Strategic Timekeepers
DOI:
https://doi.org/10.65649/62kmtm81Keywords:
Centriole, Cellular Aging, Post-Translational Modifications, Stem Cell Fate, Asymmetric Division, Mitotic Spindle, Organismal SenescenceAbstract
For over a century, centrioles have been defined by their role as architects of the mitotic spindle. This review synthesizes contemporary evidence to propose a paradigm shift: centrioles are strategic timekeepers of the cell. They function not as simple clocks but as custodians of cellular time, encoding a history of divisions and stresses through accumulating post-translational modifications and proteomic changes. This molecular archive, stored on one of the cell's most stable structures, is subsequently interpreted by the cell via mechanical, signaling, and proteostatic pathways to dictate fundamental fate decisions—proliferation, differentiation, senescence, or apoptosis. This centriolar timekeeping function operates across a hierarchy, interacting with circadian oscillators, telomeric and epigenetic clocks, and crucially influencing organismal aging through its role in stem cell fate and asymmetric division. We develop an integrative "Centriolar Timeline" model, describing how the accrual of neutral (maturity) and pathological (damage) marks directs cellular trajectories. This model positions the centriole as a unique bio-physical interface that transforms linear chronological time into non-linear biological fate. Re-conceptualizing centrioles as central processors of temporal information has profound implications for understanding development, aging, and diseases like cancer, and suggests novel therapeutic avenues in regenerative medicine and gerontology aimed at modulating this deep-time cellular memory. The Centrosomal Ledger hypothesis is inherently untestable without omics-based approaches, as it posits that cellular memory is encoded not in single molecular markers but in distributed, multivariate structural states of the centrosome. Only system-level omics analyses can capture the weak yet coordinated molecular patterns, temporal integration, and state-dependent signatures required to render this model experimentally falsifiable
References
Bayless, B. A., Galati, D. F., & Pearson, C. G. (2016). Tetrahymena basal bodies as a model for ciliary organelle identity and inheritance. Cilia, 5, 22. https://doi.org/10.1186/s13630-016-0042-4 DOI: https://doi.org/10.1186/s13630-016-0022-8
Bazzi, H., & Anderson, K. V. (2014). Acentriolar mitosis activates a p53-dependent apoptosis pathway in the mouse embryo. Proceedings of the National Academy of Sciences, 111(15), E1491–E1500. https://doi.org/10.1073/pnas.1400568111 DOI: https://doi.org/10.1073/pnas.1400568111
Bornens, M. (2012). The centrosome in cells and organisms. Science, 335(6067), 422–426. https://doi.org/10.1126/science.1209037 DOI: https://doi.org/10.1126/science.1209037
Bré, M. H., Redeker, V., & Levilliers, N. (2021). Post-translational modifications of tubulin and microtubule stability in cilia and flagella. In The Cytoskeleton: Diverse Roles in Structure and Mechanism (pp. 47-70). Springer, Cham. https://doi.org/10.1007/978-3-030-75867-7_3 DOI: https://doi.org/10.1007/978-3-030-75867-7_3
Breslow, D. K., & Holland, A. J. (2019). Mechanism and regulation of centriole and cilium biogenesis. Annual Review of Biochemistry, 88, 691–724. https://doi.org/10.1146/annurev-biochem-013118-111153 DOI: https://doi.org/10.1146/annurev-biochem-013118-111153
Carvalho-Santos, Z., Azimzadeh, J., Pereira-Leal, J. B., & Bettencourt-Dias, M. (2011). Evolution: Tracing the origins of centrioles, cilia, and flagella. The Journal of Cell Biology, 194(2), 165–175. https://doi.org/10.1083/jcb.201011152 DOI: https://doi.org/10.1083/jcb.201011152
Conroy, P. C., Saladino, C., Dantas, T. J., Lalor, P., Dockery, P., & Morrison, C. G. (2022). Centrosome adaptation to DNA damage by 53BP1 recruitment facilitates error-free mitosis. Nature Communications, 13(1), 620. https://doi.org/10.1038/s41467-022-28227-6
Conroy, P. C., Saladino, C., Dantas, T. J., Lalor, P., Dockery, P., & Morrison, C. G. (2022). Centrosome adaptation to DNA damage by 53BP1 recruitment facilitates error-free mitosis. Nature Communications, 13(1), 620. https://doi.org/10.1038/s41467-022-28227-6 DOI: https://doi.org/10.1038/s41467-022-28227-6
Fishman, E. L., Jo, K., Nguyen, Q. P. H., Kong, D., Royfman, R., Cekic, A. R., ... & Avidor-Reiss, T. (2018). A novel atypical sperm centriole is functional during human fertilization. Nature Communications, 9(1), 2210. https://doi.org/10.1038/s41467-018-04678-8 DOI: https://doi.org/10.1038/s41467-018-04678-8
Fong, C. S., Mazo, G., Das, T., Goodman, J., Kim, M., O'Rourke, B. P., Izquierdo, D., & Tsou, M.-F. B. (2016). 53BP1 and USP28 mediate p53-dependent cell cycle arrest in response to centrosome loss and prolonged mitosis. eLife, 5, e16270. https://doi.org/10.7554/eLife.16270 DOI: https://doi.org/10.7554/eLife.16270
Gabriel, E., Ramani, A., Karow, U., Gottardo, M., Natarajan, K., Gooi, L. M., ... & Lancaster, M. A. (2021). Recent Zika virus isolates induce premature differentiation of neural progenitors in human brain organoids. Cell Stem Cell, 28(1), 30-40.e8. https://doi.org/10.1016/j.stem.2020.11.005 DOI: https://doi.org/10.1016/j.stem.2020.11.005
Geiger, H., de Haan, G., & Florian, M. C. (2013). The ageing haematopoietic stem cell compartment. Nature Reviews Immunology, 13(5), 376-389. https://doi.org/10.1038/nri3433
Geiger, H., de Haan, G., & Florian, M. C. (2013). The ageing haematopoietic stem cell compartment. Nature Reviews Immunology, 13(5), 376–389. https://doi.org/10.1038/nri3433 DOI: https://doi.org/10.1038/nri3433
Horvath, S. (2013). DNA methylation age of human tissues and cell types. Genome Biology, 14(10), R115. https://doi.org/10.1186/gb-2013-14-10-r115 DOI: https://doi.org/10.1186/gb-2013-14-10-r115
Jaba, T. (2022). Dasatinib and quercetin: short-term simultaneous administration yields senolytic effect in humans. Issues and Developments in Medicine and Medical Research Vol. 2, 22-31. DOI: https://doi.org/10.9734/bpi/idmmr/v2/15155D
Jakobsen, L., Vanselow, K., Skogs, M., Toyoda, Y., Lundberg, E., Poser, I., Falkenby, L. G., Bennetzen, M., Westendorf, J., Nigg, E. A., Uhlen, M., Hyman, A. A., & Andersen, J. S. (2011). Novel asymmetrically localizing components of human centrosomes identified by complementary proteomics methods. The EMBO Journal, 30(8), 1520–1535. https://doi.org/10.1038/emboj.2011.63 DOI: https://doi.org/10.1038/emboj.2011.63
Lomakin, A. J., Cattin, C. J., Cuvelier, D., Alraies, Z., Molina, M., Nader, G. P. F., Srivastava, N., Sáez, P. J., Garcia-Arcos, J. M., Zhitnyak, I. Y., Bhargava, A., Driscoll, M. K., Welf, E. S., Fiolka, R., Petrie, R. J., De Silva, N. S., Gonzalez-Granado, J. M., Manel, N., Lennon-Duménil, A. M., … Piel, M. (2015). The nucleus acts as a ruler tailoring cell responses to spatial constraints. Science, 348(6232), 560–563. https://doi.org/10.1126/science.aaa2029
Lynch, M., Field, M. C., & Goodson, H. V. (2021). Evolution of the cytoskeleton and motility systems. Cold Spring Harbor Perspectives in Biology, 13(12), a038323. https://doi.org/10.1101/cshperspect.a038323 DOI: https://doi.org/10.1101/cshperspect.a038323
Mahalingan, K. K., Keenan, E. K., Strickland, M., Li, Y., Liu, Y., Ball, H. L., Tanner, M. E., Tjandra, N., & Roll-Mecak, A. (2020). Structural basis for polyglutamate chain initiation and elongation by TTLL family enzymes. Nature Structural & Molecular Biology, 27(9), 802–813. https://doi.org/10.1038/s41594-020-0460-2
Mahalingan, K. K., Keenan, E. K., Strickland, M., Li, Y., Liu, Y., Ball, H. L., Tanner, M. E., Tjandra, N., & Roll-Mecak, A. (2020). Structural basis for polyglutamate chain initiation and elongation by TTLL family enzymes. Nature Structural & Molecular Biology, 27(9), 802–813. https://doi.org/10.1038/s41594-020-0460-2 DOI: https://doi.org/10.1038/s41594-020-0462-0
Marteil, G., Guerrero, A., Vieira, A. F., de Almeida, B. P., Machado, P., Mendonça, S., ... & Bettencourt-Dias, M. (2018). Over-elongation of centrioles in cancer promotes centriole amplification and mitotic defects. The EMBO Journal, 37(22), e100303. https://doi.org/10.15252/embj.2018100303
Marteil, G., Guerrero, A., Vieira, A. F., de Almeida, B. P., Machado, P., Mendonça, S., ... & Bettencourt-Dias, M. (2018). Over-elongation of centrioles in cancer promotes centriole amplification and mitotic defects. The EMBO Journal, 37(22), e100303. https://doi.org/10.15252/embj.2018100303
Marteil, G., Guerrero, A., Vieira, A. F., de Almeida, B. P., Machado, P., Mendonça, S., Mesquita, M., Villarreal, B., Fonseca, I., Francia, M. E., Dores, K., Martins, N. P., Jana, S. C., Tranfield, E. M., Barbosa-Morais, N. L., Paredes, J., Pellman, D., & Bettencourt-Dias, M. (2018). Over-elongation of centrioles in cancer promotes centriole amplification and mitotic defects. The EMBO Journal, 37(22), e100303. https://doi.org/10.15252/embj.2018100303
Marteil, G., Guerrero, A., Vieira, A. F., de Almeida, B. P., Machado, P., Mendonça, S., Mesquita, M., Villarreal, B., Fonseca, I., Francia, M. E., Dores, K., Martins, N. P., Jana, S. C., Tranfield, E. M., Barbosa-Morais, N. L., Paredes, J., Pellman, D., & Bettencourt-Dias, M. (2018). Over-elongation of centrioles in cancer promotes centriole amplification and mitotic defects. The EMBO Journal, 37(22), e100303. https://doi.org/10.15252/embj.2018100303 DOI: https://doi.org/10.1038/s41467-018-03641-x
Nigg, E. A., & Holland, A. J. (2018). Once and only once: mechanisms of centriole duplication and their deregulation in disease. Nature Reviews Molecular Cell Biology, 19(5), 297–312. https://doi.org/10.1038/nrm.2018.14
Nigg, E. A., & Holland, A. J. (2018). Once and only once: mechanisms of centriole duplication and their deregulation in disease. Nature Reviews Molecular Cell Biology, 19(5), 297-312. https://doi.org/10.1038/nrm.2018.14
Nigg, E. A., & Holland, A. J. (2018). Once and only once: mechanisms of centriole duplication and their deregulation in disease. Nature Reviews Molecular Cell Biology, 19(5), 297–312. https://doi.org/10.1038/nrm.2018.14 DOI: https://doi.org/10.1038/nrm.2017.127
Prosser, S. L., & Pelletier, L. (2017). Centriole assembly: A puzzle for the cell cycle. The Journal of Cell Biology, 216(12), 3847–3848. https://doi.org/10.1083/jcb.201709103
Rogowski, K., Juge, F., van Dijk, J., Wloga, D., Strub, J. M., Levilliers, N., Thomas, D., Bré, M. H., Van Dorsselaer, A., Gaertig, J., & Janke, C. (2009). A family of protein-deglutamylating enzymes associated with neurodegeneration. Cell, 138(2), 366–376. https://doi.org/10.1016/j.cell.2009.04.061 DOI: https://doi.org/10.1016/j.cell.2009.04.061
Sha, Y. W., Wang, X., Su, Z. Y., Li, L., Ding, L., Ji, Z. Y., ... & Mei, L. B. (2019). Centriole duplication and maturation in animal cells. In The Centrosome: Cell and Molecular Mechanisms of Functions and Dysfunctions in Disease (pp. 55-78). Springer, Cham. https://doi.org/10.1007/978-3-030-23173-6_4 DOI: https://doi.org/10.1007/978-3-030-23173-6_4
Tkemaladze, J. (2024). Editorial: Molecular mechanism of ageing and therapeutic advances through targeting glycative and oxidative stress. Front Pharmacol. 2024 Mar 6;14:1324446. DOI : 10.3389/fphar.2023.1324446. PMID: 38510429; PMCID: PMC10953819. DOI: https://doi.org/10.3389/fphar.2023.1324446
Tkemaladze, J. (2026). Old Centrioles Make Old Bodies. Annals of Rejuvenation Science, 1(1). DOI : https://doi.org/10.65649/yx9sn772
Tkemaladze, J. (2026). Visions of the Future. Longevity Horizon, 2(1). DOI : https://doi.org/10.65649/8be27s21 DOI: https://doi.org/10.65649/8be27s21
Tkemaladze, J. (2026). Ze System Manifesto. Longevity Horizon, 2(1). DOI : https://doi.org/10.65649/3hm9b025 DOI: https://doi.org/10.65649/3hm9b025
Venkei, Z. G., & Yamashita, Y. M. (2018). Emerging mechanisms of asymmetric stem cell division. The Journal of Cell Biology, 217(11), 3785-3795. https://doi.org/10.1083/jcb.201807037
Venkei, Z. G., & Yamashita, Y. M. (2018). Emerging mechanisms of asymmetric stem cell division. The Journal of Cell Biology, 217(11), 3785-3795. https://doi.org/10.1083/jcb.201807037
Venkei, Z. G., & Yamashita, Y. M. (2018). Emerging mechanisms of asymmetric stem cell division. The Journal of Cell Biology, 217(11), 3785–3795. https://doi.org/10.1083/jcb.201807037 DOI: https://doi.org/10.1083/jcb.201807037
Wang, W. J., Acehan, D., Kao, C. H., Jane, W. N., Uryu, K., & Tsou, M. F. B. (2021). The deubiquitinase USP33 regulates centrosome biogenesis via the SAS-6 protein. Journal of Cell Science, 134(2), jcs247155. https://doi.org/10.1242/jcs.247155
Wang, W. J., Acehan, D., Kao, C. H., Jane, W. N., Uryu, K., & Tsou, M. F. B. (2021). The deubiquitinase USP33 regulates centrosome biogenesis via the SAS-6 protein. Journal of Cell Science, 134(2), jcs247155. https://doi.org/10.1242/jcs.247155 DOI: https://doi.org/10.1242/jcs.247155
Wils, L., Rombauts, F., & van der Horst, G. T. J. (2021). The circadian clock and centrioles: Insights into the regulation of cell division. Seminars in Cell & Developmental Biology, 126, 78-84. https://doi.org/10.1016/j.semcdb.2021.04.023 DOI: https://doi.org/10.1016/j.semcdb.2021.04.023
Xu, Z., Schaedel, L., Portran, D., Aguilar, A., Gaillard, J., Marinkovich, M. P., Théry, M., & Nachury, M. V. (2017). Microtubules acquire resistance from mechanical breakage through intralumenal acetylation. Science, 356(6335), 328–332. https://doi.org/10.1126/science.aai8764
Xu, Z., Schaedel, L., Portran, D., Aguilar, A., Gaillard, J., Marinkovich, M. P., Théry, M., & Nachury, M. V. (2017). Microtubules acquire resistance from mechanical breakage through intralumenal acetylation. Science, 356(6335), 328–332. https://doi.org/10.1126/science.aai8764 DOI: https://doi.org/10.1126/science.aai8764
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Jaba Tkemaladze (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
