moscow), 70, 1288-1303.
Tkemaladze, Jaba and Kipshidze, Mariam, Regeneration Potential of the Schmidtea Mediterranea CIW4 Planarian. Available at SSRN: https://ssrn.com/abstract=4633202 or http://dx.doi.org/10.2139/ssrn.4633202
Vander Heiden, M. G., Cantley, L. C., & Thompson, C. B. (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, *324*(5930), 1029–1033. https://doi.org/10.1126/science.1160809
van Wolfswinkel, J. C., Wagner, D. E., & Reddien, P. W. (2014). Single-cell analysis reveals functionally distinct classes within the planarian stem cell compartment. Cell Stem Cell, *15*(3), 326-339. https://doi.org/10.1016/j.stem.2014.06.007
Venkei, Z. G., & Yamashita, Y. M. (2018). The centrosome orientation checkpoint is germline stem cell specific and operates prior to the spindle assembly checkpoint in Drosophila testis. Development, *145*(14), dev162511. https://doi.org/10.1242/dev.162511
Vertii, A., Hehnly, H., & Doxsey, S. (2016). The centrosome, a multitalented renaissance organelle. Cold Spring Harbor Perspectives in Biology, *8*(12), a025049. https://doi.org/10.1101/cshperspect.a025049
Vladar, E. K., & Brody, S. L. (2013). Analysis of ciliogenesis in primary culture mouse tracheal epithelial cells. Methods in Enzymology, *525*, 285–309. https://doi.org/10.1016/B978-0-12-397944-5.00014-6
Wagner, D. E., Wang, I. E., & Reddien, P. W. (2011). Clonogenic neoblasts are pluripotent adult stem cells that underlie planarian regeneration. Science, *332*(6031), 811-816. https://doi.org/10.1126/science.1203983
Walczak, C. E., Vernos, I., Mitchison, T. J., Karsenti, E., & Heald, R. (1998). A model for the proposed roles of different microtubule-based motor proteins in establishing spindle bipolarity. Current Biology, *8*(16), 903–913. https://doi.org/10.1016/s0960-9822(07)00370-3
Wenemoser, D., & Reddien, P. W. (2010). Planarian regeneration involves distinct stem cell responses to wounds and tissue absence. Developmental Biology, *344*(2), 979-991. https://doi.org/10.1016/j.ydbio.2010.06.017
Witchley, J. N., Mayer, M., Wagner, D. E., Owen, J. H., & Reddien, P. W. (2013). Muscle cells provide instructions for planarian regeneration. Cell Reports, *4*(4), 633-641. https://doi.org/10.1016/j.celrep.2013.07.022
Woodruff, J. B., Wueseke, O., & Hyman, A. A. (2014). Pericentriolar material structure and dynamics. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, *369*(1650), 20130459. https://doi.org/10.1098/rstb.2013.0459
Yamashita, Y. M., Mahowald, A. P., Perlin, J. R., & Fuller, M. T. (2007). Asymmetric inheritance of mother versus daughter centrosome in stem cell division. Science, *315*(5811), 518–521. https://doi.org/10.1126/science.1134910
Zayas, R. M., Hernández, A., Habermann, B., Wang, Y., Stary, J. M., & Newmark, P. A. (2005). The planarian Schmidtea mediterranea as a model for epigenetic germ cell specification: analysis of ESTs from the hermaphroditic strain. Proceedings of the National Academy of Sciences, *102*(51), 18491-18496. https://doi.org/10.1073/pnas.0509507102
Zhu, S. J., Hallows, S. E., Currie, K. W., Xu, C., & Pearson, B. J. (2015). A mex3 homolog is required for differentiation during planarian stem cell lineage development. eLife, *4*, e07025. https://doi.org/10.7554/eLife.07025
Прангишвили, А. И., Гаситашвили, З. А., Мацаберидзе, М. И., Чичинадзе, К. Н., Ткемаладзе, Д. В., & Азмайпарашвили, З. А. (2017). К топологии антитеррористических и антикриминальных технологии для образовательных программ. В научном издании представлены материалы Десятой международной научно-технической конфе-ренции «Управление развитием крупномасштабных систем (MLSD’2016)» по следующим направле-ниям:• Проблемы управления развитием крупномасштабных систем, включая ТНК, Госхолдин-ги и Гос-корпорации., 284.
Прангишвили, А. И., Гаситашвили, З. А., Мацаберидзе, М. И., Чхартишвили, Л. С., Чичинадзе, К. Н., & Ткемаладзе, Д. В. (2017). & Азмайпарашвили, ЗА (2017). Системные составляющие здравоохранения и инноваций для организации европейской нано-биомедицинской екосистемной технологической платформы. Управление развитием крупномасштабных систем MLSD, 365-368.
Ткемаладзе, Д. (2025). Анатомия, биогенез и роль в клеточной биологии центриолей. doi: http://dx. doi. org/10.13140. RG, 2(27441.70245), 1
Ткемаладзе, Д. (2025). Асимметрия в наследовании центросом/центриолей и ее последствия. doi: http://dx. doi. org/10.13140. RG, 2(34917.312), 06.
Ткемаладзе, Д. (2025). Гаметогенез in vitro (IVG) -Этап дифференцировки в зрелые гаметы. http://dx.doi.org/10.13140/RG.2.2.20429.96482
Ткемаладзе, Д. (2025). Дифференциация соматических клеток многоклеточных животных. doi: http://dx. doi. org/10.13140. RG, 2(23348.97929), 1.
Ткемаладзе, Д. (2025). Индукция примордиальных клеток, подобных зародышевым клеткам (PGCLCs) современные достижения, механизмы и перспективы применения. http://dx.doi.org/10.13140/RG.2.2.27152.32004
Ткемаладзе, Д. (2025). Репликативный Лимит Хейфлика. doi: http://dx. doi. org/10.13140. RG, 2(25803.302), 49.
Ткемаладзе, Д. (2025). Элиминация Центриолей: Механизм Обнуления Энтропии в Клетке. doi: http://dx. doi. org/10.13140. RG, 2(12890.66248), 1.
Ткемаладзе, Д., Цомаиа, Г., & Жоржолиани, И. (2001). Создание искусственных самоадаптирующихся систем на основе Теории Прогноза. Искусственный интеллект. УДК 004.89. Искусственный интеллект. УДК 004.89.
Ткемаладзе, Д. В., & Чичинадзе, К. Н. (2005). Центриолярные механизмы дифференцировки и репликативного старения клеток высших животных. Биохимия, 70(11), 1566-1584.
Чичинадзе, К., Ткемаладзе, Д., & Лазарашвили, А. (2012). Новый класс рнк и центросомная гипотеза старения клеток. Успехи геронтологии, 25(1), 23-28.
Чичинадзе, К. Н., & Ткемаладзе, Д. В. (2008). Центросомная гипотеза клеточного старения и дифференциации. Успехи геронтологии, 21(3), 367-371.
