Centriole Elimination: A Mechanism for Resetting Entropy in the Cell
Main Article Content
Abstract
Centrioles are highly conserved organelles within the eukaryotic domain of life, playing an indispensable role in microtubule organization, cellular differentiation, and the formation of cilia and flagella. However, in the processes of oogenesis and spermatogenesis in certain organisms, centrioles undergo elimination, thereby preventing the transmission of either young or aged centrioles to the zygote, depending on the specific system of asymmetric division. The removal of centrioles in gametes can be interpreted as a mechanism of resetting cellular entropy and restoring totipotency, which is crucial for embryonic development. In somatic cells, centriole elimination is also observed during terminal differentiation, suggesting a potential connection to replicative aging. Research indicates that the programmed removal of centrioles is linked to degradation mechanisms involving microtubule breakdown and the ubiquitin-proteasome system. Centrioles are unique in the cellular architecture as they lack self-repair mechanisms, leading to the continuous accumulation of entropy, thereby contributing to cellular and organismal aging. Consequently, eliminating centrioles where they are no longer needed can be seen as a countermeasure against aging. Furthermore, centriole elimination plays a pivotal role in preventing centrosome-related pathologies, abnormal cell division, and possibly even oncogenesis. Investigating the mechanisms of centriole elimination opens promising avenues in biomedicine, including strategies for tissue rejuvenation and aging control.
Article Details
Issue
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Articles published in Longevity Horizon fall under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). This means authors retain their copyright while granting the journal the right to be the first publisher. Readers are permitted to share and distribute the work as long as proper credit is given. However, the content may not be altered, modified, or used for commercial purposes.
How to Cite
References
Avidor-Reiss, T., Carr, A., & Fishman, E. L. (2020). The sperm centrioles. Molecular and cellular endocrinology, 518, 110987. https://doi.org/10.1016/j.mce.2020.110987
Azimzadeh J. (2014). Exploring the evolutionary history of centrosomes. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 369(1650), 20130453. https://doi.org/10.1098/rstb.2013.0453
Balestra, F. R., Domínguez-Calvo, A., Wolf, B., Busso, C., Buff, A., Averink, T., Lipsanen-Nyman, M., Huertas, P., Ríos, R. M., & Gönczy, P. (2021). TRIM37 prevents formation of centriolar protein assemblies by regulating Centrobin. eLife, 10, e62640. https://doi.org/10.7554/eLife.62640
Balestra, F. R., Strnad, P., Flückiger, I., & Gönczy, P. (2013). Discovering regulators of centriole biogenesis through siRNA-based functional genomics in human cells. Developmental cell, 25(6), 555–571. https://doi.org/10.1016/j.devcel.2013.05.016
Balestra, F. R., von Tobel, L., & Gönczy, P. (2015). Paternally contributed centrioles exhibit exceptional persistence in C. elegans embryos. Cell research, 25(5), 642–644. https://doi.org/10.1038/cr.2015.49
Bayless, B. A., Giddings, T. H., Jr, Winey, M., & Pearson, C. G. (2012). Bld10/Cep135 stabilizes basal bodies to resist cilia-generated forces. Molecular biology of the cell, 23(24), 4820–4832. https://doi.org/10.1091/mbc.E12-08-0577
Becalska, A. N., & Gavis, E. R. (2009). Lighting up mRNA localization in Drosophila oogenesis. Development (Cambridge, England), 136(15), 2493–2503. https://doi.org/10.1242/dev.032391
Bedoui, S., Herold, M. J., & Strasser, A. (2020). Emerging connectivity of programmed cell death pathways and its physiological implications. Nature reviews. Molecular cell biology, 21(11), 678–695. https://doi.org/10.1038/s41580-020-0270-8
Bezler, A., & Gönczy, P. (2010). Mutual antagonism between the anaphase promoting complex and the spindle assembly checkpoint contributes to mitotic timing in Caenorhabditis elegans. Genetics, 186(4), 1271–1283. https://doi.org/10.1534/genetics.110.123133
Blachon, S., Khire, A., & Avidor-Reiss, T. (2014). The origin of the second centriole in the zygote of Drosophila melanogaster. Genetics, 197(1), 199–205. https://doi.org/10.1534/genetics.113.160523
Boag, P. R., Atalay, A., Robida, S., Reinke, V., & Blackwell, T. K. (2008). Protection of specific maternal messenger RNAs by the P body protein CGH-1 (Dhh1/RCK) during Caenorhabditis elegans oogenesis. The Journal of cell biology, 182(3), 543–557. https://doi.org/10.1083/jcb.200801183
Bobinnec, Y., Khodjakov, A., Mir, L. M., Rieder, C. L., Eddé, B., & Bornens, M. (1998). Centriole disassembly in vivo and its effect on centrosome structure and function in vertebrate cells. The Journal of cell biology, 143(6), 1575–1589. https://doi.org/10.1083/jcb.143.6.1575
Borrego-Pinto, J., Somogyi, K., Karreman, M. A., König, J., Müller-Reichert, T., Bettencourt-Dias, M., Gönczy, P., Schwab, Y., & Lénárt, P. (2016). Distinct mechanisms eliminate mother and daughter centrioles in meiosis of starfish oocytes. The Journal of cell biology, 212(7), 815–827. https://doi.org/10.1083/jcb.201510083
Boveri, T. (1887). Ueber den Antheil des Spermatozoon an der Theilung des Eies
Braun, D. A., & Hildebrandt, F. (2017). Ciliopathies. Cold Spring Harbor perspectives in biology, 9(3), a028191. https://doi.org/10.1101/cshperspect.a028191
Breslow, D. K., & Holland, A. J. (2019). Mechanism and Regulation of Centriole and Cilium Biogenesis. Annual review of biochemistry, 88, 691–724. https://doi.org/10.1146/annurev-biochem-013118-111153
Breslow, D. K., Hoogendoorn, S., Kopp, A. R., Morgens, D. W., Vu, B. K., Kennedy, M. C., Han, K., Li, A., Hess, G. T., Bassik, M. C., Chen, J. K., & Nachury, M. V. (2018). A CRISPR-based screen for Hedgehog signaling provides insights into ciliary function and ciliopathies. Nature genetics, 50(3), 460–471. https://doi.org/10.1038/s41588-018-0054-7
Buss, G., Stratton, M. B., Milenkovic, L., & Stearns, T. (2022). Postmitotic centriole disengagement and maturation leads to centrosome amplification in polyploid trophoblast giant cells. Molecular biology of the cell, 33(13), ar118. https://doi.org/10.1091/mbc.E22-05-0182
Carré, D., & Sardet, C. (1984). Fertilization and early development in Beroe ovata. Developmental biology, 105(1), 188–195. https://doi.org/10.1016/0012-1606(84)90274-4
Chang, T. B., Hsu, J. C., & Yang, T. T. (2023). Single-molecule localization microscopy reveals the ultrastructural constitution of distal appendages in expanded mammalian centrioles. Nature communications, 14(1), 1688. https://doi.org/10.1038/s41467-023-37342-x
Chichinadze, K. N., & Tkemaladze, D. V. (2008). Centrosomal hypothesis of cellular aging and differentiation. Advances in Gerontology= Uspekhi Gerontologii, 21(3), 367-371.
Chichinadze, K., Lazarashvili, A., & Tkemaladze, J. (2013). RNA in centrosomes: structure and possible functions. Protoplasma, 250(1), 397-405.
Chichinadze, K., Tkemaladze, D., & Lazarashvili, A. (2012). New class of RNA and centrosomal hypothesis of cell aging. Advances in Gerontology= Uspekhi Gerontologii, 25(1), 23-28.
Chichinadze, K., Tkemaladze, J., & Lazarashvili, A. (2012). A new class of RNAs and the centrosomal hypothesis of cell aging. Advances in Gerontology, 2(4), 287-291.
Chichinadze, K., Tkemaladze, J., & Lazarashvili, A. (2012). Discovery of centrosomal RNA and centrosomal hypothesis of cellular ageing and differentiation. Nucleosides, Nucleotides and Nucleic Acids, 31(3), 172-183.
Clift, D., McEwan, W. A., Labzin, L. I., Konieczny, V., Mogessie, B., James, L. C., & Schuh, M. (2017). A Method for the Acute and Rapid Degradation of Endogenous Proteins. Cell, 171(7), 1692–1706.e18. https://doi.org/10.1016/j.cell.2017.10.033
Conduit, P. T., & Raff, J. W. (2010). Cnn dynamics drive centrosome size asymmetry to ensure daughter centriole retention in Drosophila neuroblasts. Current biology : CB, 20(24), 2187–2192. https://doi.org/10.1016/j.cub.2010.11.055
Courtois, A., Schuh, M., Ellenberg, J., & Hiiragi, T. (2012). The transition from meiotic to mitotic spindle assembly is gradual during early mammalian development. The Journal of cell biology, 198(3), 357–370. https://doi.org/10.1083/jcb.201202135
Dirksen E. R. (1971). Centriole morphogenesis in developing ciliated epithelium of the mouse oviduct. The Journal of cell biology, 51(1), 286–302. https://doi.org/10.1083/jcb.51.1.286
Dutcher, S. K., Morrissette, N. S., Preble, A. M., Rackley, C., & Stanga, J. (2002). Epsilon-tubulin is an essential component of the centriole. Molecular biology of the cell, 13(11), 3859–3869. https://doi.org/10.1091/mbc.e02-04-0205
Fechter, J., Schöneberg, A., & Schatten, G. (1996). Excision and disassembly of sperm tail microtubules during sea urchin fertilization: requirements for microtubule dynamics. Cell motility and the cytoskeleton, 35(4), 281–288. https://doi.org/10.1002/(SICI)1097-0169(1996)35:4<281::AID-CM1>3.0.CO;2-A
Fishman, E. L., Jo, K., Nguyen, Q. P. H., Kong, D., Royfman, R., Cekic, A. R., Khanal, S., Miller, A. L., Simerly, C., Schatten, G., Loncarek, J., Mennella, V., & Avidor-Reiss, T. (2018). A novel atypical sperm centriole is functional during human fertilization. Nature communications, 9(1), 2210. https://doi.org/10.1038/s41467-018-04678-8
Fritz-Laylin, L. K., & Fulton, C. (2016). Naegleria: a classic model for de novo basal body assembly. Cilia, 5, 10. https://doi.org/10.1186/s13630-016-0032-6
Fujita, H., Yoshino, Y., & Chiba, N. (2015). Regulation of the centrosome cycle. Molecular & cellular oncology, 3(2), e1075643. https://doi.org/10.1080/23723556.2015.1075643
Gomes Pereira, S., Dias Louro, M. A., & Bettencourt-Dias, M. (2021). Biophysical and Quantitative Principles of Centrosome Biogenesis and Structure. Annual review of cell and developmental biology, 37, 43–63. https://doi.org/10.1146/annurev-cellbio-120219-051400
Gomes Pereira, S., Sousa, A. L., Nabais, C., Paixão, T., Holmes, A. J., Schorb, M., Goshima, G., Tranfield, E. M., Becker, J. D., & Bettencourt-Dias, M. (2021). The 3D architecture and molecular foundations of de novo centriole assembly via bicentrioles. Current biology : CB, 31(19), 4340–4353.e7. https://doi.org/10.1016/j.cub.2021.07.063
Gönczy, P., Schnabel, H., Kaletta, T., Amores, A. D., Hyman, T., & Schnabel, R. (1999). Dissection of cell division processes in the one cell stage Caenorhabditis elegans embryo by mutational analysis. The Journal of cell biology, 144(5), 927–946. https://doi.org/10.1083/jcb.144.5.927
Gudi, R., Haycraft, C. J., Bell, P. D., Li, Z., & Vasu, C. (2015). Centrobin-mediated regulation of the centrosomal protein 4.1-associated protein (CPAP) level limits centriole length during elongation stage. The Journal of biological chemistry, 290(11), 6890–6902. https://doi.org/10.1074/jbc.M114.603423
Gudi, R., Zou, C., Li, J., & Gao, Q. (2011). Centrobin-tubulin interaction is required for centriole elongation and stability. The Journal of cell biology, 193(4), 711–725. https://doi.org/10.1083/jcb.201006135
Gueth-Hallonet, C., Antony, C., Aghion, J., Santa-Maria, A., Lajoie-Mazenc, I., Wright, M., & Maro, B. (1993). gamma-Tubulin is present in acentriolar MTOCs during early mouse development. Journal of cell science, 105 ( Pt 1), 157–166. https://doi.org/10.1242/jcs.105.1.157
Guichard, P., Hachet, V., Majubu, N., Neves, A., Demurtas, D., Olieric, N., Fluckiger, I., Yamada, A., Kihara, K., Nishida, Y., Moriya, S., Steinmetz, M. O., Hongoh, Y., & Gönczy, P. (2013). Native architecture of the centriole proximal region reveals features underlying its 9-fold radial symmetry. Current biology : CB, 23(17), 1620–1628. https://doi.org/10.1016/j.cub.2013.06.061
Harper, N. C., Rillo, R., Jover-Gil, S., Assaf, Z. J., Bhalla, N., & Dernburg, A. F. (2011). Pairing centers recruit a Polo-like kinase to orchestrate meiotic chromosome dynamics in C. elegans. Developmental cell, 21(5), 934–947. https://doi.org/10.1016/j.devcel.2011.09.001
He, L., Wang, X., & Montell, D. J. (2011). Shining light on Drosophila oogenesis: live imaging of egg development. Current opinion in genetics & development, 21(5), 612–619. https://doi.org/10.1016/j.gde.2011.08.011
Hertig, A. T., & Adams, E. C. (1967). Studies on the human oocyte and its follicle. I. Ultrastructural and histochemical observations on the primordial follicle stage. The Journal of cell biology, 34(2), 647–675. https://doi.org/10.1083/jcb.34.2.647
Inoué, S., & Sato, H. (1967). Cell motility by labile association of molecules. The nature of mitotic spindle fibers and their role in chromosome movement. The Journal of general physiology, 50(6), 259–292.
Iwao, Y., & Elinson, R. P. (1990). Control of sperm nuclear behavior in physiologically polyspermic newt eggs: possible involvement of MPF. Developmental biology, 142(2), 301–312. https://doi.org/10.1016/0012-1606(90)90351-i
Iwao, Y., Kimoto, C., Fujimoto, A., Suda, A., & Hara, Y. (2020). Physiological polyspermy: Selection of a sperm nucleus for the development of diploid genomes in amphibians. Molecular reproduction and development, 87(3), 358–369. https://doi.org/10.1002/mrd.23235
Iwao, Y., Murakawa, T., Yamaguchi, J., & Yamashita, M. (2002). Localization of gamma-tubulin and cyclin B during early cleavage in physiologically polyspermic newt eggs. Development, growth & differentiation, 44(6), 489–499. https://doi.org/10.1046/j.1440-169x.2002.00661.x
Jaba, T. (2022). Dasatinib and quercetin: short-term simultaneous administration yields senolytic effect in humans. Issues and Developments in Medicine and Medical Research Vol. 2, 22-31.
Jakobsen, L., Vanselow, K., Skogs, M., Toyoda, Y., Lundberg, E., Poser, I., Falkenby, L. G., Bennetzen, M., Westendorf, J., Nigg, E. A., Uhlen, M., Hyman, A. A., & Andersen, J. S. (2011). Novel asymmetrically localizing components of human centrosomes identified by complementary proteomics methods. The EMBO journal, 30(8), 1520–1535. https://doi.org/10.1038/emboj.2011.63
Janke, C., & Magiera, M. M. (2020). The tubulin code and its role in controlling microtubule properties and functions. Nature reviews. Molecular cell biology, 21(6), 307–326. https://doi.org/10.1038/s41580-020-0214-3
Januschke, J., Gervais, L., Gillet, L., Keryer, G., Bornens, M., & Guichet, A. (2006). The centrosome-nucleus complex and microtubule organization in the Drosophila oocyte. Development (Cambridge, England), 133(1), 129–139. https://doi.org/10.1242/dev.02179
Januschke, J., Gervais, L., Gillet, L., Keryer, G., Bornens, M., & Guichet, A. (2006). The centrosome-nucleus complex and microtubule organization in the Drosophila oocyte. Development (Cambridge, England), 133(1), 129–139. https://doi.org/10.1242/dev.02179
Kai, Y., Iwata, K., Iba, Y., & Mio, Y. (2015). Diagnosis of abnormal human fertilization status based on pronuclear origin and/or centrosome number. Journal of assisted reproduction and genetics, 32(11), 1589–1595. https://doi.org/10.1007/s10815-015-0568-1
Kalbfuss, N., & Gönczy, P. (2023). Extensive programmed centriole elimination unveiled in C. elegans embryos. Science advances, 9(22), eadg8682. https://doi.org/10.1126/sciadv.adg8682
Kalbfuss, N., & Gönczy, P. (2023). Extensive programmed centriole elimination unveiled in C. elegans embryos. Science advances, 9(22), eadg8682. https://doi.org/10.1126/sciadv.adg8682
Kasahara, K., & Inagaki, M. (2021). Primary ciliary signaling: links with the cell cycle. Trends in cell biology, 31(12), 954–964. https://doi.org/10.1016/j.tcb.2021.07.009
Khire, A., Jo, K. H., Kong, D., Akhshi, T., Blachon, S., Cekic, A. R., Hynek, S., Ha, A., Loncarek, J., Mennella, V., & Avidor-Reiss, T. (2016). Centriole Remodeling during Spermiogenesis in Drosophila. Current biology : CB, 26(23), 3183–3189. https://doi.org/10.1016/j.cub.2016.07.006
Khire, A., Vizuet, A. A., Davila, E., & Avidor-Reiss, T. (2015). Asterless Reduction during Spermiogenesis Is Regulated by Plk4 and Is Essential for Zygote Development in Drosophila. Current biology : CB, 25(22), 2956–2963. https://doi.org/10.1016/j.cub.2015.09.045
Khodjakov, A., Rieder, C. L., Sluder, G., Cassels, G., Sibon, O., & Wang, C. L. (2002). De novo formation of centrosomes in vertebrate cells arrested during S phase. The Journal of cell biology, 158(7), 1171–1181. https://doi.org/10.1083/jcb.200205102
Kipshidze, M., & Tkemaladze, J. (2023). Comparative Analysis of drugs that improve the Quality of Life and Life Expectancy. Junior Researchers, 1(1), 184–193. doi: https://doi.org/10.52340/2023.01.01.19
Kipshidze, M., & Tkemaladze, J. (2023). The planaria Schmidtea mediterranea as a model system for the study of stem cell biology. Junior Researchers, 1(1), 194–218. doi: https://doi.org/10.52340/2023.01.01.20
Kipshidze, M., & Tkemaladze, J. (2024). Abastumani Resort: Balneological Heritage and Modern Potential. Junior Researchers, 2(2), 126–134. doi: https://doi.org/10.52340/jr.2024.02.02.12
Kipshidze, M., & Tkemaladze, J. (2024). Balneology in Georgia: traditions and modern situation. Junior Researchers, 2(2), 78–97. doi: https://doi.org/10.52340/jr.2024.02.02.09
Kipshidze, M., & Tkemaladze, J. (2024). Microelementoses - history and current status. Junior Researchers, 2(2), 108–125. doi: https://doi.org/10.52340/jr.2024.02.02.11
Kochanski, R. S., & Borisy, G. G. (1990). Mode of centriole duplication and distribution. The Journal of cell biology, 110(5), 1599–1605. https://doi.org/10.1083/jcb.110.5.1599
Kong, D., Farmer, V., Shukla, A., James, J., Gruskin, R., Kiriyama, S., & Loncarek, J. (2014). Centriole maturation requires regulated Plk1 activity during two consecutive cell cycles. The Journal of cell biology, 206(7), 855–865. https://doi.org/10.1083/jcb.201407087
Kong, D., Sahabandu, N., Sullenberger, C., Vásquez-Limeta, A., Luvsanjav, D., Lukasik, K., & Loncarek, J. (2020). Prolonged mitosis results in structurally aberrant and over-elongated centrioles. The Journal of cell biology, 219(6), e201910019. https://doi.org/10.1083/jcb.201910019
Lambrus, B. G., Uetake, Y., Clutario, K. M., Daggubati, V., Snyder, M., Sluder, G., & Holland, A. J. (2015). p53 protects against genome instability following centriole duplication failure. The Journal of cell biology, 210(1), 63–77. https://doi.org/10.1083/jcb.201502089
Le Clech M. (2008). Role of CAP350 in centriolar tubule stability and centriole assembly. PloS one, 3(12), e3855. https://doi.org/10.1371/journal.pone.0003855
Levine, M. S., Bakker, B., Boeckx, B., Moyett, J., Lu, J., Vitre, B., Spierings, D. C., Lansdorp, P. M., Cleveland, D. W., Lambrechts, D., Foijer, F., & Holland, A. J. (2017). Centrosome Amplification Is Sufficient to Promote Spontaneous Tumorigenesis in Mammals. Developmental cell, 40(3), 313–322.e5. https://doi.org/10.1016/j.devcel.2016.12.022
Lezhava, T., Monaselidze, J., Jokhadze, T., Kakauridze, N., Khodeli, N., Rogava, M., Tkemaladze, J., ... & Gaiozishvili, M. (2011). Gerontology research in Georgia. Biogerontology, 12, 87-91. doi: 10.1007/s10522-010-9283-6. Epub 2010 May 18. PMID: 20480236; PMCID: PMC3063552
Li, W., Yi, P., Zhu, Z., Zhang, X., Li, W., & Ou, G. (2017). Centriole translocation and degeneration during ciliogenesis in Caenorhabditis elegans neurons. The EMBO journal, 36(17), 2553–2566. https://doi.org/10.15252/embj.201796883
Lu, Y., & Roy, R. (2014). Centrosome/Cell cycle uncoupling and elimination in the endoreduplicating intestinal cells of C. elegans. PloS one, 9(10), e110958. https://doi.org/10.1371/journal.pone.0110958
Lukinavičius, G., Lavogina, D., Orpinell, M., Umezawa, K., Reymond, L., Garin, N., Gönczy, P., & Johnsson, K. (2013). Selective chemical crosslinking reveals a Cep57-Cep63-Cep152 centrosomal complex. Current biology : CB, 23(3), 265–270. https://doi.org/10.1016/j.cub.2012.12.030
Magescas, J., Eskinazi, S., Tran, M. V., & Feldman, J. L. (2021). Centriole-less pericentriolar material serves as a microtubule organizing center at the base of C. elegans sensory cilia. Current biology : CB, 31(11), 2410–2417.e6. https://doi.org/10.1016/j.cub.2021.03.022
Maller, J., Poccia, D., Nishioka, D., Kidd, P., Gerhart, J., & Hartman, H. (1976). Spindle formation and cleavage in Xenopus eggs injected with centriole-containing fractions from sperm. Experimental cell research, 99(2), 285–294. https://doi.org/10.1016/0014-4827(76)90585-1
Manandhar, G., Schatten, H., & Sutovsky, P. (2005). Centrosome reduction during gametogenesis and its significance. Biology of reproduction, 72(1), 2–13. https://doi.org/10.1095/biolreprod.104.031245
Matsaberidze, M., Prangishvili, A., Gasitashvili, Z., Chichinadze, K., & Tkemaladze, J. (2017). TO TOPOLOGY OF ANTI-TERRORIST AND ANTI-CRIMINAL TECHNOLOGY FOR EDUCATIONAL PROGRAMS. International Journal of Terrorism & Political Hot Spots, 12.
Matsuura, K., Lefebvre, P. A., Kamiya, R., & Hirono, M. (2004). Bld10p, a novel protein essential for basal body assembly in Chlamydomonas: localization to the cartwheel, the first ninefold symmetrical structure appearing during assembly. The Journal of cell biology, 165(5), 663–671. https://doi.org/10.1083/jcb.200402022
Matsuura, R., Ashikawa, T., Nozaki, Y., & Kitagawa, D. (2016). LIN-41 inactivation leads to delayed centrosome elimination and abnormal chromosome behavior during female meiosis in Caenorhabditis elegans. Molecular biology of the cell, 27(5), 799–811. https://doi.org/10.1091/mbc.E15-10-0713
Mikeladze-Dvali, T., von Tobel, L., Strnad, P., Knott, G., Leonhardt, H., Schermelleh, L., & Gönczy, P. (2012). Analysis of centriole elimination during C. elegans oogenesis. Development (Cambridge, England), 139(9), 1670–1679. https://doi.org/10.1242/dev.075440
Mikule, K., Delaval, B., Kaldis, P., Jurcyzk, A., Hergert, P., & Doxsey, S. (2007). Loss of centrosome integrity induces p38-p53-p21-dependent G1-S arrest. Nature cell biology, 9(2), 160–170. https://doi.org/10.1038/ncb1529
Nakashima, S., & Kato, K. H. (2001). Centriole behavior during meiosis in oocytes of the sea urchin Hemicentrotus pulcherrimus. Development, growth & differentiation, 43(4), 437–445. https://doi.org/10.1046/j.1440-169x.2001.00580.x
Nandi, D., Tahiliani, P., Kumar, A., & Chandu, D. (2006). The ubiquitin-proteasome system. Journal of biosciences, 31(1), 137–155. https://doi.org/10.1007/BF02705243
Neumann, B., Walter, T., Hériché, J. K., Bulkescher, J., Erfle, H., Conrad, C., Rogers, P., Poser, I., Held, M., Liebel, U., Cetin, C., Sieckmann, F., Pau, G., Kabbe, R., Wünsche, A., Satagopam, V., Schmitz, M. H., Chapuis, C., Gerlich, D. W., Schneider, R., … Ellenberg, J. (2010). Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. Nature, 464(7289), 721–727. https://doi.org/10.1038/nature08869
Nössing, C., & Ryan, K. M. (2023). 50 years on and still very much alive: 'Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics'. British journal of cancer, 128(3), 426–431. https://doi.org/10.1038/s41416-022-02020-0
Pelletier, L., O'Toole, E., Schwager, A., Hyman, A. A., & Müller-Reichert, T. (2006). Centriole assembly in Caenorhabditis elegans. Nature, 444(7119), 619–623. https://doi.org/10.1038/nature05318
Pierron, M., Woglar, A., Busso, C., Jha, K., Mikeladze-Dvali, T., Croisier, M., & Gönczy, P. (2023). Centriole elimination during Caenorhabditis elegans oogenesis initiates with loss of the central tube protein SAS-1. The EMBO journal, 42(24), e115076. https://doi.org/10.15252/embj.2023115076
Pimenta-Marques, A., Bento, I., Lopes, C. A., Duarte, P., Jana, S. C., & Bettencourt-Dias, M. (2016). A mechanism for the elimination of the female gamete centrosome in Drosophila melanogaster. Science (New York, N.Y.), 353(6294), aaf4866. https://doi.org/10.1126/science.aaf4866
Pimenta-Marques, A., Perestrelo, T., Reis-Rodrigues, P., Duarte, P., Ferreira-Silva, A., Lince-Faria, M., & Bettencourt-Dias, M. (2024). Ana1/CEP295 is an essential player in the centrosome maintenance program regulated by Polo kinase and the PCM. EMBO reports, 25(1), 102–127. https://doi.org/10.1038/s44319-023-00020-6
Pintard, L., & Bowerman, B. (2019). Mitotic Cell Division in Caenorhabditis elegans. Genetics, 211(1), 35–73. https://doi.org/10.1534/genetics.118.301367
Prangishvili, A., Gasitashvili, Z., Matsaberidze, M., Chkhartishvili, L., Chichinadze, K., Tkemaladze, J., ... & Azmaiparashvili, Z. (2019). SYSTEM COMPONENTS OF HEALTH AND INNOVATION FOR THE ORGANIZATION OF NANO-BIOMEDIC ECOSYSTEM TECHNOLOGICAL PLATFORM. Current Politics and Economics of Russia, Eastern and Central Europe, 34(2/3), 299-305.
Rouvière, C., Houliston, E., Carré, D., Chang, P., & Sardet, C. (1994). Characteristics of pronuclear migration in Beroe ovata. Cell motility and the cytoskeleton, 29(4), 301–311. https://doi.org/10.1002/cm.970290403
Sanchez, A. D., & Feldman, J. L. (2017). Microtubule-organizing centers: from the centrosome to non-centrosomal sites. Current opinion in cell biology, 44, 93–101. https://doi.org/10.1016/j.ceb.2016.09.003
Saxton, W. M., Stemple, D. L., Leslie, R. J., Salmon, E. D., Zavortink, M., & McIntosh, J. R. (1984). Tubulin dynamics in cultured mammalian cells. The Journal of cell biology, 99(6), 2175–2186. https://doi.org/10.1083/jcb.99.6.2175
Schweizer, N., Haren, L., Dutto, I., Viais, R., Lacasa, C., Merdes, A., & Lüders, J. (2021). Sub-centrosomal mapping identifies augmin-γTuRC as part of a centriole-stabilizing scaffold. Nature communications, 12(1), 6042. https://doi.org/10.1038/s41467-021-26252-5
Serwas, D., Su, T. Y., Roessler, M., Wang, S., & Dammermann, A. (2017). Centrioles initiate cilia assembly but are dispensable for maturation and maintenance in C. elegans. The Journal of cell biology, 216(6), 1659–1671. https://doi.org/10.1083/jcb.201610070
Shang, Y., Li, B., & Gorovsky, M. A. (2002). Tetrahymena thermophila contains a conventional gamma-tubulin that is differentially required for the maintenance of different microtubule-organizing centers. The Journal of cell biology, 158(7), 1195–1206. https://doi.org/10.1083/jcb.200205101
Snook, R. R., Hosken, D. J., & Karr, T. L. (2011). The biology and evolution of polyspermy: insights from cellular and functional studies of sperm and centrosomal behavior in the fertilized egg. Reproduction (Cambridge, England), 142(6), 779–792. https://doi.org/10.1530/REP-11-0255
Sönnichsen, B., Koski, L. B., Walsh, A., Marschall, P., Neumann, B., Brehm, M., Alleaume, A. M., Artelt, J., Bettencourt, P., Cassin, E., Hewitson, M., Holz, C., Khan, M., Lazik, S., Martin, C., Nitzsche, B., Ruer, M., Stamford, J., Winzi, M., Heinkel, R., … Echeverri, C. J. (2005). Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature, 434(7032), 462–469. https://doi.org/10.1038/nature03353
Takumi, K., & Kitagawa, D. (2022). Experimental and Natural Induction of de novo Centriole Formation. Frontiers in cell and developmental biology, 10, 861864. https://doi.org/10.3389/fcell.2022.861864
Tkemaladze J. (2024). Editorial: Molecular mechanism of ageing and therapeutic advances through targeting glycative and oxidative stress. Front Pharmacol. 2024 Mar 6;14:1324446. doi: 10.3389/fphar.2023.1324446. PMID: 38510429; PMCID: PMC10953819.
Tkemaladze, J. (2023). Cross-senolytic effects of dasatinib and quercetin in humans. Georgian Scientists, 5(3), 138–152. doi: https://doi.org/10.52340/2023.05.03.15
Tkemaladze, J. (2023). Is the selective accumulation of oldest centrioles in stem cells the main cause of organism ageing?. Georgian Scientists, 5(3), 216–235. doi: https://doi.org/10.52340/2023.05.03.22
Tkemaladze, J. (2023). Long-Term Differences between Regenerations of Head and Tail Fragments in Schmidtea Mediterranea Ciw4. Available at SSRN 4257823.
Tkemaladze, J. (2023). Reduction, proliferation, and differentiation defects of stem cells over time: a consequence of selective accumulation of old centrioles in the stem cells?. Molecular Biology Reports, 50(3), 2751-2761.
Tkemaladze, J. (2023). Structure and possible functions of centriolar RNA with reference to the centriolar hypothesis of differentiation and replicative senescence. Junior Researchers, 1(1), 156–170. doi: https://doi.org/10.52340/2023.01.01.17
Tkemaladze, J. (2023). The centriolar hypothesis of differentiation and replicative senescence. Junior Researchers, 1(1), 123–141. doi: https://doi.org/10.52340/2023.01.01.15
Tkemaladze, J. (2024). Absence of centrioles and regenerative potential of planaria. Georgian Scientists, 6(4), 59–75. doi: https://doi.org/10.52340/gs.2024.06.04.08
Tkemaladze, J. (2024). Cell center and the problem of accumulation of oldest centrioles in stem cells. Georgian Scientists, 6(2), 304–322. doi: https://doi.org/10.52340/gs.2024.06.02.32
Tkemaladze, J. (2024). Elimination of centrioles. Georgian Scientists, 6(4), 291–307. doi: https://doi.org/10.52340/gs.2024.06.04.25
Tkemaladze, J. (2024). Main causes of intelligence decrease and prospects for treatment. Georgian Scientists, 6(2), 425–432. doi: https://doi.org/10.52340/gs.2024.06.02.44
Tkemaladze, J. (2024). The rate of stem cell division decreases with age. Georgian Scientists, 6(4), 228–242. doi: https://doi.org/10.52340/gs.2024.06.04.21
Tkemaladze, J. (2025). A Universal Approach to Curing All Diseases: From Theoretical Foundations to the Prospects of Applying Modern Biotechnologies in Future Medicine. doi: http://dx.doi.org/10.13140/RG.2.2.24481.11366
Tkemaladze, J. (2025). Strategic Importance of the Caucasian Bridge and Global Power Rivalries. doi: http://dx.doi.org/10.13140/RG.2.2.19153.03680
Tkemaladze, J. (2025). The Epistemological Reconfiguration and Transubstantial Reinterpretation of Eucharistic Practices Established by the Divine Figure of Jesus Christ in Relation to Theological Paradigms. doi: http://dx.doi.org/10.13140/RG.2.2.28347.73769
Tkemaladze, J. (2025). Transforming the psyche with phoneme frequencies "Habere aliam linguam est possidere secundam animam" Charlemagne. doi: http://dx.doi.org/10.13140/RG.2.2.16105.61286
Tkemaladze, J. (2025). Anatomy, Biogenesis, and Role in Cell Biology of Centrioles. Longevity Horizons, 1(2). doi: https://doi.org/10.5281/zenodo.14742232
Tkemaladze, J. (2025). Asymmetry in the Inheritance of Centrosomes / Centrioles and Its Consequences. Longevity Horizons, 1(2). doi: https://doi.org/10.5281/zenodo.14837352
Tkemaladze, J. (2025). Concept to The Alive Language. Longevity Horizons, 1(1). doi: https://doi.org/10.5281/zenodo.14688792
Tkemaladze, J. (2025). Concept to The Caucasian Bridge. Longevity Horizons, 1(1). doi: https://doi.org/10.5281/zenodo.14689276
Tkemaladze, J. (2025). Concept to The Curing All Diseases. Longevity Horizons, 1(1). doi: https://doi.org/10.5281/zenodo.14676208
Tkemaladze, J. (2025). Concept to The Eternal Youth. Longevity Horizons, 1(1). doi: https://doi.org/10.5281/zenodo.14681902
Tkemaladze, J. (2025). Concept to The Food Security. Longevity Horizons, 1(1). doi: https://doi.org/10.5281/zenodo.14642407
Tkemaladze, J. (2025). Concept to the Living Space. Longevity Horizons, 1(1). doi: https://doi.org/10.5281/zenodo.14635991
Tkemaladze, J. (2025). Concept to The Restoring Dogmas. Longevity Horizons, 1(1). doi: https://doi.org/10.5281/zenodo.14708980
Tkemaladze, J. (2025). Differentiation of Somatic Cells in Multicellular Organisms. Longevity Horizons, 1(2). doi: https://doi.org/10.5281/10.5281/zenodo.14778927
Tkemaladze, J. (2025). Replicative Hayflick Limit. Longevity Horizons, 1(2). doi: https://doi.org/10.5281/zenodo.14752664
Tkemaladze, J. (2025). Solutions to the Living Space Problem to Overcome the Fear of Resurrection from the Dead. doi: http://dx.doi.org/10.13140/RG.2.2.34655.57768
Tkemaladze, J. (2025). The Concept of Data-Driven Automated Governance. Georgian Scientists, 6(4), 399–410. doi: https://doi.org/10.52340/gs.2024.06.04.38
Tkemaladze, J. (2025).Achieving Perpetual Vitality Through Innovation. doi: http://dx.doi.org/10.13140/RG.2.2.31113.35685
Tkemaladze, J. (2025).Systemic Resilience and Sustainable Nutritional Paradigms in Anthropogenic Ecosystems. doi: http://dx.doi.org/10.13140/RG.2.2.18943.32169/1
Tkemaladze, J. V., & Chichinadze, K. N. (2005). Centriolar mechanisms of differentiation and replicative aging of higher animal cells. Biochemistry (Moscow), 70, 1288-1303.
Tkemaladze, J., & Apkhazava, D. (2019). Dasatinib and quercetin: short-term simultaneous administration improves physical capacity in human. J Biomedical Sci, 8(3), 3.
Tkemaladze, J., & Chichinadze, K. (2005). Potential role of centrioles in determining the morphogenetic status of animal somatic cells. Cell biology international, 29(5), 370-374.
Tkemaladze, J., & Chichinadze, K. (2010). Centriole, differentiation, and senescence. Rejuvenation research, 13(2-3), 339-342.
Tkemaladze, J., & Samanishvili, T. (2024). Mineral ice cream improves recovery of muscle functions after exercise. Georgian Scientists, 6(2), 36–50. doi: https://doi.org/10.52340/gs.2024.06.02.04
Tkemaladze, J., Tavartkiladze, A., & Chichinadze, K. (2012). Programming and Implementation of Age-Related Changes. In Senescence. IntechOpen.
Tkemaladze, Jaba and Kipshidze, Mariam, Regeneration Potential of the Schmidtea Mediterranea CIW4 Planarian. Available at SSRN: https://ssrn.com/abstract=4633202 or http://dx.doi.org/10.2139/ssrn.4633202
Uetake, Y., Kato, K. H., Washitani-Nemoto, S., & Nemoto Si, S. (2002). Nonequivalence of maternal centrosomes/centrioles in starfish oocytes: selective casting-off of reproductive centrioles into polar bodies. Developmental biology, 247(1), 149–164. https://doi.org/10.1006/dbio.2002.0682
Uzbekov, R., Singina, G. N., Shedova, E. N., Banliat, C., Avidor-Reiss, T., & Uzbekova, S. (2023). Centrosome Formation in the Bovine Early Embryo. Cells, 12(9), 1335. https://doi.org/10.3390/cells12091335
von Tobel, L., Mikeladze-Dvali, T., Delattre, M., Balestra, F. R., Blanchoud, S., Finger, S., Knott, G., Müller-Reichert, T., & Gönczy, P. (2014). SAS-1 is a C2 domain protein critical for centriole integrity in C. elegans. PLoS genetics, 10(11), e1004777. https://doi.org/10.1371/journal.pgen.1004777
Wang, M., Nagle, R. B., Knudsen, B. S., Cress, A. E., & Rogers, G. C. (2020). Centrosome loss results in an unstable genome and malignant prostate tumors. Oncogene, 39(2), 399–413. https://doi.org/10.1038/s41388-019-0995-z
Wolf, N., Hirsh, D., & McIntosh, J. R. (1978). Spermatogenesis in males of the free-living nematode, Caenorhabditis elegans. Journal of ultrastructure research, 63(2), 155–169. https://doi.org/10.1016/s0022-5320(78)80071-9
Wong, Y. L., Anzola, J. V., Davis, R. L., Yoon, M., Motamedi, A., Kroll, A., Seo, C. P., Hsia, J. E., Kim, S. K., Mitchell, J. W., Mitchell, B. J., Desai, A., Gahman, T. C., Shiau, A. K., & Oegema, K. (2015). Cell biology. Reversible centriole depletion with an inhibitor of Polo-like kinase 4. Science (New York, N.Y.), 348(6239), 1155–1160. https://doi.org/10.1126/science.aaa5111
Zou, C., Li, J., Bai, Y., Gunning, W. T., Wazer, D. E., Band, V., & Gao, Q. (2005). Centrobin: a novel daughter centriole-associated protein that is required for centriole duplication. The Journal of cell biology, 171(3), 437–445. https://doi.org/10.1083/jcb.200506185
Прангишвили, А. И., Гаситашвили, З. А., Мацаберидзе, М. И., Чичинадзе, К. Н., Ткемаладзе, Д. В., & Азмайпарашвили, З. А. (2017). К топологии антитеррористических и антикриминальных технологии для образовательных программ. В научном издании представлены материалы Десятой международной научно-технической конфе-ренции «Управление развитием крупномасштабных систем (MLSD’2016)» по следующим направле-ниям:• Проблемы управления развитием крупномасштабных систем, включая ТНК, Госхолдин-ги и Гос-корпорации., 284.
Прангишвили, А. И., Гаситашвили, З. А., Мацаберидзе, М. И., Чхартишвили, Л. С., Чичинадзе, К. Н., & Ткемаладзе, Д. В. (2017). & Азмайпарашвили, ЗА (2017). Системные составляющие здравоохранения и инноваций для организации европейской нано-биомедицинской екосистемной технологической платформы. Управление развитием крупномасштабных систем MLSD, 365-368.
Ткемаладзе, Д. (2025). Анатомия, биогенез и роль в клеточной биологии центриолей. doi: http://dx.doi.org/10.13140/RG.2.2.27441.70245/1
Ткемаладзе, Д. (2025). Асимметрия в наследовании центросом / центриолей и ее последствия. doi: http://dx.doi.org/10.13140/RG.2.2.34917.31206
Ткемаладзе, Д. (2025). Дифференциация соматических клеток многоклеточных животных. doi: http://dx.doi.org/10.13140/RG.2.2.23348.97929/1
Ткемаладзе, Д. (2025). Репликативный Лимит Хейфлика. doi: http://dx.doi.org/10.13140/RG.2.2.25803.30249
Ткемаладзе, Д. В., & Чичинадзе, К. Н. (2005). Центриолярные механизмы дифференцировки и репликативного старения клеток высших животных. Биохимия, 70(11), 1566-1584.
Ткемаладзе, Д., Цомаиа, Г., & Жоржолиани, И. (2001). Создание искусственных самоадаптирующихся систем на основе Теории Прогноза. Искусственный интеллект. УДК 004.89. Искусственный интеллект. УДК 004.89.
Чичинадзе, К., Ткемаладзе, Д., & Лазарашвили, А. (2012). НОВЫЙ КЛАСС РНК И ЦЕНТРОСОМНАЯ ГИПОТЕЗА СТАРЕНИЯ КЛЕТОК. Успехи геронтологии, 25(1), 23-28.