Mathematical formalism of Ze
DOI:
https://doi.org/10.65649/kzj86888Keywords:
Cognitive Architecture, Variational Inference, Model Conflict, Active Inference, ZeAbstract
This article introduces and formalizes Ze, a novel theoretical framework for cognitive architecture and autonomous systems. Ze posits that advanced intelligence requires the maintenance of two distinct, asymmetric generative models of the same environment: a causal (forward) model MA\mathcal{M}_AMA and a counterfactual (inverse) model MB\mathcal{M}_BMB. Each model minimizes its own variational free energy FA\mathcal{F}_AFA, FB\mathcal{F}_BFB, and their interaction dynamics define core cognitive processes. A key emergent quantity is the model conflict ΔF=∣FA−FB∣\Delta \mathcal{F} = |\mathcal{F}_A - \mathcal{F}_B|ΔF=∣FA−FB∣, which regulates a phase transition between two fundamental regimes: an interference regime (characterized by low posterior divergence I≈0\mathcal{I} \approx 0I≈0 where model outputs are constructively fused), and a localization regime (ΔF>θ\Delta \mathcal{F} > \thetaΔF>θ) where the system commits to a single resolved interpretation s^\hat{s}s^. The framework is extended to include active action selection from model-specific policies, a mechanism for representational growth via "which-path" information, and a "quantum eraser" operator for strategic simplification. We demonstrate that this architecture establishes a strict formal isomorphism with quantum measurement phenomena, notably the double-slit experiment, but is grounded entirely in classical variational inference. The theory reinterprets cognitive "collapse" not as a postulate but as an optimization-driven phase transition and yields the key testable prediction that active, alternating intervention accelerates localization compared to passive observation.
References
Ahissar, E., & Assa, E. (2016). Perception as a closed-loop convergence process. eLife, 5, e12830. https://doi.org/10.7554/eLife.12830
Angela, J. Y., & Dayan, P. (2005). Uncertainty, neuromodulation, and attention. Neuron, 46(4), 681–692. https://doi.org/10.1016/j.neuron.2005.04.026
Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annual Review of Neuroscience, 28, 403–450. https://doi.org/10.1146/annurev.neuro.28.061604.135709
Atmanspacher, H., & beim Graben, P. (2007). Contextual emergence of mental states from neurodynamics. Chaos and Complexity Letters, 2(2/3), 151–168.
Baker, C. L., Jara-Ettinger, J., Saxe, R., & Tenenbaum, J. B. (2017). Rational quantitative attribution of beliefs, desires and percepts in human mentalizing. Nature Human Behaviour, 1(4), 0064. https://doi.org/10.1038/s41562-017-0064
Beal, M. J. (2003). Variational algorithms for approximate Bayesian inference [Doctoral dissertation, University College London].
Blei, D. M., Kucukelbir, A., & McAuliffe, J. D. (2017). Variational inference: A review for statisticians. Journal of the American Statistical Association, 112(518), 859–877. https://doi.org/10.1080/01621459.2017.1285773
Botvinick, M., & Toussaint, M. (2012). Planning as inference. Trends in Cognitive Sciences, 16(10), 485–488. https://doi.org/10.1016/j.tics.2012.08.006
Brette, R. (2022). Brains as computers: metaphor, analogy, theory or fact? Frontiers in Ecology and Evolution, 10, 878729. https://doi.org/10.3389/fevo.2022.878729
Bruza, P. D., Wang, Z., & Busemeyer, J. R. (2015). Quantum cognition: a new theoretical approach to psychology. Trends in Cognitive Sciences, 19(7), 383-393. https://doi.org/10.1016/j.tics.2015.05.001
Bruza, P. D., Wang, Z., & Busemeyer, J. R. (2015). Quantum cognition: a new theoretical approach to psychology. Trends in Cognitive Sciences, 19(7), 383–393. https://doi.org/10.1016/j.tics.2015.05.001
Buckley, C. L., Kim, C. S., McGregor, S., & Seth, A. K. (2017). The free energy principle for action and perception: A mathematical review. Journal of Mathematical Psychology, 81, 55–79. https://doi.org/10.1016/j.jmp.2017.09.004
Buschman, T. J., & Miller, E. K. (2007). Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science, 315(5820), 1860–1862. https://doi.org/10.1126/science.1138071
Busemeyer, J. R., & Bruza, P. D. (2012). Quantum models of cognition and decision. Cambridge University Press.
Chung, J., Kastner, K., Dinh, L., Goel, K., Courville, A. C., & Bengio, Y. (2015). A recurrent latent variable model for sequential data. Advances in Neural Information Processing Systems, 28.
Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(3), 181–204. https://doi.org/10.1017/S0140525X12000477
Clark, J. J., & Yuille, A. L. (1990). Data fusion for sensory information processing systems. Kluwer Academic Publishers.
Courville, A. C., Daw, N. D., & Touretzky, D. S. (2006). Bayesian theories of conditioning in a changing world. Trends in Cognitive Sciences, 10(7), 294–300. https://doi.org/10.1016/j.tics.2006.05.004
Dayan, P., Hinton, G. E., Neal, R. M., & Zemel, R. S. (1995). The Helmholtz machine. Neural Computation, 7(5), 889–904. https://doi.org/10.1162/neco.1995.7.5.889
De Berker, A. O., Rutledge, R. B., Mathys, C., Marshall, L., Cross, G. F., Dolan, R. J., & Bestmann, S. (2016). Computations of uncertainty mediate acute stress responses in humans. Nature Communications, 7, 10996. https://doi.org/10.1038/ncomms10996
Diekelmann, S., & Born, J. (2010). The memory function of sleep. Nature Reviews Neuroscience, 11(2), 114–126. https://doi.org/10.1038/nrn2762
Endres, D. M., & Schindelin, J. E. (2003). A new metric for probability distributions. IEEE Transactions on Information Theory, 49(7), 1858–1860. https://doi.org/10.1109/TIT.2003.813506
Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415(6870), 429–433. https://doi.org/10.1038/415429a
Feldman, H., & Friston, K. J. (2010). Attention, uncertainty, and free-energy. Frontiers in Human Neuroscience, 4, 215. https://doi.org/10.3389/fnhum.2010.00215
Feynman, R. P., Leighton, R. B., & Sands, M. (1965). The Feynman lectures on physics, Vol. 3: Quantum mechanics. Addison-Wesley.
Findling, C., Chopin, N., & Koechlin, E. (2023). Imprecise neural computations as a source of adaptive behavioural variability. Nature Communications, 14, 3686. https://doi.org/10.1038/s41467-023-39380-x
FitzGibbon, L., Lau, J. K., & Murayama, K. (2020). The seductive lure of curiosity: information as a motivationally salient reward. Current Opinion in Behavioral Sciences, 35, 21–27. https://doi.org/10.1016/j.cobeha.2020.05.014
Fleming, S. M., & Daw, N. D. (2017). Self-evaluation of decision-making: A general Bayesian framework for metacognitive computation. Psychological Review, 124(1), 91–114. https://doi.org/10.1037/rev0000045
Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1456), 815–836. https://doi.org/10.1098/rstb.2005.1622
Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11(2), 127–138. https://doi.org/10.1038/nrn2787
Friston, K., FitzGerald, T., Rigoli, F., Schwartenbeck, P., & Pezzulo, G. (2017). Active inference: A process theory. Neural Computation, 29(1), 1–49. https://doi.org/10.1162/NECO_a_00912
Friston, K., Thornton, C., & Clark, A. (2012). Free-energy minimization and the dark-room problem. Frontiers in Psychology, 3, 130. https://doi.org/10.3389/fpsyg.2012.00130
Gallego, J. A., Perich, M. G., Chowdhury, R. H., Solla, S. A., & Miller, L. E. (2020). Long-term stability of cortical population dynamics underlying consistent behavior. Nature Neuroscience, 23(2), 260–270. https://doi.org/10.1038/s41593-019-0555-4
Gershman, S. J., & Niv, Y. (2010). Learning latent structure: Carving nature at its joints. Current Opinion in Neurobiology, 20(2), 251–256. https://doi.org/10.1016/j.conb.2010.02.008
Gershman, S. J., Horvitz, E. J., & Tenenbaum, J. B. (2015). Computational rationality: A converging paradigm for intelligence in brains, minds, and machines. Science, 349(6245), 273-278. https://doi.org/10.1126/science.aac6076
Gerstenberg, T., Goodman, N. D., Lagnado, D. A., & Tenenbaum, J. B. (2021). A counterfactual simulation model of causal judgments for physical events. Psychological Review, 128(5), 936–975. https://doi.org/10.1037/rev0000281
Gomez-Ramirez, J., & Sanz, R. (2013). A model of how the brain discovers and manipulates relational structures. Frontiers in Psychology, 4, 963. https://doi.org/10.3389/fpsyg.2013.00963
Gottlieb, J., & Oudeyer, P.-Y. (2018). Towards a neuroscience of active sampling and curiosity. Nature Reviews Neuroscience, 19(12), 758–770. https://doi.org/10.1038/s41583-018-0078-0
Gottlieb, J., Oudeyer, P.-Y., Lopes, M., & Baranes, A. (2013). Information-seeking, curiosity, and attention: computational and neural mechanisms. Trends in Cognitive Sciences, 17(11), 585–593. https://doi.org/10.1016/j.tics.2013.09.001
Griffiths, T. L., Lieder, F., & Goodman, N. D. (2015). Rational use of cognitive resources: Levels of analysis between the computational and the algorithmic. Topics in Cognitive Science, 7(2), 217–229. https://doi.org/10.1111/tops.12142
Haken, H. (1983). Synergetics: An introduction. Springer-Verlag.
Hassabis, D., Kumaran, D., Summerfield, C., & Botvinick, M. (2017). Neuroscience-inspired artificial intelligence. Neuron, 95(2), 245–258. https://doi.org/10.1016/j.neuron.2017.06.011
Hasson, U., Chen, J., & Honey, C. J. (2015). Hierarchical process memory: Memory as an integral component of information processing. Trends in Cognitive Sciences, 19(6), 304–313. https://doi.org/10.1016/j.tics.2015.04.006
Heeger, D. J. (2017). Theory of cortical function. Proceedings of the National Academy of Sciences, 114(8), 1773–1782. https://doi.org/10.1073/pnas.1619788114
Hobson, J. A., & Friston, K. J. (2012). Waking and dreaming consciousness: Neurobiological and functional considerations. Progress in Neurobiology, 98(1), 82–98. https://doi.org/10.1016/j.pneurobio.2012.05.003
Hohwy, J., Roepstorff, A., & Friston, K. (2008). Predictive coding explains binocular rivalry: An epistemological review. Cognition, 108(3), 687–701. https://doi.org/10.1016/j.cognition.2008.05.010
Jaba, T. (2022). Dasatinib and quercetin: short-term simultaneous administration yields senolytic effect in humans. Issues and Developments in Medicine and Medical Research Vol. 2, 22-31.
Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., & Saul, L. K. (1999). An introduction to variational methods for graphical models. Machine Learning, 37(2), 183–233. https://doi.org/10.1023/A:1007665907178
Kaplan, R., & Friston, K. J. (2018). Planning and navigation as active inference. Biological Cybernetics, 112(4), 323–343. https://doi.org/10.1007/s00422-018-0753-2
Kersten, D., Mamassian, P., & Yuille, A. (2004). Object perception as Bayesian inference. Annual Review of Psychology, 55, 271–304. https://doi.org/10.1146/annurev.psych.55.090902.142005
Khrennikov, A. (2010). Ubiquitous quantum structure: From psychology to finance. Springer.
Kim, Y. H., Yu, R., Kulik, S. P., Shih, Y., & Scully, M. O. (2000). Delayed "choice" quantum eraser. Physical Review Letters, 84(1), 1–5. https://doi.org/10.1103/PhysRevLett.84.1
Kingma, D. P., & Welling, M. (2013). Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114. https://arxiv.org/abs/1312.6114
Knill, D. C., & Pouget, A. (2004). The Bayesian brain: The role of uncertainty in neural coding and computation. Trends in Neurosciences, 27(12), 712–719. https://doi.org/10.1016/j.tins.2004.10.007
Kondo, H. M., Van Ee, R., Nojiri, K., Kitagawa, N., & Kashino, M. (2022). Multiple timescales of the dynamics in bistable perception. Scientific Reports, 12(1), 2045. https://doi.org/10.1038/s41598-022-06014-z
Kounios, J., & Beeman, M. (2014). The cognitive neuroscience of insight. Annual Review of Psychology, 65, 71–93. https://doi.org/10.1146/annurev-psych-010213-115154
Krishnan, R. G., Shalit, U., & Sontag, D. (2017). Structured inference networks for nonlinear state space models. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 31, No. 1).
Kvam, P. D., Pleskac, T. J., Yu, S., & Busemeyer, J. R. (2015). Interference effects of choice on confidence: Quantum characteristics of evidence accumulation. Proceedings of the National Academy of Sciences, 112(34), 10645–10650. https://doi.org/10.1073/pnas.1500688112
Lake, B. M., Ullman, T. D., Tenenbaum, J. B., & Gershman, S. J. (2017). Building machines that learn and think like people. Behavioral and Brain Sciences, 40, e253. https://doi.org/10.1017/S0140525X16001837
Lewis, P. A., & Durrant, S. J. (2011). Overlapping memory replay during sleep builds cognitive schemata. Trends in Cognitive Sciences, 15(8), 343–351. https://doi.org/10.1016/j.tics.2011.06.004
Liang, Y., Li, Y., Khanna, S., Liu, Y., & Li, J. (2018). Monitoring and diagnosing the causes of anomalies in distributed systems. In Proceedings of the 2018 ACM Symposium on Cloud Computing (pp. 476–488).
Lieder, F., Griffiths, T. L., & Goodman, N. D. (2018). Strategy selection as rational metareasoning. Psychological Review, 125(6), 852–889. https://doi.org/10.1037/rev0000135
Lin, J. (1991). Divergence measures based on the Shannon entropy. IEEE Transactions on Information Theory, 37(1), 145–151. https://doi.org/10.1109/18.61115
Linson, A., & Friston, K. (2019). Reframing PTSD for computational psychiatry with the active inference framework. Cognitive, Affective, & Behavioral Neuroscience, 19(3), 651–669. https://doi.org/10.3758/s13415-019-00723-1
Ma, W. J., Beck, J. M., Latham, P. E., & Pouget, A. (2006). Bayesian inference with probabilistic population codes. Nature Neuroscience, 9(11), 1432–1438. https://doi.org/10.1038/nn1790
MacKay, D. J. (2003). Information theory, inference and learning algorithms. Cambridge University Press.
Mackay, D. J. C. (2021). Information theory, inference and learning algorithms (New ed.). Cambridge University Press.
Merali, Z. (2015). The quantum source of space-time. Nature, 527(7578), 290–293. https://doi.org/10.1038/527290a
Meyniel, F., Schlunegger, D., & Dehaene, S. (2015). The sense of confidence during probabilistic learning: A normative account. PLoS Computational Biology, 11(6), e1004305. https://doi.org/10.1371/journal.pcbi.1004305
Mirza, M. B., Adams, R. A., Mathys, C., & Friston, K. J. (2016). Scene construction, visual foraging, and active inference. Frontiers in Computational Neuroscience, 10, 56. https://doi.org/10.3389/fncom.2016.00056
Parr, T., & Friston, K. J. (2018). The discrete and continuous brain: From decisions to movement—And back again. Neural Computation, 30(9), 2319–2347. https://doi.org/10.1162/neco_a_01102
Pearl, J. (2009). Causality: Models, reasoning, and inference (2nd ed.). Cambridge University Press.
Pezzulo, G., Rigoli, F., & Friston, K. (2013). Active inference, homeostatic regulation and adaptive behavioural control. Progress in Neurobiology, 134, 17–35. https://doi.org/10.1016/j.pneurobio.2015.09.001
Pfeifer, R., & Bongard, J. (2006). How the body shapes the way we think: A new view of intelligence. MIT Press.
Pothos, E. M., & Busemeyer, J. R. (2013). Can quantum probability provide a new direction for cognitive modeling? Behavioral and Brain Sciences, 36(3), 255–274. https://doi.org/10.1017/S0140525X12001525
Pouget, A., Dayan, P., & Zemel, R. (2003). Inference and computation with population codes. Annual Review of Neuroscience, 26, 381–410. https://doi.org/10.1146/annurev.neuro.26.041002.131112
Pouget, A., Drugowitsch, J., & Kepecs, A. (2016). Confidence and certainty: distinct probabilistic quantities for different goals. Nature Neuroscience, 19(3), 366–374. https://doi.org/10.1038/nn.4240
Rabinovich, M. I., Friston, K. J., & Varona, P. (Eds.). (2012). Principles of brain dynamics: Global state interactions. MIT Press.
Rao, R. P., & Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2(1), 79–87. https://doi.org/10.1038/4580
Rezende, D. J., Mohamed, S., & Wierstra, D. (2014). Stochastic backpropagation and approximate inference in deep generative models. In Proceedings of the 31st International Conference on Machine Learning (pp. 1278–1286). PMLR.
Riedel, C. J., Zurek, W. H., & Zwolak, M. (2016). The rise and fall of redundancy in decoherence and quantum Darwinism. New Journal of Physics, 18(2), 023010. https://doi.org/10.1088/1367-2630/18/2/023010
Sajid, N., Ball, P. J., Parr, T., & Friston, K. J. (2021). Active inference: Demystified and compared. Neural Computation, 33(3), 674–712. https://doi.org/10.1162/neco_a_01357
Sandkühler, S., & Bhattacharya, J. (2008). Deconstructing insight: EEG correlates of insightful problem solving. PLoS ONE, 3(1), e1459. https://doi.org/10.1371/journal.pone.0001459
Schapiro, A. C., & Turk-Browne, N. B. (2015). Statistical learning. Brain Mapping, 3, 501–506. https://doi.org/10.1016/B978-0-12-397025-1.00326-8
Schwartenbeck, P., FitzGerald, T., Dolan, R. J., & Friston, K. (2013). Exploration, novelty, surprise, and free energy minimization. Frontiers in Psychology, 4, 710. https://doi.org/10.3389/fpsyg.2013.00710
Scully, M. O., & Drühl, K. (1982). Quantum eraser: A proposed photon correlation experiment concerning observation and "delayed choice" in quantum mechanics. Physical Review A, 25(4), 2208–2213. https://doi.org/10.1103/PhysRevA.25.2208
Scully, M. O., Englert, B. G., & Walther, H. (1991). Quantum optical tests of complementarity. Nature, 351(6322), 111–116. https://doi.org/10.1038/351111a0
Shea, N., Boldt, A., Bang, D., Yeung, N., Heyes, C., & Frith, C. D. (2014). Supra-personal cognitive control and metacognition. Trends in Cognitive Sciences, 18(4), 186–193. https://doi.org/10.1016/j.tics.2014.01.006
Siegler, R. S. (2005). Children's learning. American Psychologist, 60(8), 769–778. https://doi.org/10.1037/0003-066X.60.8.769
Sohn, K., Lee, H., & Yan, X. (2015). Learning structured output representation using deep conditional generative models. Advances in Neural Information Processing Systems, 28.
Solway, A., & Botvinick, M. M. (2012). Goal-directed decision making as probabilistic inference: A computational framework and potential neural correlates. Psychological Review, 119(1), 120–154. https://doi.org/10.1037/a0026435
Stickgold, R., & Walker, M. P. (2013). Sleep-dependent memory triage: evolving generalization through selective processing. Nature Neuroscience, 16(2), 139–145. https://doi.org/10.1038/nn.3303
Tegmark, M. (2000). Importance of quantum decoherence in brain processes. Physical Review E, 61(4), 4194–4206. https://doi.org/10.1103/PhysRevE.61.4194
Tervo, D. G. R., Tenenbaum, J. B., & Gershman, S. J. (2016). Toward the neural implementation of structure learning. Current Opinion in Neurobiology, 37, 99–105. https://doi.org/10.1016/j.conb.2016.01.014
Tkemaladze, J. (2023). Reduction, proliferation, and differentiation defects of stem cells over time: a consequence of selective accumulation of old centrioles in the stem cells?. Molecular Biology Reports, 50(3), 2751-2761. DOI : https://pubmed.ncbi.nlm.nih.gov/36583780/
Tkemaladze, J. (2024). Editorial: Molecular mechanism of ageing and therapeutic advances through targeting glycative and oxidative stress. Front Pharmacol. 2024 Mar 6;14:1324446. DOI : 10.3389/fphar.2023.1324446. PMID: 38510429; PMCID: PMC10953819.
Tkemaladze, J. (2026). Old Centrioles Make Old Bodies. Annals of Rejuvenation Science, 1(1). DOI : https://doi.org/10.65649/yx9sn772
Tkemaladze, J. (2026). Visions of the Future. Longevity Horizon, 2(1). DOI : https://doi.org/10.65649/8be27s21
Tognoli, E., & Kelso, J. A. S. (2014). The metastable brain. Neuron, 81(1), 35–48. https://doi.org/10.1016/j.neuron.2013.12.022
Tomov, M. S., Yagati, S., Kumar, A., Yang, W., & Gershman, S. J. (2021). Discovery of hierarchical representations for efficient planning. PLoS Computational Biology, 16(4), e1007594. https://doi.org/10.1371/journal.pcbi.1007594
Tononi, G., & Cirelli, C. (2014). Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron, 81(1), 12–34. https://doi.org/10.1016/j.neuron.2013.12.025
Tschacher, W., & Haken, H. (2007). Intentionality in non-equilibrium systems? The functional aspects of self-organized pattern formation. New Ideas in Psychology, 25(1), 1–15. https://doi.org/10.1016/j.newideapsych.2006.09.002
von Neumann, J. (1932). Mathematical foundations of quantum mechanics. Princeton University Press.
Vul, E., Goodman, N., Griffiths, T. L., & Tenenbaum, J. B. (2014). One and done? Optimal decisions from very few samples. Cognitive Science, 38(4), 599–637. https://doi.org/10.1111/cogs.12101
Walborn, S. P., Terra Cunha, M. O., Pádua, S., & Monken, C. H. (2002). Double-slit quantum eraser. Physical Review A, 65(3), 033818. https://doi.org/10.1103/PhysRevA.65.033818
Wilson, R. C., & Niv, Y. (2011). Inferring relevance in a changing world. Frontiers in Human Neuroscience, 5, 189. https://doi.org/10.3389/fnhum.2011.00189
Wilson, R. C., Nassar, M. R., & Gold, J. I. (2010). Bayesian online learning of the hazard rate in change-point problems. Neural Computation, 22(9), 2452–2476. https://doi.org/10.1162/NECO_a_00007
Zurek, W. H. (2003). Decoherence, einselection, and the quantum origins of the classical. Reviews of Modern Physics, 75(3), 715–775. https://doi.org/10.1103/RevModPhys.75.715
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Jaba Tkemaladze (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
