Why Ze is not Many-Worlds

Authors

  • Jaba Tkemaladze Author

DOI:

https://doi.org/10.65649/fyd9x473

Keywords:

Quantum Foundations, Many-Worlds Interpretation, Ze Framework, Active Inference, Free Energy Principle, Epistemic Models

Abstract

This paper presents a definitive refutation of the recurring conjecture that the Ze framework constitutes a variant of the Many-Worlds Interpretation (MWI) of quantum mechanics. Through a systematic, point-by-point analysis, we demonstrate that the two are radically orthogonal paradigms, separated by irreconcilable differences in their foundational principles. While both reject the notion of a fundamental wavefunction collapse, MWI responds by positing an ever-branching multiverse where all quantum possibilities are ontologically real. In stark contrast, the Ze framework, grounded in the principles of active inference and free energy minimization, preserves a single-world ontology. It reinterprets quantum superpositions as manifestations of unresolved epistemic model conflict within an adaptive system, and "measurement" as the physical process of forced localization, where a definite history crystallizes. The analysis conclusively distinguishes Ze from MWI across critical dimensions: the nature of alternatives (ontological worlds vs. epistemic models), the process of definiteness (subjective branching vs. objective optimization), the role of the observer (covert privilege vs. its elimination), and the capacity for empirical prediction. We conclude that Ze is not an interpretation of quantum formalism but a broader theory of how adaptive systems, from particles to brains, resolve uncertainty, thereby offering a monistic, parsimonious, and empirically grounded alternative to the inflationary ontology of the multiverse.

References

Albert, D. Z. (2010). Probability in the Everett picture. In S. Saunders, J. Barrett, A. Kent, & D. Wallace (Eds.), Many Worlds? Everett, Quantum Theory, & Reality (pp. 355-368). Oxford University Press.

Arndt, M., Nairz, O., Vos-Andreae, J., Keller, C., van der Zouw, G., & Zeilinger, A. (1999). Wave–particle duality of C60 molecules. Nature, 401(6754), 680–682. https://doi.org/10.1038/44348

Brukner, Č. (2017). On the quantum measurement problem. In Quantum [Un]Speakables II (pp. 95-117). Springer, Cham.

Buckley, C. L., Kim, C. S., McGregor, S., & Seth, A. K. (2017). The free energy principle for action and perception: A mathematical review. Journal of Mathematical Psychology, 81, 55–79. https://doi.org/10.1016/j.jmp.2017.09.004

Carroll, S. (2019). Something Deeply Hidden: Quantum Worlds and the Emergence of Spacetime. Dutton.

Carroll, S. M. (2019). Beyond Falsifiability: Normal Science in a Multiverse. In R. Dardashti, R. Dawid, & K. Thébault (Eds.), Why Trust a Theory? (pp. 300–314). Cambridge University Press.

Deutsch, D. (1999). Quantum theory of probability and decisions. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 455(1988), 3129–3137.

Everett, H., III. (1957). "Relative state" formulation of quantum mechanics. Reviews of Modern Physics, 29(3), 454–462.

Fong, W., Berger, E., & Chornock, R. (2016). A multi-wavelength analysis of the relativistic supernova SN 2009bb. The Astrophysical Journal, 821(2), 89.

Friston, K. (2010). The free-energy principle: a unified brain theory? Nature Reviews Neuroscience, 11(2), 127–138. https://doi.org/10.1038/nrn2787

Friston, K., FitzGerald, T., Rigoli, F., Schwartenbeck, P., & Pezzulo, G. (2017). Active inference: a process theory. Neural Computation, 29(1), 1–49. https://doi.org/10.1162/NECO_a_00912

Fuchs, C. A., & Schack, R. (2013). Quantum-Bayesian coherence. Reviews of Modern Physics, 85(4), 1693–1715. https://doi.org/10.1103/RevModPhys.85.1693

Fuchs, C. A., Mermin, N. D., & Schack, R. (2014). An introduction to QBism with an application to the locality of quantum mechanics. American Journal of Physics, 82(8), 749–754.

Hohwy, J. (2013). The Predictive Mind. Oxford University Press.

Jaba, T. (2022). Dasatinib and quercetin: short-term simultaneous administration yields senolytic effect in humans. Issues and Developments in Medicine and Medical Research Vol. 2, 22-31.

Kent, A. (2015). Testing the many-worlds interpretation of quantum mechanics. arXiv preprint arXiv:1510.03755.

Kim, Y.-H., Yu, R., Kulik, S. P., Shih, Y., & Scully, M. O. (2000). Delayed "choice" quantum eraser. Physical Review Letters, 84(1), 1–5. https://doi.org/10.1103/PhysRevLett.84.1

Knill, D. C., & Pouget, A. (2004). The Bayesian brain: the role of uncertainty in neural coding and computation. Trends in Neurosciences, 27(12), 712–719. https://doi.org/10.1016/j.tins.2004.10.007

Laudisa, F., & Rovelli, C. (2021). Relational quantum mechanics. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Spring 2021 Edition). Metaphysics Research Lab, Stanford University.

Peres, A. (1995). Quantum Theory: Concepts and Methods. Kluwer Academic Publishers.

Price, H. (2010). Decisions, decisions, decisions: can Savage salvage Everettian probability? In S. Saunders, J. Barrett, A. Kent, & D. Wallace (Eds.), Many Worlds? Everett, Quantum Theory, & Reality (pp. 369-390). Oxford University Press.

Rovelli, C. (1996). Relational quantum mechanics. International Journal of Theoretical Physics, 35(8), 1637–1678.

Saunders, S., Barrett, J., Kent, A., & Wallace, D. (Eds.). (2010). Many Worlds? Everett, Quantum Theory, and Reality. Oxford University Press.

Schlosshauer, M. (2019). Quantum decoherence. Physics Reports, 831, 1–57.

Tkemaladze, J. (2023). Reduction, proliferation, and differentiation defects of stem cells over time: a consequence of selective accumulation of old centrioles in the stem cells?. Molecular Biology Reports, 50(3), 2751-2761. DOI : https://pubmed.ncbi.nlm.nih.gov/36583780/

Tkemaladze, J. (2024). Editorial: Molecular mechanism of ageing and therapeutic advances through targeting glycative and oxidative stress. Front Pharmacol. 2024 Mar 6;14:1324446. DOI : 10.3389/fphar.2023.1324446. PMID: 38510429; PMCID: PMC10953819.

Tkemaladze, J. (2026). Old Centrioles Make Old Bodies. Annals of Rejuvenation Science, 1(1). DOI : https://doi.org/10.65649/yx9sn772

Tkemaladze, J. (2026). Visions of the Future. Longevity Horizon, 2(1). DOI : https://doi.org/10.65649/8be27s21

Vaidman, L. (2021). Many-Worlds Interpretation of Quantum Mechanics. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Fall 2021 Edition). Metaphysics Research Lab, Stanford University.

Walborn, S. P., Cunha, M. O. T., Pádua, S., & Monken, C. H. (2002). Double-slit quantum eraser. Physical Review A, 65(3), 033818. https://doi.org/10.1103/PhysRevA.65.033818

Wallace, D. (2012). The Emergent Multiverse: Quantum Theory according to the Everett Interpretation. Oxford University Press.

Zurek, W. H. (2003). Decoherence, einselection, and the quantum origins of the classical. Reviews of Modern Physics, 75(3), 715–775. https://doi.org/10.1103/RevModPhys.75.715

Downloads

Published

2026-01-14

Issue

Section

Theoretical Frameworks

How to Cite

Tkemaladze, J. (2026). Why Ze is not Many-Worlds. Longevity Horizon, 2(2). DOI : https://doi.org/10.65649/fyd9x473

Most read articles by the same author(s)

1 2 3 4 5 6 7 > >> 

Similar Articles

21-30 of 71

You may also start an advanced similarity search for this article.