Ze and Relational QM
DOI:
https://doi.org/10.65649/223jgc16Keywords:
Relational Quantum Mechanics, Active Inference, Variational Free Energy, Quantum Measurement, Matter-Wave Interferometry, Cognitive Neuroscience, ConsciousnessAbstract
The measurement problem in quantum mechanics challenges our understanding of reality, demanding explanations beyond both Copenhagen's "collapse" and the Many-Worlds' ontological multiplicity. This paper introduces and formalizes the Ze framework as a novel synthesis of Relational Quantum Mechanics (RQM) and the Active Inference paradigm from theoretical neuroscience. Ze posits that quantum states are relational, defined by the posterior beliefs of interacting generative models engaged in variational free energy minimization. Within this framework, quantum superposition is formalized as high compatibility (ℐ ≈ 1) between competing models, characterized by low free-energy conflict (ΔF < θ). Conversely, the transition to a localized state—the physical correlate of "collapse"—is reconceived not as a metaphysical event but as an optimization-driven phase transition. This occurs when model conflict exceeds a critical threshold (ΔF > θ), a process objectively driven by interactions like which-path marking. We demonstrate that matter-wave interferometry with complex molecules provides a direct experimental testbed for these principles, where which-path information and quantum erasure actively manipulate ΔF. Extending the isomorphism, we propose that transitions in human cognition—from focused wakefulness to dreaming and psychedelic states—are governed by analogous shifts in the brain's inferential threshold (θ). Thus, Ze offers a unified, testable architecture bridging quantum foundations, statistical physics, and the neuroscience of consciousness.
References
Arndt, M., Nairz, O., Vos-Andreae, J., Keller, C., van der Zouw, G., & Zeilinger, A. (1999). Wave–particle duality of C₆₀ molecules. Nature, 401(6754), 680–682. DOI: https://doi.org/10.1038/44348
Bruza, P. D., Wang, Z., & Busemeyer, J. R. (2015). Quantum cognition: a new theoretical approach to psychology. Trends in Cognitive Sciences, 19(7), 383–393. DOI: https://doi.org/10.1016/j.tics.2015.05.001
Buckley, C. L. (2017). The free energy principle for action and perception: A mathematical review. Journal of Mathematical Psychology, 81, 55–79. DOI: https://doi.org/10.1016/j.jmp.2017.09.004
Carhart-Harris, R. L., & Friston, K. J. (2019). REBUS and the Anarchic Brain: Toward a Unified Model of the Brain Action of Psychedelics. Pharmacological Reviews, 71(3), 316–344. DOI: https://doi.org/10.1124/pr.118.017160
Carhart-Harris, R. L., Leech, R., Hellyer, P. J., Shanahan, M., Feilding, A., Tagliazucchi, E., ... & Nutt, D. (2014). The entropic brain: a theory of conscious states informed by neuroimaging research with psychedelic drugs. Frontiers in Human Neuroscience, 8, 20. DOI: https://doi.org/10.3389/fnhum.2014.00020
Durr, S., Nonn, T., & Rempe, G. (1998). Origin of quantum-mechanical complementarity probed by a ‘which-way’experiment in an atom interferometer. Nature, 395(6697), 33–37. DOI: https://doi.org/10.1038/25653
Eibenberger, S., Gerlich, S., Arndt, M., Mayor, M., & Tüxen, J. (2013). Matter-wave interference of particles selected from a molecular library with masses exceeding 10 000 amu. Physical Chemistry Chemical Physics, 15(35), 14696–14700. DOI: https://doi.org/10.1039/c3cp51500a
Fein, Y. Y., Geyer, P., Zwick, P., Kiałka, F., Pedalino, S., Mayor, M., ... & Arndt, M. (2019). Quantum superposition of molecules beyond 25 kDa. Nature Physics, 15(12), 1242–1245. DOI: https://doi.org/10.1038/s41567-019-0663-9
Fields, C., Glazebrook, J. F., & Levin, M. (2022). Minimal physicalism as a scale-free substrate for cognition and consciousness. Neuroscience of Consciousness, 2022(1), niac001. DOI: https://doi.org/10.1093/nc/niab013
Friston, K. (2010). The free-energy principle: a unified brain theory? Nature Reviews Neuroscience, 11(2), 127–138. DOI: https://doi.org/10.1038/nrn2787
Friston, K. (2019). A free energy principle for a particular physics. arXiv preprint arXiv:1906.10184.
Friston, K., FitzGerald, T., Rigoli, F., Schwartenbeck, P., & Pezzulo, G. (2017). Active inference: a process theory. Neural Computation, 29(1), 1–49. DOI: https://doi.org/10.1162/NECO_a_00912
Gold, J. I., & Shadlen, M. N. (2007). The neural basis of decision making. Annual Review of Neuroscience, 30, 535–574. DOI: https://doi.org/10.1146/annurev.neuro.29.051605.113038
Goldstein, S. (2021). Bohmian mechanics. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Summer 2021 Edition).
Gregory, R. L. (1997). Knowledge in perception and illusion. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 352(1358), 1121–1127. DOI: https://doi.org/10.1098/rstb.1997.0095
Hornberger, K., Gerlich, S., Haslinger, P., Nimmrichter, S., & Arndt, M. (2012). Colloquium: Quantum interference of clusters and molecules. Reviews of Modern Physics, 84(1), 157. DOI: https://doi.org/10.1103/RevModPhys.84.157
Jaba, T. (2022). Dasatinib and quercetin: short-term simultaneous administration yields senolytic effect in humans. Issues and Developments in Medicine and Medical Research Vol. 2, 22-31. DOI: https://doi.org/10.9734/bpi/idmmr/v2/15155D
Kim, Y.-H., Yu, R., Kulik, S. P., Shih, Y., & Scully, M. O. (2000). Delayed "choice" quantum eraser. Physical Review Letters, 84(1), 1.
Kim, Y.-H., Yu, R., Kulik, S. P., Shih, Y., & Scully, M. O. (2000). Delayed “choice” quantum eraser. Physical Review Letters, 84(1), 1. DOI: https://doi.org/10.1103/PhysRevLett.84.1
Kwiat, P. G., Steinberg, A. M., & Chiao, R. Y. (1992). Observation of a "quantum eraser": A revival of coherence in a two-photon interference experiment. Physical Review A, 45(11), 7729.
Kwiat, P. G., Steinberg, A. M., & Chiao, R. Y. (1992). Observation of a “quantum eraser”: A revival of coherence in a two-photon interference experiment. Physical Review A, 45(11), 7729. DOI: https://doi.org/10.1103/PhysRevA.45.7729
Laudisa, F. (2022). Relational Quantum Mechanics. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Spring 2022 Edition).
Lin, J. (1991). Divergence measures based on the Shannon entropy. IEEE Transactions on Information theory, 37(1), 145-151. DOI: https://doi.org/10.1109/18.61115
MacKay, D. J. (2003). Information theory, inference and learning algorithms. Cambridge university press.
Ollivier, H., Poulin, D., & Zurek, W. H. (2004). Objective properties from subjective quantum states: Environment as a witness. Physical Review Letters, 93(22), 220401. DOI: https://doi.org/10.1103/PhysRevLett.93.220401
Orrell, D. (2020). A quantum framework for probability in physics. Proceedings of the Royal Society A, 476(2244), 20200257.
Parr, T., & Friston, K. J. (2017). Uncertainty, epistemics and active inference. Journal of The Royal Society Interface, 14(136), 20170376. DOI: https://doi.org/10.1098/rsif.2017.0376
Parr, T., & Friston, K. J. (2019). Generalised free energy and active inference. Biological Cybernetics, 113(5-6), 495–513. DOI: https://doi.org/10.1007/s00422-019-00805-w
Parr, T., Pezzulo, G., & Friston, K. J. (2022). Active Inference: The Free Energy Principle in Mind, Brain, and Behavior. MIT Press. DOI: https://doi.org/10.7551/mitpress/12441.001.0001
Rovelli, C. (1996). Relational quantum mechanics. International Journal of Theoretical Physics, 35(8), 1637–1678. DOI: https://doi.org/10.1007/BF02302261
Schlosshauer, M. (2019). Quantum decoherence. Physics Reports, 831, 1–57. DOI: https://doi.org/10.1016/j.physrep.2019.10.001
Scully, M. O., Englert, B.-G., & Walther, H. (1991). Quantum optical tests of complementarity. Nature, 351(6322), 111–116. DOI: https://doi.org/10.1038/351111a0
Smerlak, M., & Rovelli, C. (2007). Relational EPR. Foundations of Physics, 37, 427–445. DOI: https://doi.org/10.1007/s10701-007-9105-0
Tagliazucchi, E., Carhart-Harris, R., Leech, R., Nutt, D., & Chialvo, D. R. (2014). Enhanced repertoire of brain dynamical states during the psychedelic experience. Human Brain Mapping, 35(11), 5442–5456. DOI: https://doi.org/10.1002/hbm.22562
Tkemaladze, J. (2023). Reduction, proliferation, and differentiation defects of stem cells over time: a consequence of selective accumulation of old centrioles in the stem cells?. Molecular Biology Reports, 50(3), 2751-2761. DOI : https://pubmed.ncbi.nlm.nih.gov/36583780/ DOI: https://doi.org/10.1007/s11033-022-08203-5
Tkemaladze, J. (2024). Editorial: Molecular mechanism of ageing and therapeutic advances through targeting glycative and oxidative stress. Front Pharmacol. 2024 Mar 6;14:1324446. DOI : 10.3389/fphar.2023.1324446. PMID: 38510429; PMCID: PMC10953819. DOI: https://doi.org/10.3389/fphar.2023.1324446
Tkemaladze, J. (2026). Old Centrioles Make Old Bodies. Annals of Rejuvenation Science, 1(1). DOI : https://doi.org/10.65649/yx9sn772
Tkemaladze, J. (2026). Visions of the Future. Longevity Horizon, 2(1). DOI : https://doi.org/10.65649/8be27s21 DOI: https://doi.org/10.65649/8be27s21
Tuziemski, J., & Korbicz, J. K. (2019). Dynamical objectivity in non-Markovian quantum Brownian motion. EPL (Europhysics Letters), 128(1), 10002.
Tuziemski, J., & Korbicz, J. K. (2019). Dynamical objectivity in non-Markovian quantum Brownian motion. EPL (Europhysics Letters), 128(1), 10002.
Vaidman, L. (2021). Many-worlds interpretation of quantum mechanics. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Fall 2021 Edition).
Walborn, S. P., Cunha, M. O. T., Pádua, S., & Monken, C. H. (2002). Double-slit quantum eraser. Physical Review A, 65(3), 033818. DOI: https://doi.org/10.1103/PhysRevA.65.033818
Wigner, E. P. (1961). Remarks on the mind-body question. In I. J. Good (Ed.), The Scientist Speculates (pp. 284–302). Heinemann.
Zeilinger, A. (1999). Experiment and the foundations of quantum physics. Reviews of Modern Physics, 71(2), S288. DOI: https://doi.org/10.1103/RevModPhys.71.S288
Zurek, W. H. (2003). Decoherence, einselection, and the quantum origins of the classical. Reviews of Modern Physics, 75(3), 715. DOI: https://doi.org/10.1103/RevModPhys.75.715
Zurek, W. H. (2009). Quantum Darwinism. Nature Physics, 5(3), 181–188. DOI: https://doi.org/10.1038/nphys1202
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Jaba Tkemaladze (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
