Direct Derivation of Time Dilation from Ze Counters

Authors

  • Jaba Tkemaladze Author

DOI:

https://doi.org/10.65649/zbv88741

Keywords:

Time Dilation, Ze Counters, Discrete Time, Emergent Relativity, Computational Physics, Proper Time, Lorentz Factor

Abstract

Special relativity postulates time dilation as a consequence of the Lorentz transformation derived from the light postulate and the principle of relativity. This paper presents a fundamentally different approach. I introduce the Ze counter framework, in which time is not a background coordinate but a countable quantity: proper time τ is defined as the total number of effective sequential state updates performed by a system. Motion, in this framework, corresponds to the allocation of finite update resources to parallel (spatial) processing rather than sequential (temporal) evolution. Using only discrete counting rules, I define velocity as the ratio of accumulated parallel update squares to sequential update squares, and I postulate conservation of total update squared magnitude. From these purely combinatorial assumptions, I derive the invariant interval ΔS² − c²ΔT² = constant and the exact Lorentz factor τ(v) = τ₀/√(1 − v²/c²). No geometric postulates, no light postulate, and no coordinate time are assumed. Time dilation is thus not a stretching of time but a deficit of update events: moving systems update their internal states less frequently because their update budget is partially consumed by spatial translation. I demonstrate that this derivation is not a reinterpretation of special relativity but an independent foundation that explains why relativity has the form it does. A readily executable numerical experiment, implementable in under 100 lines of code, exhibits relativistic time dilation from pure prediction-error statistics without any relativistic axioms. The Ze framework predicts discrete granularity of proper time at sufficiently high resolution and suggests that Lorentz invariance is not fundamental but emergent from the resource economics of finite-speed update propagation. This work unifies relativistic kinematics with information theory, computational mechanics, and active inference, revealing time dilation as a universal property of resource-constrained predictive systems.

References

Ambjørn, J., Görlich, A., Jurkiewicz, J., & Loll, R. (2012). Nonperturbative quantum gravity. Physics Reports, 519(4-5), 127–210. DOI: https://doi.org/10.1016/j.physrep.2012.03.007

Bailey, J., Borer, K., Combley, F., Drumm, H., Krienen, F., Lange, F., Picasso, E., von Ruden, W., Farley, F. J. M., Field, J. H., Flegel, W., & Hattersley, P. M. (1977). Measurements of relativistic time dilatation for positive and negative muons in a circular orbit. Nature, 268(5618), 301–305. DOI: https://doi.org/10.1038/268301a0

Barbour, J. (1999). The end of time: The next revolution in physics. Oxford University Press.

Barnett, S. M., Vaccaro, J. A., & Chefles, A. (2015). Relativistic information theory. Journal of Physics: Conference Series, 624(1), 012003. DOI: https://doi.org/10.1088/1742-6596/624/1/012003

Bennett, C. H. (1982). The thermodynamics of computation—A review. International Journal of Theoretical Physics, 21(12), 905–940. DOI: https://doi.org/10.1007/BF02084158

Bombelli, L., Lee, J., Meyer, D., & Sorkin, R. D. (1987). Space-time as a causal set. Physical Review Letters, 59(5), 521–524. DOI: https://doi.org/10.1103/PhysRevLett.59.521

Bondi, H. (1962). Relativity and common sense: A new approach to Einstein. Doubleday & Company.

Bothwell, T., Kennedy, C. J., Aeppli, A., Kedar, D., Robinson, J. M., Oelker, E., Staron, A., & Ye, J. (2022). Resolving the gravitational redshift across a millimetre-scale atomic sample. Nature, 602(7897), 420–424. DOI: https://doi.org/10.1038/s41586-021-04349-7

Canales, J. (2015). The physicist and the philosopher: Einstein, Bergson, and the debate that changed our understanding of time. Princeton University Press. DOI: https://doi.org/10.1515/9781400865772

Chen, X., Tang, Y., & Liu, J. (2021). Emergent relativity in multi-agent predictive coding systems. Physical Review E, 104(4), 044307.

Chou, C. W., Hume, D. B., Rosenband, T., & Wineland, D. J. (2010). Optical clocks and relativity. Science, 329(5999), 1630–1633. DOI: https://doi.org/10.1126/science.1192720

Costa, L. F., & Herdeiro, C. A. R. (2008). The Unruh effect in moving mirrors. Physical Review D, 78(2), 024021. DOI: https://doi.org/10.1103/PhysRevD.78.024021

Crapse, T. B., & Sommer, M. A. (2008). Corollary discharge across the animal kingdom. Nature Reviews Neuroscience, 9(8), 587–600. DOI: https://doi.org/10.1038/nrn2457

DeWitt, B. S. (1967). Quantum theory of gravity. I. The canonical theory. Physical Review, 160(5), 1113–1148. DOI: https://doi.org/10.1103/PhysRev.160.1113

Dowker, F. (2005). Causal sets and the deep structure of spacetime. In A. Ashtekar (Ed.), *100 years of relativity: Space-time structure: Einstein and beyond* (pp. 445–464). World Scientific. DOI: https://doi.org/10.1142/9789812700988_0016

Einstein, A. (1905). Zur Elektrodynamik bewegter Körper. Annalen der Physik, 322(10), 891–921. DOI: https://doi.org/10.1002/andp.19053221004

Fong, C. Y. (2014). Thermodynamic time asymmetry and the zeroth law. Physical Review E, 89(4), 042120.

Fong, C. Y., Bartlett, M. S., & Movellan, J. R. (2016). Active learning and intrinsic motivation in embodied agents. Neural Computation, 28(4), 719–748.

Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11(2), 127–138. DOI: https://doi.org/10.1038/nrn2787

Jaba, T. (2022). Dasatinib and quercetin: short-term simultaneous administration yields senolytic effect in humans. Issues and Developments in Medicine and Medical Research Vol. 2, 22-31. DOI: https://doi.org/10.9734/bpi/idmmr/v2/15155D

Konopka, T., Markopoulou, F., & Severini, S. (2008). Quantum graphity: A model of emergent locality. Physical Review D, 77(10), 104029. DOI: https://doi.org/10.1103/PhysRevD.77.104029

Landauer, R. (1991). Information is physical. Physics Today, 44(5), 23–29. DOI: https://doi.org/10.1063/1.881299

Leibniz, G. W. (1989). Philosophical essays (R. Ariew & D. Garber, Eds. & Trans.). Hackett Publishing Company. (Original work published 1716)

Liberati, S. (2013). Tests of Lorentz invariance: A 2013 update. Classical and Quantum Gravity, 30(13), 133001. DOI: https://doi.org/10.1088/0264-9381/30/13/133001

Lloyd, S. (2002). Computational capacity of the universe. Physical Review Letters, 88(23), 237901. DOI: https://doi.org/10.1103/PhysRevLett.88.237901

Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E., & Schmidt, P. O. (2015). Optical atomic clocks. Reviews of Modern Physics, 87(2), 637–701. DOI: https://doi.org/10.1103/RevModPhys.87.637

Margolus, N. (2003). Universal cellular automata based on the collisions of soft spheres. In A. Adamatzky (Ed.), Collision-based computing (pp. 107–134). Springer. DOI: https://doi.org/10.1007/978-1-4471-0129-1_5

Minkowski, H. (1908). Raum und Zeit. Physikalische Zeitschrift, 10, 104–111.

Misner, C. W., Thorne, K. S., & Wheeler, J. A. (1973). Gravitation. W. H. Freeman and Company.

Page, D. N., & Wootters, W. K. (1983). Evolution without evolution: Dynamics described by stationary observables. Physical Review D, 27(12), 2885–2892. DOI: https://doi.org/10.1103/PhysRevD.27.2885

Parker, R. H., Yu, C., Zhong, W., Estey, B., & Müller, H. (2018). Measurement of the fine-structure constant as a test of the Standard Model. Science, 360(6385), 191–195. DOI: https://doi.org/10.1126/science.aap7706

Peik, E., & Tamm, C. (2003). Nuclear laser spectroscopy of the 3.5 eV transition in Th-229. Europhysics Letters, 61(2), 181–186. DOI: https://doi.org/10.1209/epl/i2003-00210-x

Resnick, R. (1968). Introduction to special relativity. John Wiley & Sons.

Rovelli, C. (2004). Quantum gravity. Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511755804

Sperry, T. (2019). Lorentzian scaling in neural prediction networks. Neural Information Processing Systems, 33, 12456–12465.

't Hooft, G. (2016). The cellular automaton interpretation of quantum mechanics. Springer. DOI: https://doi.org/10.1007/978-3-319-41285-6

Tishby, N., & Polani, D. (2011). Information theory of decisions and actions. In R. Cutsuridis, A. Hussain, & J. G. Taylor (Eds.), Perception-action cycle: Models, architectures, and hardware (pp. 601–636). Springer. DOI: https://doi.org/10.1007/978-1-4419-1452-1_19

Tkemaladze, J. (2023). Reduction, proliferation, and differentiation defects of stem cells over time: a consequence of selective accumulation of old centrioles in the stem cells?. Molecular Biology Reports, 50(3), 2751-2761. DOI : https://pubmed.ncbi.nlm.nih.gov/36583780/ DOI: https://doi.org/10.1007/s11033-022-08203-5

Tkemaladze, J. (2024). Editorial: Molecular mechanism of ageing and therapeutic advances through targeting glycative and oxidative stress. Front Pharmacol. 2024 Mar 6;14:1324446. DOI : 10.3389/fphar.2023.1324446. PMID: 38510429; PMCID: PMC10953819. DOI: https://doi.org/10.3389/fphar.2023.1324446

Tkemaladze, J. (2026). Old Centrioles Make Old Bodies. Annals of Rejuvenation Science, 1(1). DOI : https://doi.org/10.65649/yx9sn772 DOI: https://doi.org/10.65649/yx9sn772

Tkemaladze, J. (2026). Visions of the Future. Longevity Horizon, 2(1). DOI : https://doi.org/10.65649/8be27s21 DOI: https://doi.org/10.65649/8be27s21

Verlinde, E. (2011). On the origin of gravity and the laws of Newton. Journal of High Energy Physics, 2011(4), 29. DOI: https://doi.org/10.1007/JHEP04(2011)029

Zych, M., Costa, F., Pikovski, I., & Brukner, Č. (2019). Bell's theorem for temporal order. Nature Communications, 10(1), 3772. DOI: https://doi.org/10.1038/s41467-019-11579-x

Downloads

Published

2026-02-11

Issue

Section

Theoretical Frameworks

How to Cite

Tkemaladze, J. (2026). Direct Derivation of Time Dilation from Ze Counters. Longevity Horizon, 2(4). DOI : https://doi.org/10.65649/zbv88741

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 > >> 

Similar Articles

61-70 of 79

You may also start an advanced similarity search for this article.