Mathematical formalism of Ze

Authors

  • Jaba Tkemaladze Author

DOI:

https://doi.org/10.65649/kzj86888

Keywords:

Cognitive Architecture, Variational Inference, Model Conflict, Active Inference, Ze

Abstract

This article introduces and formalizes Ze, a novel theoretical framework for cognitive architecture and autonomous systems. Ze posits that advanced intelligence requires the maintenance of two distinct, asymmetric generative models of the same environment: a causal (forward) model MA\mathcal{M}_AMA​ and a counterfactual (inverse) model MB\mathcal{M}_BMB​. Each model minimizes its own variational free energy FA\mathcal{F}_AFA​, FB\mathcal{F}_BFB​, and their interaction dynamics define core cognitive processes. A key emergent quantity is the model conflict ΔF=∣FA−FB∣\Delta \mathcal{F} = |\mathcal{F}_A - \mathcal{F}_B|ΔF=∣FA​−FB​∣, which regulates a phase transition between two fundamental regimes: an interference regime (characterized by low posterior divergence I≈0\mathcal{I} \approx 0I≈0 where model outputs are constructively fused), and a localization regime (ΔF>θ\Delta \mathcal{F} > \thetaΔF>θ) where the system commits to a single resolved interpretation s^\hat{s}s^. The framework is extended to include active action selection from model-specific policies, a mechanism for representational growth via "which-path" information, and a "quantum eraser" operator for strategic simplification. We demonstrate that this architecture establishes a strict formal isomorphism with quantum measurement phenomena, notably the double-slit experiment, but is grounded entirely in classical variational inference. The theory reinterprets cognitive "collapse" not as a postulate but as an optimization-driven phase transition and yields the key testable prediction that active, alternating intervention accelerates localization compared to passive observation.

References

Ahissar, E., & Assa, E. (2016). Perception as a closed-loop convergence process. eLife, 5, e12830. https://doi.org/10.7554/eLife.12830

Angela, J. Y., & Dayan, P. (2005). Uncertainty, neuromodulation, and attention. Neuron, 46(4), 681–692. https://doi.org/10.1016/j.neuron.2005.04.026

Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annual Review of Neuroscience, 28, 403–450. https://doi.org/10.1146/annurev.neuro.28.061604.135709

Atmanspacher, H., & beim Graben, P. (2007). Contextual emergence of mental states from neurodynamics. Chaos and Complexity Letters, 2(2/3), 151–168.

Baker, C. L., Jara-Ettinger, J., Saxe, R., & Tenenbaum, J. B. (2017). Rational quantitative attribution of beliefs, desires and percepts in human mentalizing. Nature Human Behaviour, 1(4), 0064. https://doi.org/10.1038/s41562-017-0064

Beal, M. J. (2003). Variational algorithms for approximate Bayesian inference [Doctoral dissertation, University College London].

Blei, D. M., Kucukelbir, A., & McAuliffe, J. D. (2017). Variational inference: A review for statisticians. Journal of the American Statistical Association, 112(518), 859–877. https://doi.org/10.1080/01621459.2017.1285773

Botvinick, M., & Toussaint, M. (2012). Planning as inference. Trends in Cognitive Sciences, 16(10), 485–488. https://doi.org/10.1016/j.tics.2012.08.006

Brette, R. (2022). Brains as computers: metaphor, analogy, theory or fact? Frontiers in Ecology and Evolution, 10, 878729. https://doi.org/10.3389/fevo.2022.878729

Bruza, P. D., Wang, Z., & Busemeyer, J. R. (2015). Quantum cognition: a new theoretical approach to psychology. Trends in Cognitive Sciences, 19(7), 383-393. https://doi.org/10.1016/j.tics.2015.05.001

Bruza, P. D., Wang, Z., & Busemeyer, J. R. (2015). Quantum cognition: a new theoretical approach to psychology. Trends in Cognitive Sciences, 19(7), 383–393. https://doi.org/10.1016/j.tics.2015.05.001

Buckley, C. L., Kim, C. S., McGregor, S., & Seth, A. K. (2017). The free energy principle for action and perception: A mathematical review. Journal of Mathematical Psychology, 81, 55–79. https://doi.org/10.1016/j.jmp.2017.09.004

Buschman, T. J., & Miller, E. K. (2007). Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science, 315(5820), 1860–1862. https://doi.org/10.1126/science.1138071

Busemeyer, J. R., & Bruza, P. D. (2012). Quantum models of cognition and decision. Cambridge University Press.

Chung, J., Kastner, K., Dinh, L., Goel, K., Courville, A. C., & Bengio, Y. (2015). A recurrent latent variable model for sequential data. Advances in Neural Information Processing Systems, 28.

Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(3), 181–204. https://doi.org/10.1017/S0140525X12000477

Clark, J. J., & Yuille, A. L. (1990). Data fusion for sensory information processing systems. Kluwer Academic Publishers.

Courville, A. C., Daw, N. D., & Touretzky, D. S. (2006). Bayesian theories of conditioning in a changing world. Trends in Cognitive Sciences, 10(7), 294–300. https://doi.org/10.1016/j.tics.2006.05.004

Dayan, P., Hinton, G. E., Neal, R. M., & Zemel, R. S. (1995). The Helmholtz machine. Neural Computation, 7(5), 889–904. https://doi.org/10.1162/neco.1995.7.5.889

De Berker, A. O., Rutledge, R. B., Mathys, C., Marshall, L., Cross, G. F., Dolan, R. J., & Bestmann, S. (2016). Computations of uncertainty mediate acute stress responses in humans. Nature Communications, 7, 10996. https://doi.org/10.1038/ncomms10996

Diekelmann, S., & Born, J. (2010). The memory function of sleep. Nature Reviews Neuroscience, 11(2), 114–126. https://doi.org/10.1038/nrn2762

Endres, D. M., & Schindelin, J. E. (2003). A new metric for probability distributions. IEEE Transactions on Information Theory, 49(7), 1858–1860. https://doi.org/10.1109/TIT.2003.813506

Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415(6870), 429–433. https://doi.org/10.1038/415429a

Feldman, H., & Friston, K. J. (2010). Attention, uncertainty, and free-energy. Frontiers in Human Neuroscience, 4, 215. https://doi.org/10.3389/fnhum.2010.00215

Feynman, R. P., Leighton, R. B., & Sands, M. (1965). The Feynman lectures on physics, Vol. 3: Quantum mechanics. Addison-Wesley.

Findling, C., Chopin, N., & Koechlin, E. (2023). Imprecise neural computations as a source of adaptive behavioural variability. Nature Communications, 14, 3686. https://doi.org/10.1038/s41467-023-39380-x

FitzGibbon, L., Lau, J. K., & Murayama, K. (2020). The seductive lure of curiosity: information as a motivationally salient reward. Current Opinion in Behavioral Sciences, 35, 21–27. https://doi.org/10.1016/j.cobeha.2020.05.014

Fleming, S. M., & Daw, N. D. (2017). Self-evaluation of decision-making: A general Bayesian framework for metacognitive computation. Psychological Review, 124(1), 91–114. https://doi.org/10.1037/rev0000045

Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1456), 815–836. https://doi.org/10.1098/rstb.2005.1622

Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11(2), 127–138. https://doi.org/10.1038/nrn2787

Friston, K., FitzGerald, T., Rigoli, F., Schwartenbeck, P., & Pezzulo, G. (2017). Active inference: A process theory. Neural Computation, 29(1), 1–49. https://doi.org/10.1162/NECO_a_00912

Friston, K., Thornton, C., & Clark, A. (2012). Free-energy minimization and the dark-room problem. Frontiers in Psychology, 3, 130. https://doi.org/10.3389/fpsyg.2012.00130

Gallego, J. A., Perich, M. G., Chowdhury, R. H., Solla, S. A., & Miller, L. E. (2020). Long-term stability of cortical population dynamics underlying consistent behavior. Nature Neuroscience, 23(2), 260–270. https://doi.org/10.1038/s41593-019-0555-4

Gershman, S. J., & Niv, Y. (2010). Learning latent structure: Carving nature at its joints. Current Opinion in Neurobiology, 20(2), 251–256. https://doi.org/10.1016/j.conb.2010.02.008

Gershman, S. J., Horvitz, E. J., & Tenenbaum, J. B. (2015). Computational rationality: A converging paradigm for intelligence in brains, minds, and machines. Science, 349(6245), 273-278. https://doi.org/10.1126/science.aac6076

Gerstenberg, T., Goodman, N. D., Lagnado, D. A., & Tenenbaum, J. B. (2021). A counterfactual simulation model of causal judgments for physical events. Psychological Review, 128(5), 936–975. https://doi.org/10.1037/rev0000281

Gomez-Ramirez, J., & Sanz, R. (2013). A model of how the brain discovers and manipulates relational structures. Frontiers in Psychology, 4, 963. https://doi.org/10.3389/fpsyg.2013.00963

Gottlieb, J., & Oudeyer, P.-Y. (2018). Towards a neuroscience of active sampling and curiosity. Nature Reviews Neuroscience, 19(12), 758–770. https://doi.org/10.1038/s41583-018-0078-0

Gottlieb, J., Oudeyer, P.-Y., Lopes, M., & Baranes, A. (2013). Information-seeking, curiosity, and attention: computational and neural mechanisms. Trends in Cognitive Sciences, 17(11), 585–593. https://doi.org/10.1016/j.tics.2013.09.001

Griffiths, T. L., Lieder, F., & Goodman, N. D. (2015). Rational use of cognitive resources: Levels of analysis between the computational and the algorithmic. Topics in Cognitive Science, 7(2), 217–229. https://doi.org/10.1111/tops.12142

Haken, H. (1983). Synergetics: An introduction. Springer-Verlag.

Hassabis, D., Kumaran, D., Summerfield, C., & Botvinick, M. (2017). Neuroscience-inspired artificial intelligence. Neuron, 95(2), 245–258. https://doi.org/10.1016/j.neuron.2017.06.011

Hasson, U., Chen, J., & Honey, C. J. (2015). Hierarchical process memory: Memory as an integral component of information processing. Trends in Cognitive Sciences, 19(6), 304–313. https://doi.org/10.1016/j.tics.2015.04.006

Heeger, D. J. (2017). Theory of cortical function. Proceedings of the National Academy of Sciences, 114(8), 1773–1782. https://doi.org/10.1073/pnas.1619788114

Hobson, J. A., & Friston, K. J. (2012). Waking and dreaming consciousness: Neurobiological and functional considerations. Progress in Neurobiology, 98(1), 82–98. https://doi.org/10.1016/j.pneurobio.2012.05.003

Hohwy, J., Roepstorff, A., & Friston, K. (2008). Predictive coding explains binocular rivalry: An epistemological review. Cognition, 108(3), 687–701. https://doi.org/10.1016/j.cognition.2008.05.010

Jaba, T. (2022). Dasatinib and quercetin: short-term simultaneous administration yields senolytic effect in humans. Issues and Developments in Medicine and Medical Research Vol. 2, 22-31.

Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., & Saul, L. K. (1999). An introduction to variational methods for graphical models. Machine Learning, 37(2), 183–233. https://doi.org/10.1023/A:1007665907178

Kaplan, R., & Friston, K. J. (2018). Planning and navigation as active inference. Biological Cybernetics, 112(4), 323–343. https://doi.org/10.1007/s00422-018-0753-2

Kersten, D., Mamassian, P., & Yuille, A. (2004). Object perception as Bayesian inference. Annual Review of Psychology, 55, 271–304. https://doi.org/10.1146/annurev.psych.55.090902.142005

Khrennikov, A. (2010). Ubiquitous quantum structure: From psychology to finance. Springer.

Kim, Y. H., Yu, R., Kulik, S. P., Shih, Y., & Scully, M. O. (2000). Delayed "choice" quantum eraser. Physical Review Letters, 84(1), 1–5. https://doi.org/10.1103/PhysRevLett.84.1

Kingma, D. P., & Welling, M. (2013). Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114. https://arxiv.org/abs/1312.6114

Knill, D. C., & Pouget, A. (2004). The Bayesian brain: The role of uncertainty in neural coding and computation. Trends in Neurosciences, 27(12), 712–719. https://doi.org/10.1016/j.tins.2004.10.007

Kondo, H. M., Van Ee, R., Nojiri, K., Kitagawa, N., & Kashino, M. (2022). Multiple timescales of the dynamics in bistable perception. Scientific Reports, 12(1), 2045. https://doi.org/10.1038/s41598-022-06014-z

Kounios, J., & Beeman, M. (2014). The cognitive neuroscience of insight. Annual Review of Psychology, 65, 71–93. https://doi.org/10.1146/annurev-psych-010213-115154

Krishnan, R. G., Shalit, U., & Sontag, D. (2017). Structured inference networks for nonlinear state space models. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 31, No. 1).

Kvam, P. D., Pleskac, T. J., Yu, S., & Busemeyer, J. R. (2015). Interference effects of choice on confidence: Quantum characteristics of evidence accumulation. Proceedings of the National Academy of Sciences, 112(34), 10645–10650. https://doi.org/10.1073/pnas.1500688112

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., & Gershman, S. J. (2017). Building machines that learn and think like people. Behavioral and Brain Sciences, 40, e253. https://doi.org/10.1017/S0140525X16001837

Lewis, P. A., & Durrant, S. J. (2011). Overlapping memory replay during sleep builds cognitive schemata. Trends in Cognitive Sciences, 15(8), 343–351. https://doi.org/10.1016/j.tics.2011.06.004

Liang, Y., Li, Y., Khanna, S., Liu, Y., & Li, J. (2018). Monitoring and diagnosing the causes of anomalies in distributed systems. In Proceedings of the 2018 ACM Symposium on Cloud Computing (pp. 476–488).

Lieder, F., Griffiths, T. L., & Goodman, N. D. (2018). Strategy selection as rational metareasoning. Psychological Review, 125(6), 852–889. https://doi.org/10.1037/rev0000135

Lin, J. (1991). Divergence measures based on the Shannon entropy. IEEE Transactions on Information Theory, 37(1), 145–151. https://doi.org/10.1109/18.61115

Linson, A., & Friston, K. (2019). Reframing PTSD for computational psychiatry with the active inference framework. Cognitive, Affective, & Behavioral Neuroscience, 19(3), 651–669. https://doi.org/10.3758/s13415-019-00723-1

Ma, W. J., Beck, J. M., Latham, P. E., & Pouget, A. (2006). Bayesian inference with probabilistic population codes. Nature Neuroscience, 9(11), 1432–1438. https://doi.org/10.1038/nn1790

MacKay, D. J. (2003). Information theory, inference and learning algorithms. Cambridge University Press.

Mackay, D. J. C. (2021). Information theory, inference and learning algorithms (New ed.). Cambridge University Press.

Merali, Z. (2015). The quantum source of space-time. Nature, 527(7578), 290–293. https://doi.org/10.1038/527290a

Meyniel, F., Schlunegger, D., & Dehaene, S. (2015). The sense of confidence during probabilistic learning: A normative account. PLoS Computational Biology, 11(6), e1004305. https://doi.org/10.1371/journal.pcbi.1004305

Mirza, M. B., Adams, R. A., Mathys, C., & Friston, K. J. (2016). Scene construction, visual foraging, and active inference. Frontiers in Computational Neuroscience, 10, 56. https://doi.org/10.3389/fncom.2016.00056

Parr, T., & Friston, K. J. (2018). The discrete and continuous brain: From decisions to movement—And back again. Neural Computation, 30(9), 2319–2347. https://doi.org/10.1162/neco_a_01102

Pearl, J. (2009). Causality: Models, reasoning, and inference (2nd ed.). Cambridge University Press.

Pezzulo, G., Rigoli, F., & Friston, K. (2013). Active inference, homeostatic regulation and adaptive behavioural control. Progress in Neurobiology, 134, 17–35. https://doi.org/10.1016/j.pneurobio.2015.09.001

Pfeifer, R., & Bongard, J. (2006). How the body shapes the way we think: A new view of intelligence. MIT Press.

Pothos, E. M., & Busemeyer, J. R. (2013). Can quantum probability provide a new direction for cognitive modeling? Behavioral and Brain Sciences, 36(3), 255–274. https://doi.org/10.1017/S0140525X12001525

Pouget, A., Dayan, P., & Zemel, R. (2003). Inference and computation with population codes. Annual Review of Neuroscience, 26, 381–410. https://doi.org/10.1146/annurev.neuro.26.041002.131112

Pouget, A., Drugowitsch, J., & Kepecs, A. (2016). Confidence and certainty: distinct probabilistic quantities for different goals. Nature Neuroscience, 19(3), 366–374. https://doi.org/10.1038/nn.4240

Rabinovich, M. I., Friston, K. J., & Varona, P. (Eds.). (2012). Principles of brain dynamics: Global state interactions. MIT Press.

Rao, R. P., & Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2(1), 79–87. https://doi.org/10.1038/4580

Rezende, D. J., Mohamed, S., & Wierstra, D. (2014). Stochastic backpropagation and approximate inference in deep generative models. In Proceedings of the 31st International Conference on Machine Learning (pp. 1278–1286). PMLR.

Riedel, C. J., Zurek, W. H., & Zwolak, M. (2016). The rise and fall of redundancy in decoherence and quantum Darwinism. New Journal of Physics, 18(2), 023010. https://doi.org/10.1088/1367-2630/18/2/023010

Sajid, N., Ball, P. J., Parr, T., & Friston, K. J. (2021). Active inference: Demystified and compared. Neural Computation, 33(3), 674–712. https://doi.org/10.1162/neco_a_01357

Sandkühler, S., & Bhattacharya, J. (2008). Deconstructing insight: EEG correlates of insightful problem solving. PLoS ONE, 3(1), e1459. https://doi.org/10.1371/journal.pone.0001459

Schapiro, A. C., & Turk-Browne, N. B. (2015). Statistical learning. Brain Mapping, 3, 501–506. https://doi.org/10.1016/B978-0-12-397025-1.00326-8

Schwartenbeck, P., FitzGerald, T., Dolan, R. J., & Friston, K. (2013). Exploration, novelty, surprise, and free energy minimization. Frontiers in Psychology, 4, 710. https://doi.org/10.3389/fpsyg.2013.00710

Scully, M. O., & Drühl, K. (1982). Quantum eraser: A proposed photon correlation experiment concerning observation and "delayed choice" in quantum mechanics. Physical Review A, 25(4), 2208–2213. https://doi.org/10.1103/PhysRevA.25.2208

Scully, M. O., Englert, B. G., & Walther, H. (1991). Quantum optical tests of complementarity. Nature, 351(6322), 111–116. https://doi.org/10.1038/351111a0

Shea, N., Boldt, A., Bang, D., Yeung, N., Heyes, C., & Frith, C. D. (2014). Supra-personal cognitive control and metacognition. Trends in Cognitive Sciences, 18(4), 186–193. https://doi.org/10.1016/j.tics.2014.01.006

Siegler, R. S. (2005). Children's learning. American Psychologist, 60(8), 769–778. https://doi.org/10.1037/0003-066X.60.8.769

Sohn, K., Lee, H., & Yan, X. (2015). Learning structured output representation using deep conditional generative models. Advances in Neural Information Processing Systems, 28.

Solway, A., & Botvinick, M. M. (2012). Goal-directed decision making as probabilistic inference: A computational framework and potential neural correlates. Psychological Review, 119(1), 120–154. https://doi.org/10.1037/a0026435

Stickgold, R., & Walker, M. P. (2013). Sleep-dependent memory triage: evolving generalization through selective processing. Nature Neuroscience, 16(2), 139–145. https://doi.org/10.1038/nn.3303

Tegmark, M. (2000). Importance of quantum decoherence in brain processes. Physical Review E, 61(4), 4194–4206. https://doi.org/10.1103/PhysRevE.61.4194

Tervo, D. G. R., Tenenbaum, J. B., & Gershman, S. J. (2016). Toward the neural implementation of structure learning. Current Opinion in Neurobiology, 37, 99–105. https://doi.org/10.1016/j.conb.2016.01.014

Tkemaladze, J. (2023). Reduction, proliferation, and differentiation defects of stem cells over time: a consequence of selective accumulation of old centrioles in the stem cells?. Molecular Biology Reports, 50(3), 2751-2761. DOI : https://pubmed.ncbi.nlm.nih.gov/36583780/

Tkemaladze, J. (2024). Editorial: Molecular mechanism of ageing and therapeutic advances through targeting glycative and oxidative stress. Front Pharmacol. 2024 Mar 6;14:1324446. DOI : 10.3389/fphar.2023.1324446. PMID: 38510429; PMCID: PMC10953819.

Tkemaladze, J. (2026). Old Centrioles Make Old Bodies. Annals of Rejuvenation Science, 1(1). DOI : https://doi.org/10.65649/yx9sn772

Tkemaladze, J. (2026). Visions of the Future. Longevity Horizon, 2(1). DOI : https://doi.org/10.65649/8be27s21

Tognoli, E., & Kelso, J. A. S. (2014). The metastable brain. Neuron, 81(1), 35–48. https://doi.org/10.1016/j.neuron.2013.12.022

Tomov, M. S., Yagati, S., Kumar, A., Yang, W., & Gershman, S. J. (2021). Discovery of hierarchical representations for efficient planning. PLoS Computational Biology, 16(4), e1007594. https://doi.org/10.1371/journal.pcbi.1007594

Tononi, G., & Cirelli, C. (2014). Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron, 81(1), 12–34. https://doi.org/10.1016/j.neuron.2013.12.025

Tschacher, W., & Haken, H. (2007). Intentionality in non-equilibrium systems? The functional aspects of self-organized pattern formation. New Ideas in Psychology, 25(1), 1–15. https://doi.org/10.1016/j.newideapsych.2006.09.002

von Neumann, J. (1932). Mathematical foundations of quantum mechanics. Princeton University Press.

Vul, E., Goodman, N., Griffiths, T. L., & Tenenbaum, J. B. (2014). One and done? Optimal decisions from very few samples. Cognitive Science, 38(4), 599–637. https://doi.org/10.1111/cogs.12101

Walborn, S. P., Terra Cunha, M. O., Pádua, S., & Monken, C. H. (2002). Double-slit quantum eraser. Physical Review A, 65(3), 033818. https://doi.org/10.1103/PhysRevA.65.033818

Wilson, R. C., & Niv, Y. (2011). Inferring relevance in a changing world. Frontiers in Human Neuroscience, 5, 189. https://doi.org/10.3389/fnhum.2011.00189

Wilson, R. C., Nassar, M. R., & Gold, J. I. (2010). Bayesian online learning of the hazard rate in change-point problems. Neural Computation, 22(9), 2452–2476. https://doi.org/10.1162/NECO_a_00007

Zurek, W. H. (2003). Decoherence, einselection, and the quantum origins of the classical. Reviews of Modern Physics, 75(3), 715–775. https://doi.org/10.1103/RevModPhys.75.715

Downloads

Published

2026-01-13

Issue

Section

Theoretical Frameworks

How to Cite

Tkemaladze, J. (2026). Mathematical formalism of Ze. Longevity Horizon, 2(2). DOI : https://doi.org/10.65649/kzj86888

Most read articles by the same author(s)

1 2 3 4 5 > >> 

Similar Articles

21-30 of 47

You may also start an advanced similarity search for this article.