Induction of de novo centriole biogenesis in planarian stem cells

Main Article Content

Jaba Tkemaladze
Gabro Gakely

Abstract

The centriole is a fundamental organelle templating cilia formation and ensuring genomic stability. While most cells assemble centrioles using a pre-existing mother as a template, the de novo pathway allows for assembly in their absence. However, the physiological role and regulation of de novo biogenesis in vivo remain poorly understood. The planarian Schmidtea mediterranea, with its abundant somatic stem cells (neoblasts) and dependence on a massive ciliated epithelium for locomotion, presents a unique model to address this gap. We demonstrate that quiescent neoblasts are acentriolar, lacking the templates for canonical duplication. Upon tissue injury, neoblasts are activated and initiate a programmed de novo centriole biogenesis pathway. Super-resolution microscopy and transmission electron microscopy reveal the formation of cytoplasmic procentriolar foci and mature centrioles, independent of any parental structure. Crucially, genetic ablation of Sas-6 or pharmacological inhibition of PLK4—interventions that effectively block the canonical pathway—fail to prevent the formation of new centrioles and functional basal bodies in the regenerating ciliated epithelium. This work provides the first in vivo evidence in a whole organism for an induced de novo centriole biogenesis pathway in adult somatic stem cells. We propose this pathway is a key evolutionary adaptation, enabling rapid, large-scale ciliogenesis essential for planarian regeneration, and represents a distinct, genetically regulated program separable from canonical duplication.

Article Details

Section

Research Article

Author Biographies

Jaba Tkemaladze, Longevity Clinic

A physician-scientist specializing in the biology of ageing and longevity. His research focuses on the potential of stem cell therapies for age-related diseases and healthspan extension.

Current Roles:

  • President, Longevity Alliance Georgia.
  • Head of Department, Longevity Clinic, Inc., Georgia.

Research Focus:
His main research is related to the study of methodologies for returning the regeneration rate to the indicators of 12-24 years, in particular with the potential application of the technology of producing young safe stem cells from one's own somatic cells. His theoretical works include the development of the Centriolar Theory of Differentiation and the Centriolar Theory of Organismal Aging, which suggest the role of centrioles in the aging and development of cells and tissues.

Background:
Dr. Tkemaladze received his medical education at the Tbilisi State Medical University and continued his research in the laboratories of the Institute of Morphology and the Research Institute of Psychiatry. In his work, he uses a combined approach, combining experimental and computational methods, to study the aging process and develop treatments for age-related diseases.

Service and Recognition:
He has served on scientific advisory boards, including for the Georgian Ministry of Defense and the Longevity Alliance. He is the author of over 100 scientific publications and has been an invited speaker at numerous national and international conferences.

Gabro Gakely, Longevity Clinic

Research and Development Division, Longevity Clinic, Inc, Georgia

How to Cite

Tkemaladze, J., & Gakely, G. (2025). Induction of de novo centriole biogenesis in planarian stem cells. Longevity Horizon, 1(4). DOI:https://doi.org/10.5281/zenodo.17283229

References

Al Jord, A., Lemaitre, A. I., Delgehyr, N., Faucourt, M., Spassky, N., & Meunier, A. (2017). Centriole amplification by mother and daughter centrioles differs in multiciliated cells. Nature, 547(7664), 561–564. https://doi.org/10.1038/nature23067

Azimzadeh, J., Wong, M. L., Downhour, D. M., Sánchez Alvarado, A., & Marshall, W. F. (2012). Centrosome loss in the evolution of planarians. Science, 335(6067), 461–463. https://doi.org/10.1126/science.1214457

Bazzi, H., & Anderson, K. V. (2014). Acentriolar mitosis activates a p53-dependent apoptosis pathway in the mouse embryo. Proceedings of the National Academy of Sciences, 111(15), E1491–E1500. https://doi.org/10.1073/pnas.1400568111

Bettencourt-Dias, M., Rodrigues-Martins, A., Carpenter, L., Riparbelli, M., Lehmann, L., Gatt, M. K., Carmo, N., Balloux, F., Callaini, G., & Glover, D. M. (2005). SAK/PLK4 is required for centriole duplication and flagella development. Current Biology, 15(24), 2199–2207. https://doi.org/10.1016/j.cub.2005.11.042

Bornens, M. (2012). The centrosome in cells and organisms. Science, 335(6067), 422–426. https://doi.org/10.1126/science.1209037

Conduit, P. T., Wainman, A., & Raff, J. W. (2015). Centrosome function and assembly in animal cells. Nature Reviews Molecular Cell Biology, 16(10), 611–624. https://doi.org/10.1038/nrm4062

Currie, K. W., & Pearson, B. J. (2013). Transcription factors lhx1/5-1 and pitx are required for the maintenance and regeneration of serotonergic neurons in planarians. Development, 140(17), 3577–3588. https://doi.org/10.1242/dev.098590

Fincher, C. T., Wurtzel, O., de Hoog, T., Kravarik, K. M., & Reddien, P. W. (2018). Cell type transcriptome atlas for the planarian Schmidtea mediterranea. Science, 360(6391), eaaq1736. https://doi.org/10.1126/science.aaq1736

Fong, C. S., Mazo, G., Das, T., Goodman, J., Kim, M., O'Rourke, B. P., Izquierdo, D., & Tsou, M. F. (2016). 53BP1 and USP28 mediate p53-dependent cell cycle arrest in response to centrosome loss and prolonged mitosis. eLife, 5, e16270. https://doi.org/10.7554/eLife.16270

Forsthoefel, D. J., James, N. P., Escobar, D. J., Stary, J. M., Vieira, A. P., Waters, F. A., & Newmark, P. A. (2011). An RNAi screen reveals intestinal regulators of branching morphogenesis, differentiation, and stem cell proliferation in planarians. Developmental Cell, 23(4), 691–704. https://doi.org/10.1016/j.devcel.2011.08.008

Fu, J., Hagan, I. M., & Glover, D. M. (2015). The centrosome and its duplication cycle. Cold Spring Harbor Perspectives in Biology, 7(2), a015800. https://doi.org/10.1101/cshperspect.a015800

Gambarotto, D., Zwettler, F. U., Le Guennec, M., Schmidt-Cernohorska, M., Fortun, D., Borgers, S., Heine, J., Schloetel, J. G., Reuss, M., Unser, M., Boyden, E. S., Sauer, M., Hamel, V., & Guichard, P. (2019). Imaging cellular ultrastructures using expansion microscopy (U-ExM). Nature Methods, 16(1), 71–74. https://doi.org/10.1038/s41592-018-0238-1

Godinho, S. A., & Pellman, D. (2014). Causes and consequences of centrosome abnormalities in cancer. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1650), 20130467. https://doi.org/10.1098/rstb.2013.0467

Gönczy, P. (2012). Towards a molecular architecture of centriole assembly. Nature Reviews Molecular Cell Biology, 13(7), 425–435. https://doi.org/10.1038/nrm3373

Habedanck, R., Stierhof, Y. D., Wilkinson, C. J., & Nigg, E. A. (2005). The Polo kinase Plk4 functions in centriole duplication. Nature Cell Biology, 7(11), 1140–1146. https://doi.org/10.1038/ncb1320

Hayashi, T., Asami, M., Higuchi, S., Shibata, N., & Agata, K. (2006). Isolation of planarian X-ray-sensitive stem cells by fluorescence-activated cell sorting. Development, Growth & Differentiation, 48(6), 371–380. https://doi.org/10.1111/j.1440-169X.2006.00876.x

Hendzel, M. J., Wei, Y., Mancini, M. A., Van Hooser, A., Ranalli, T., Brinkley, B. R., Bazett-Jones, D. P., & Allis, C. D. (1997). Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma, 106(6), 348–360. https://doi.org/10.1007/s004120050256

Huang, B., Wang, W., Bates, M., & Zhuang, X. (2008). Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science, 319(5864), 810–813. https://doi.org/10.1126/science.1153529

Ishikawa, H., & Marshall, W. F. (2011). Ciliogenesis: building the cell's antenna. Nature Reviews Molecular Cell Biology, 12(4), 222–234. https://doi.org/10.1038/nrm3085

Jaba, T. (2022). Dasatinib and quercetin: short-term simultaneous administration yields senolytic effect in humans. Issues and Developments in Medicine and Medical Research Vol. 2, 22-31.

Khodjakov, A., Rieder, C. L., Sluder, G., Cassels, G., Sibon, O., & Wang, C. L. (2002). De novo formation of centrosomes in vertebrate cells arrested during S phase. Journal of Cell Biology, 158(7), 1171–1181. https://doi.org/10.1083/jcb.200205102

Kirkham, M., Müller-Reichert, T., O'Connell, K. F., & Gönczy, P. (2019). The centriole duplication cycle. Philosophical Transactions of the Royal Society B: Biological Sciences, 374(1779), 20180386. https://doi.org/10.1098/rstb.2018.0386

Kitagawa, D., Vakonakis, I., Olieric, N., Hilbert, M., Keller, D., Olieric, V., Bortfeld, M., Erat, M. C., Flückiger, I., Gönczy, P., & Steinmetz, M. O. (2011). Structural basis of the 9-fold symmetry of centrioles. Cell, 144(3), 364–375. https://doi.org/10.1016/j.cell.2011.01.008

Kleylein-Sohn, J., Westendorf, J., Le Clech, M., Habedanck, R., Stierhof, Y. D., & Nigg, E. A. (2007). Plk4-induced centriole biogenesis in human cells. Developmental Cell, 13(2), 190–202. https://doi.org/10.1016/j.devcel.2007.07.002

Mitchison, H. M., & Valente, E. M. (2017). Motile and non-motile cilia in human pathology: from function to phenotypes. The Journal of Pathology, 241(2), 294–309. https://doi.org/10.1002/path.4843

Müller-Reichert, T., & Verkade, P. (Eds.). (2012). Correlative Light and Electron Microscopy (Vol. 111). Academic Press.

Newmark, P. A., Reddien, P. W., Cebrià, F., & Sánchez Alvarado, A. (2003). Ingestion of bacterially expressed double-stranded RNA inhibits gene expression in planarians. Proceedings of the National Academy of Sciences, 100(suppl_1), 11861–11865. https://doi.org/10.1073/pnas.1834205100

Nigg, E. A., & Holland, A. J. (2018). Once and only once: mechanisms of centriole duplication and their deregulation in disease. Nature Reviews Molecular Cell Biology, 19(5), 297–312. https://doi.org/10.1038/nrm.2017.127

Petersen, C. P., & Reddien, P. W. (2009). Wnt signaling and the polarity of the primary body axis. Cell, 139(5), 1056–1068. https://doi.org/10.1016/j.cell.2009.11.035

Piperno, G., & Fuller, M. T. (1985). Monoclonal antibodies specific for an acetylated form of α-tubulin recognize the antigen in cilia and flagella from a variety of organisms. The Journal of Cell Biology, 101(6), 2085–2094. https://doi.org/10.1083/jcb.101.6.2085

Plass, M., Solana, J., Wolf, F. A., Ayoub, S., Misios, A., Glazar, P., Obermayer, B., Theis, F. J., Kocks, C., & Rajewsky, N. (2018). Cell type atlas and lineage tree of a whole complex animal by single-cell transcriptomics. Science, 360(6391), eaaq1723. https://doi.org/10.1126/science.aaq1723

Prosser, S. L., & Pelletier, L. (2017). Centriole assembly: A new player enters the game. Nature Cell Biology, 19(11), 1288–1290. https://doi.org/10.1038/ncb3637

Reddien, P. W. (2018). The cellular and molecular basis for planarian regeneration. Cell, 175(2), 327–345. https://doi.org/10.1016/j.cell.2018.09.021

Reddien, P. W., Oviedo, N. J., Jennings, J. R., Jenkin, J. C., & Sánchez Alvarado, A. (2005). SMEDWI-2 is a PIWI-like protein that regulates planarian stem cells. Science, 310(5752), 1327–1330. https://doi.org/10.1126/science.1116110

Reiter, J. F., & Leroux, M. R. (2017). Genes and molecular pathways underpinning ciliopathies. Nature Reviews Molecular Cell Biology, 18(9), 533–547. https://doi.org/10.1038/nrm.2017.60

Rink, J. C. (2013). Stem cell systems and regeneration in planaria. Development, Growth & Differentiation, 55(1), 41–51. https://doi.org/10.1111/dgd.12020

Rodrigues-Martins, A., Riparbelli, M., Callaini, G., Glover, D. M., & Bettencourt-Dias, M. (2007). Revisiting the role of the mother centriole in centriole biogenesis. Science, 316(5827), 1046–1050. https://doi.org/10.1126/science.1142950

Rouhana, L., Weiss, J. A., Forsthoefel, D. J., Lee, H., King, R. S., Inoue, T., Shibata, N., Agata, K., & Newmark, P. A. (2013). RNA interference by feeding in vitro-synthesized double-stranded RNA to planarians: methodology and dynamics. Developmental Dynamics, 242(6), 718–730. https://doi.org/10.1002/dvdy.23950

Rust, M. J., Bates, M., & Zhuang, X. (2006). Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods, 3(10), 793–796. https://doi.org/10.1038/nmeth929

Satir, P., & Christensen, S. T. (2007). Overview of structure and function of mammalian cilia. Annual Review of Physiology, 69, 377–400. https://doi.org/10.1146/annurev.physiol.69.040705.141236

Sorokin, S. P. (1968). Reconstructions of centriole formation and ciliogenesis in mammalian lungs. Journal of Cell Science, 3(2), 207–230. https://doi.org/10.1242/jcs.3.2.207

Strnad, P., Leidel, S., Vinogradova, T., Euteneuer, U., Khodjakov, A., & Gönczy, P. (2007). Regulated HsSAS-6 levels ensure formation of a single procentriole per centriole during the centrosome duplication cycle. Developmental Cell, 13(2), 203–213. https://doi.org/10.1016/j.devcel.2007.07.004

Tkemaladze, J. (2023). Reduction, proliferation, and differentiation defects of stem cells over time: a consequence of selective accumulation of old centrioles in the stem cells?. Molecular Biology Reports, 50(3), 2751-2761.

Tkemaladze, J. (2024). Editorial: Molecular mechanism of ageing and therapeutic advances through targeting glycative and oxidative stress. Front Pharmacol. 2024 Mar 6;14:1324446. doi : 10.3389/fphar.2023.1324446. PMID: 38510429; PMCID: PMC10953819.

Tkemaladze, J. (2025). Through In Vitro Gametogenesis—Young Stem Cells. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.15847116

Tkemaladze, J., & Gakely, G. (2025). Induction of de novo centriole biogenesis in planarian stem cells. Longevity Horizon, 1(4). doi : https://doi.org/10.5281/zenodo.17283229

Tkemaladze, J. (2025). The Tkemaladze Method maps cell lineage with mutant mitochondrial transfer. Longevity Horizon, 1(4). doi : https://doi.org/10.5281/zenodo.17236869

Tkemaladze, J. (2025). The Tkemaladze Method: Mapping Cell Lineage with Mutant Mitochondrial Transfer. Preprints. https://doi.org/10.20944/preprints202509.2586.v1

Tkemaladze, J. (2025). Voynich Manuscript Decryption: A Novel Compression-Based Hypothesis and Computational Framework. doi : https://doi.org/10.20944/preprints202509.0403.v1

Tkemaladze, J. (2025). The Centriole Paradox in Planarian Biology: Why Acentriolar Stem Cells Divide and Centriolar Somatic Cells Do Not. doi : https://doi.org/10.20944/preprints202509.0382.v1

Tkemaladze, J., Gakely, G., Gegelia, L., Papadopulo, I., Taktakidze, A., Metreveli, N., ... & Maglakelidze, U. (2025). Production of Functional Gametes from Somatic Cells of the Planarian Schmidtea Mediterranea Via in Vitro Gametogenesis. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.17131291

Tkemaladze, J. (2025). The Tkemaladze Method: A Modernized Caucasian Technology for the Production of Shelf-Stable Activated Wheat with Enhanced Nutritional Properties. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.16905079

Tkemaladze, J. (2025). Concept to the Living Space. Longevity Horizon, 1(1). doi : https://doi.org/10.5281/zenodo.14635991

Aphkhazava, D., Sulashvili, N., & Tkemaladze, J. (2025). Stem Cell Systems and Regeneration. Georgian Scientists, 7(1), 271–319. doi : https://doi.org/10.52340/gs.2025.07.01.26

Aphkhazava, D., Sulashvili, N., Maglakelidze, G., & Tkemaladze, J. (2025). Ageless Creatures: Molecular Insights into Organisms That Defy Aging. Georgian Scientists, 7(3), 346–396. doi : https://doi.org/10.52340/gs.2025.07.03.24

Chichinadze, K. N., & Tkemaladze, D. V. (2008). Centrosomal hypothesis of cellular aging and differentiation. Advances in Gerontology= Uspekhi Gerontologii, 21(3), 367-371.

Chichinadze, K., Lazarashvili, A., & Tkemaladze, J. (2013). RNA in centrosomes: structure and possible functions. Protoplasma, 250(1), 397-405.

Chichinadze, K., Tkemaladze, D., & Lazarashvili, A. (2012). New class of RNA and centrosomal hypothesis of cell aging. Advances in Gerontology= Uspekhi Gerontologii, 25(1), 23-28.

Chichinadze, K., Tkemaladze, J., & Lazarashvili, A. (2012). A new class of RNAs and the centrosomal hypothesis of cell aging. Advances in Gerontology, 2(4), 287-291.

Chichinadze, K., Tkemaladze, J., & Lazarashvili, A. (2012). Discovery of centrosomal RNA and centrosomal hypothesis of cellular ageing and differentiation. Nucleosides, Nucleotides and Nucleic Acids, 31(3), 172-183.

Elfettahi, A. E., & Tkemaladze, J.(2025). The Neuro-Hepatic-Affective Model (NHAM): A Systems Framework for Liver–Brain Modulation of Emotion in Precision Psychiatry. Preprints. doi : https://doi. org/10.20944/preprints202508, 1312, v1.

Kipshidze, M., & Tkemaladze, J. (2023). Comparative Analysis of drugs that improve the Quality of Life and Life Expectancy. Junior Researchers, 1(1), 184–193. doi : https://doi.org/10.52340/2023.01.01.19

Kipshidze, M., & Tkemaladze, J. (2023). The planaria Schmidtea mediterranea as a model system for the study of stem cell biology. Junior Researchers, 1(1), 194–218. doi : https://doi.org/10.52340/2023.01.01.20

Kipshidze, M., & Tkemaladze, J. (2024). Abastumani Resort: Balneological Heritage and Modern Potential. Junior Researchers, 2(2), 126–134. doi : https://doi.org/10.52340/jr.2024.02.02.12

Kipshidze, M., & Tkemaladze, J. (2024). Balneology in Georgia: traditions and modern situation. Junior Researchers, 2(2), 78–97. doi : https://doi.org/10.52340/jr.2024.02.02.09

Kipshidze, M., & Tkemaladze, J. (2024). Microelementoses-history and current status. Junior Researchers, 2(2), 108–125. doi : https://doi.org/10.52340/jr.2024.02.02.11

Lezhava, T., Monaselidze, J., Jokhadze, T., Kakauridze, N., Khodeli, N., Rogava, M., Tkemaladze, J., ... & Gaiozishvili, M. (2011). Gerontology research in Georgia. Biogerontology, 12, 87-91. doi : 10.1007/s10522-010-9283-6. Epub 2010 May 18. PMID: 20480236; PMCID: PMC3063552

Matsaberidze, M., Prangishvili, A., Gasitashvili, Z., Chichinadze, K., & Tkemaladze, J. (2017). TO TOPOLOGY OF ANTI-TERRORIST AND ANTI-CRIMINAL TECHNOLOGY FOR EDUCATIONAL PROGRAMS. International Journal of Terrorism & Political Hot Spots, 12.

Prangishvili, A., Gasitashvili, Z., Matsaberidze, M., Chkhartishvili, L., Chichinadze, K., Tkemaladze, J., ... & Azmaiparashvili, Z. (2019). SYSTEM COMPONENTS OF HEALTH AND INNOVATION FOR THE ORGANIZATION OF NANO-BIOMEDIC ECOSYSTEM TECHNOLOGICAL PLATFORM. Current Politics and Economics of Russia, Eastern and Central Europe, 34(2/3), 299-305.

Tkemaladze, J. (2023). Cross-senolytic effects of dasatinib and quercetin in humans. Georgian Scientists, 5(3), 138–152. doi : https://doi.org/10.52340/2023.05.03.15

Tkemaladze, J. (2023). Is the selective accumulation of oldest centrioles in stem cells the main cause of organism ageing?. Georgian Scientists, 5(3), 216–235. doi : https://doi.org/10.52340/2023.05.03.22

Tkemaladze, J. (2023). Long-Term Differences between Regenerations of Head and Tail Fragments in Schmidtea Mediterranea Ciw4. Available at SSRN 4257823.

Tkemaladze, J. (2023). Structure and possible functions of centriolar RNA with reference to the centriolar hypothesis of differentiation and replicative senescence. Junior Researchers, 1(1), 156–170. doi : https://doi.org/10.52340/2023.01.01.17

Tkemaladze, J. (2023). The centriolar hypothesis of differentiation and replicative senescence. Junior Researchers, 1(1), 123–141. doi : https://doi.org/10.52340/2023.01.01.15

Tkemaladze, J. (2024). Absence of centrioles and regenerative potential of planaria. Georgian Scientists, 6(4), 59–75. doi : https://doi.org/10.52340/gs.2024.06.04.08

Tkemaladze, J. (2024). Cell center and the problem of accumulation of oldest centrioles in stem cells. Georgian Scientists, 6(2), 304–322. doi : https://doi.org/10.52340/gs.2024.06.02.32

Tkemaladze, J. (2024). Elimination of centrioles. Georgian Scientists, 6(4), 291–307. doi : https://doi.org/10.52340/gs.2024.06.04.25

Tkemaladze, J. (2024). Main causes of intelligence decrease and prospects for treatment. Georgian Scientists, 6(2), 425–432. doi : https://doi.org/10.52340/gs.2024.06.02.44

Tkemaladze, J. (2024). The rate of stem cell division decreases with age. Georgian Scientists, 6(4), 228–242. doi : https://doi.org/10.52340/gs.2024.06.04.21

Tkemaladze, J. (2025). A Universal Approach to Curing All Diseases: From Theoretical Foundations to the Prospects of Applying Modern Biotechnologies in Future Medicine. doi : http://dx.doi.org/10.13140/RG.2.2.24481.11366

Tkemaladze, J. (2025). Adaptive Systems and World Models. doi : http://dx.doi.org/10.13140/RG.2.2.13617.90720

Tkemaladze, J. (2025). Allotransplantation Between Adult Drosophila of Different Ages and Sexes. doi : http://dx.doi.org/10.13140/RG.2.2.27711.62884

Tkemaladze, J. (2025). Anti-Blastomic Substances in the Blood Plasma of Schizophrenia Patients. doi : http://dx.doi.org/10.13140/RG.2.2.12721.08807

Tkemaladze, J. (2025). Centriole Elimination as a Mechanism for Restoring Cellular Order. doi : http://dx.doi.org/10.13140/RG.2.2.12890.66248/1

Tkemaladze, J. (2025). Hypotheses on the Role of Centrioles in Aging Processes. doi : http://dx.doi.org/10.13140/RG.2.2.15014.02887/1

Tkemaladze, J. (2025). Limits of Cellular Division: The Hayflick Phenomenon. doi : http://dx.doi.org/10.13140/RG.2.2.25803.30249

Tkemaladze, J. (2025). Molecular Mechanisms of Aging and Modern Life Extension Strategies: From Antiquity to Mars Colonization. doi : http://dx.doi.org/10.13140/RG.2.2.13208.51204

Tkemaladze, J. (2025). Pathways of Somatic Cell Specialization in Multicellular Organisms. doi : http://dx.doi.org/10.13140/RG.2.2.23348.97929/1

Tkemaladze, J. (2025). Strategic Importance of the Caucasian Bridge and Global Power Rivalries. doi : http://dx.doi.org/10.13140/RG.2.2.19153.03680

Tkemaladze, J. (2025). The Epistemological Reconfiguration and Transubstantial Reinterpretation of Eucharistic Practices Established by the Divine Figure of Jesus Christ in Relation to Theological Paradigms. doi : http://dx.doi.org/10.13140/RG.2.2.28347.73769/1

Tkemaladze, J. (2025). Transforming the psyche with phoneme frequencies "Habere aliam linguam est possidere secundam animam". doi : http://dx.doi.org/10.13140/RG.2.2.16105.61286

Tkemaladze, J. (2025). Uneven Centrosome Inheritance and Its Impact on Cell Fate. doi : http://dx.doi.org/10.13140/RG.2.2.34917.31206

Tkemaladze, J. (2025). Ze World Model with Predicate Actualization and Filtering. doi : http://dx.doi.org/10.13140/RG.2.2.15218.62407

Tkemaladze, J. (2025). Ze метод создания пластичного счетчика хронотропных частот чисел бесконечного потока информации. doi : http://dx.doi.org/10.13140/RG.2.2.29162.43207

Tkemaladze, J. (2025). A Novel Integrated Bioprocessing Strategy for the Manufacturing of Shelf-Stable, Nutritionally Upgraded Activated Wheat: Development of a Comprehensive Protocol, In-Depth Nutritional Characterization, and Evaluation of Biofunctional Properties. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.16950787

Tkemaladze, J. (2025). Achieving Perpetual Vitality Through Innovation. doi : http://dx.doi.org/10.13140/RG.2.2.31113.35685

Tkemaladze, J. (2025). Activated Wheat: The Power of Super Grains. Preprints. doi : https://doi.org/10.20944/preprints202508.1724.v1

Tkemaladze, J. (2025). Adaptive Cognitive System Ze. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.15309162

Tkemaladze, J. (2025). Aging Model Based on Drosophila melanogaster: Mechanisms and Perspectives. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.14955643

Tkemaladze, J. (2025). Aging Model-Drosophila Melanogaster. doi : http://dx.doi.org/10.13140/RG.2.2.16706.49607

Tkemaladze, J. (2025). An Interdisciplinary Study on the Causes of Antediluvian Longevity, the Postdiluvian Decline in Lifespan, and the Phenomenon of Job’s Life Extension. Preprints. doi : https://doi.org/10.20944/preprints202509.1476.v1

Tkemaladze, J. (2025). Anatomy, Biogenesis, and Role in Cell Biology of Centrioles. Longevity Horizon, 1(2). doi : https://doi.org/10.5281/zenodo.14742232

Tkemaladze, J. (2025). Anti-Blastomic Substances in the Plasma of Schizophrenia Patients: A Dual Role of Complement C4 in Synaptic Pruning and Tumor Suppression. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.15042448

Tkemaladze, J. (2025). Asymmetry in the Inheritance of Centrosomes/Centrioles and Its Consequences. Longevity Horizon, 1(2). doi : https://doi.org/10.5281/zenodo.14837352

Tkemaladze, J. (2025). Centriole Elimination: A Mechanism for Resetting Entropy in the Cell. Longevity Horizon, 1(2). doi : https://doi.org/10.5281/zenodo.14876013

Tkemaladze, J. (2025). Concept to The Alive Language. Longevity Horizon, 1(1). doi : https://doi.org/10.5281/zenodo.14688792

Tkemaladze, J. (2025). Concept to The Caucasian Bridge. Longevity Horizon, 1(1). doi : https://doi.org/10.5281/zenodo.14689276

Tkemaladze, J. (2025). Concept to The Curing All Diseases. Longevity Horizon, 1(1). doi : https://doi.org/10.5281/zenodo.14676208

Tkemaladze, J. (2025). Concept to The Eternal Youth. Longevity Horizon, 1(1). doi : https://doi.org/10.5281/zenodo.14681902

Tkemaladze, J. (2025). Concept to The Food Security. Longevity Horizon, 1(1). doi : https://doi.org/10.5281/zenodo.14642407

Tkemaladze, J. (2025). Concept to The Restoring Dogmas. Longevity Horizon, 1(1). doi : https://doi.org/10.5281/zenodo.14708980

Tkemaladze, J. (2025). Differentiation of Somatic Cells in Multicellular Organisms. Longevity Horizon, 1(2). doi : https://doi.org/10.5281/10.5281/zenodo.14778927

Tkemaladze, J. (2025). Direct Reprogramming of Somatic Cells to Functional Gametes in Planarians via a Novel In Vitro Gametogenesis Protocol. Preprints. doi : https://doi.org/10.20944/preprints202509.1071.v1

Tkemaladze, J. (2025). Induction of germline-like cells (PGCLCs). Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.16414775

Tkemaladze, J. (2025). Long-Lived Non-Renewable Structures in the Human Body. doi : http://dx.doi.org/10.13140/RG.2.2.14826.43206

Tkemaladze, J. (2025). Mechanisms of Learning Through the Actualization of Discrepancies. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.15200612

Tkemaladze, J. (2025). Memorizing an Infinite Stream of Information in a Limited Memory Space: The Ze Method of a Plastic Counter of Chronotropic Number Frequencies. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.15170931

Tkemaladze, J. (2025). Molecular Insights and Radical Longevity from Ancient Elixirs to Mars Colonies. Longevity Horizon, 1(2). doi : https://doi.org/10.5281/zenodo.14895222

Tkemaladze, J. (2025). Ontogenetic Permanence of Non-Renewable Biomechanical Configurations in Homo Sapiens Anatomy. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.15086387

Tkemaladze, J. (2025). Protocol for Transplantation of Healthy Cells Between Adult Drosophila of Different Ages and Sexes. Longevity Horizon, 1(2). doi : https://doi.org/10.5281/zenodo.14889948

Tkemaladze, J. (2025). Replicative Hayflick Limit. Longevity Horizon, 1(2). doi : https://doi.org/10.5281/zenodo.14752664

Tkemaladze, J. (2025). Solutions to the Living Space Problem to Overcome the Fear of Resurrection from the Dead. doi : http://dx.doi.org/10.13140/RG.2.2.34655.57768

Tkemaladze, J. (2025). The Centriolar Theory of Differentiation Explains the Biological Meaning of the.

Tkemaladze, J. (2025). The Concept of Data-Driven Automated Governance. Georgian Scientists, 6(4), 399–410. doi : https://doi.org/10.52340/gs.2024.06.04.38

Tkemaladze, J. (2025). The Stage of Differentiation Into Mature Gametes During Gametogenesis in Vitro. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.16808827

Tkemaladze, J. (2025). Theory of Lifespan Decline. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.17142909

Tkemaladze, J. (2025). Unlocking the Voynich Cipher via the New Algorithmic Coding Hypothesis. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.17054312

Tkemaladze, J. (2025). Why do planarian cells without centrioles divide and cells with centrioles do not divide?. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.17054142

Tkemaladze, J. (2025). Гаметогенез In Vitro: современное состояние, технологии и перспективы применения. Research Gate. doi : http://dx.doi.org/10.13140/RG.2.2.28647.36000

Tkemaladze, J. Systemic Resilience and Sustainable Nutritional Paradigms in Anthropogenic Ecosystems. doi : http://dx.doi.org/10.13140/RG.2.2.18943.32169/1

Tkemaladze, J. V., & Chichinadze, K. N. (2005). Centriolar mechanisms of differentiation and replicative aging of higher animal cells. Biochemistry (Moscow), 70, 1288-1303.

Tkemaladze, J., & Apkhazava, D. (2019). Dasatinib and quercetin: short-term simultaneous administration improves physical capacity in human. J Biomedical Sci, 8(3), 3.

Tkemaladze, J., & Chichinadze, K. (2005). Potential role of centrioles in determining the morphogenetic status of animal somatic cells. Cell biology international, 29(5), 370-374.

Tkemaladze, J., & Chichinadze, K. (2010). Centriole, differentiation, and senescence. Rejuvenation research, 13(2-3), 339-342.

Tkemaladze, J., & Gakely, G. (2025). A Novel Biotechnological Approach for the Production of Shelf-Stable, Nutritionally Enhanced Activated Wheat: Protocol Development, Nutritional Profiling, and Bioactivity Assessment. doi : https://doi.org/10.20944/preprints202508.1997.v1

Tkemaladze, J., & Samanishvili, T. (2024). Mineral ice cream improves recovery of muscle functions after exercise. Georgian Scientists, 6(2), 36–50. doi : https://doi.org/10.52340/gs.2024.06.02.04

Tkemaladze, J., Tavartkiladze, A., & Chichinadze, K. (2012). Programming and Implementation of Age-Related Changes. In Senescence. IntechOpen.

Tkemaladze, Jaba and Kipshidze, Mariam, Regeneration Potential of the Schmidtea Mediterranea CIW4 Planarian. Available at SSRN: https://ssrn.com/abstract=4633202 or http://dx.doi.org/10.2139/ssrn.4633202

van Breugel, M., Hirono, M., Andreeva, A., Yanagisawa, H. A., Yamaguchi, S., Nakazawa, Y., Morgner, N., Petrovich, M., Ebong, I. O., Robinson, C. V., Johnson, C. M., Veprintsev, D., & Zuber, B. (2011). Structures of SAS-6 suggest its organization in centrioles. Science, 331(6021), 1196–1199. https://doi.org/10.1126/science.1199325

Wenemoser, D., & Reddien, P. W. (2010). Planarian regeneration involves distinct stem cell responses to wounds and tissue absence. Developmental Biology, 344(2), 979–991. https://doi.org/10.1016/j.ydbio.2010.06.017

Winey, M., & O'Toole, E. (2014). Centriole structure. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1650), 20130457. https://doi.org/10.1098/rstb.2013.0457

Wong, Y. L., Anzola, J. V., Davis, R. L., Yoon, M., Motamedi, A., Kroll, A., Seo, C. P., Hsia, J. E., Kim, S. K., Mitchell, J. W., Mitchell, B. J., Desai, A., Gahman, T. C., Shiau, A. K., & Oegema, K. (2015). Reversible centriole depletion with an inhibitor of Polo-like kinase 4. Science, 348(6239), 1155–1160. https://doi.org/10.1126/science.aaa5111

Wurtzel, O., Cote, L. E., Poirier, A., Satija, R., Regev, A., & Reddien, P. W. (2015). A generic and cell-type-specific wound response precedes regeneration in planarians. Developmental Cell, 35(5), 632–645. https://doi.org/10.1016/j.devcel.2015.11.004

Zhao, H., Khan, Z., & West, S. C. (2021). The role of the deuterosome in centriole amplification. Journal of Cell Science, 134(15), jcs258897. https://doi.org/10.1242/jcs.258897

Zhu, S. J., Hallows, S. E., Currie, K. W., Xu, C., & Pearson, B. J. (2015). A mex3 homolog is required for differentiation during planarian stem cell lineage development. eLife, 4, e07025. https://doi.org/10.7554/eLife.07025

Прангишвили, А. И., Гаситашвили, З. А., Мацаберидзе, М. И., Чичинадзе, К. Н., Ткемаладзе, Д. В., & Азмайпарашвили, З. А. (2017). К топологии антитеррористических и антикриминальных технологии для образовательных программ. В научном издании представлены материалы Десятой международной научно-технической конфе-ренции «Управление развитием крупномасштабных систем (MLSD’2016)» по следующим направле-ниям:• Проблемы управления развитием крупномасштабных систем, включая ТНК, Госхолдин-ги и Гос-корпорации., 284.

Прангишвили, А. И., Гаситашвили, З. А., Мацаберидзе, М. И., Чхартишвили, Л. С., Чичинадзе, К. Н., & Ткемаладзе, Д. В. (2017). & Азмайпарашвили, ЗА (2017). Системные составляющие здравоохранения и инноваций для организации европейской нано-биомедицинской екосистемной технологической платформы. Управление развитием крупномасштабных систем MLSD, 365-368.

Ткемаладзе, Д. (2025). Асимметрия в наследовании центросом/центриолей и ее последствия. doi : http://dx.doi.org/110.13140/RG.2.2.34917.31206

Ткемаладзе, Д. (2025). Гаметогенез in vitro (IVG)-Этап дифференцировки в зрелые гаметы. doi : http://dx.doi.org/10.13140/RG.2.2.20429.96482

Ткемаладзе, Д. (2025). Дифференциация соматических клеток многоклеточных животных. doi : http://dx.doi.org/10.13140/RG.2.2.23348.97929/1

Ткемаладзе, Д. (2025). Индукция примордиальных клеток, подобных зародышевым клеткам (PGCLCs) современные достижения, механизмы и перспективы применения. doi : http://dx.doi.org/10.13140/RG.2.2.27152.32004

Ткемаладзе, Д. (2025). Репликативный Лимит Хейфлика. doi : http://dx.doi.org/10.13140/RG.2.2.25803.30249

Ткемаладзе, Д. (2025). Элиминация Центриолей: Механизм Обнуления Энтропии в Клетке. doi : http://dx. doi. org/10.13140/RG.2.2.12890.66248/1

Ткемаладзе, Д. В., & Чичинадзе, К. Н. (2005). Центриолярные механизмы дифференцировки и репликативного старения клеток высших животных. Биохимия, 70(11), 1566-1584.

Ткемаладзе, Д., Цомаиа, Г., & Жоржолиани, И. (2001). Создание искусственных самоадаптирующихся систем на основе Теории Прогноза. Искусственный интеллект. УДК 004.89. Искусственный интеллект. УДК 004.89.

Чичинадзе, К. Н., & Ткемаладзе, Д. В. (2008). Центросомная гипотеза клеточного старения и дифференциации. Успехи геронтологии, 21(3), 367-371.

Чичинадзе, К., Ткемаладзе, Д., & Лазарашвили, А. (2012). Новый класс рнк и центросомная гипотеза старения клеток. Успехи геронтологии, 25(1), 23-28