Ze and Relational QM

Authors

  • Jaba Tkemaladze waklabu Author

DOI:

https://doi.org/10.65649/223jgc16

Keywords:

Relational Quantum Mechanics, Active Inference, Variational Free Energy, Quantum Measurement, Matter-Wave Interferometry, Cognitive Neuroscience, Consciousness

Abstract

The measurement problem in quantum mechanics challenges our understanding of reality, demanding explanations beyond both Copenhagen's "collapse" and the Many-Worlds' ontological multiplicity. This paper introduces and formalizes the Ze framework as a novel synthesis of Relational Quantum Mechanics (RQM) and the Active Inference paradigm from theoretical neuroscience. Ze posits that quantum states are relational, defined by the posterior beliefs of interacting generative models engaged in variational free energy minimization. Within this framework, quantum superposition is formalized as high compatibility (ℐ ≈ 1) between competing models, characterized by low free-energy conflict (ΔF < θ). Conversely, the transition to a localized state—the physical correlate of "collapse"—is reconceived not as a metaphysical event but as an optimization-driven phase transition. This occurs when model conflict exceeds a critical threshold (ΔF > θ), a process objectively driven by interactions like which-path marking. We demonstrate that matter-wave interferometry with complex molecules provides a direct experimental testbed for these principles, where which-path information and quantum erasure actively manipulate ΔF. Extending the isomorphism, we propose that transitions in human cognition—from focused wakefulness to dreaming and psychedelic states—are governed by analogous shifts in the brain's inferential threshold (θ). Thus, Ze offers a unified, testable architecture bridging quantum foundations, statistical physics, and the neuroscience of consciousness.

References

Arndt, M., Nairz, O., Vos-Andreae, J., Keller, C., van der Zouw, G., & Zeilinger, A. (1999). Wave–particle duality of C₆₀ molecules. Nature, 401(6754), 680–682. DOI: https://doi.org/10.1038/44348

Bruza, P. D., Wang, Z., & Busemeyer, J. R. (2015). Quantum cognition: a new theoretical approach to psychology. Trends in Cognitive Sciences, 19(7), 383–393. DOI: https://doi.org/10.1016/j.tics.2015.05.001

Buckley, C. L. (2017). The free energy principle for action and perception: A mathematical review. Journal of Mathematical Psychology, 81, 55–79. DOI: https://doi.org/10.1016/j.jmp.2017.09.004

Carhart-Harris, R. L., & Friston, K. J. (2019). REBUS and the Anarchic Brain: Toward a Unified Model of the Brain Action of Psychedelics. Pharmacological Reviews, 71(3), 316–344. DOI: https://doi.org/10.1124/pr.118.017160

Carhart-Harris, R. L., Leech, R., Hellyer, P. J., Shanahan, M., Feilding, A., Tagliazucchi, E., ... & Nutt, D. (2014). The entropic brain: a theory of conscious states informed by neuroimaging research with psychedelic drugs. Frontiers in Human Neuroscience, 8, 20. DOI: https://doi.org/10.3389/fnhum.2014.00020

Durr, S., Nonn, T., & Rempe, G. (1998). Origin of quantum-mechanical complementarity probed by a ‘which-way’experiment in an atom interferometer. Nature, 395(6697), 33–37. DOI: https://doi.org/10.1038/25653

Eibenberger, S., Gerlich, S., Arndt, M., Mayor, M., & Tüxen, J. (2013). Matter-wave interference of particles selected from a molecular library with masses exceeding 10 000 amu. Physical Chemistry Chemical Physics, 15(35), 14696–14700. DOI: https://doi.org/10.1039/c3cp51500a

Fein, Y. Y., Geyer, P., Zwick, P., Kiałka, F., Pedalino, S., Mayor, M., ... & Arndt, M. (2019). Quantum superposition of molecules beyond 25 kDa. Nature Physics, 15(12), 1242–1245. DOI: https://doi.org/10.1038/s41567-019-0663-9

Fields, C., Glazebrook, J. F., & Levin, M. (2022). Minimal physicalism as a scale-free substrate for cognition and consciousness. Neuroscience of Consciousness, 2022(1), niac001. DOI: https://doi.org/10.1093/nc/niab013

Friston, K. (2010). The free-energy principle: a unified brain theory? Nature Reviews Neuroscience, 11(2), 127–138. DOI: https://doi.org/10.1038/nrn2787

Friston, K. (2019). A free energy principle for a particular physics. arXiv preprint arXiv:1906.10184.

Friston, K., FitzGerald, T., Rigoli, F., Schwartenbeck, P., & Pezzulo, G. (2017). Active inference: a process theory. Neural Computation, 29(1), 1–49. DOI: https://doi.org/10.1162/NECO_a_00912

Gold, J. I., & Shadlen, M. N. (2007). The neural basis of decision making. Annual Review of Neuroscience, 30, 535–574. DOI: https://doi.org/10.1146/annurev.neuro.29.051605.113038

Goldstein, S. (2021). Bohmian mechanics. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Summer 2021 Edition).

Gregory, R. L. (1997). Knowledge in perception and illusion. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 352(1358), 1121–1127. DOI: https://doi.org/10.1098/rstb.1997.0095

Hornberger, K., Gerlich, S., Haslinger, P., Nimmrichter, S., & Arndt, M. (2012). Colloquium: Quantum interference of clusters and molecules. Reviews of Modern Physics, 84(1), 157. DOI: https://doi.org/10.1103/RevModPhys.84.157

Jaba, T. (2022). Dasatinib and quercetin: short-term simultaneous administration yields senolytic effect in humans. Issues and Developments in Medicine and Medical Research Vol. 2, 22-31. DOI: https://doi.org/10.9734/bpi/idmmr/v2/15155D

Kim, Y.-H., Yu, R., Kulik, S. P., Shih, Y., & Scully, M. O. (2000). Delayed "choice" quantum eraser. Physical Review Letters, 84(1), 1.

Kim, Y.-H., Yu, R., Kulik, S. P., Shih, Y., & Scully, M. O. (2000). Delayed “choice” quantum eraser. Physical Review Letters, 84(1), 1. DOI: https://doi.org/10.1103/PhysRevLett.84.1

Kwiat, P. G., Steinberg, A. M., & Chiao, R. Y. (1992). Observation of a "quantum eraser": A revival of coherence in a two-photon interference experiment. Physical Review A, 45(11), 7729.

Kwiat, P. G., Steinberg, A. M., & Chiao, R. Y. (1992). Observation of a “quantum eraser”: A revival of coherence in a two-photon interference experiment. Physical Review A, 45(11), 7729. DOI: https://doi.org/10.1103/PhysRevA.45.7729

Laudisa, F. (2022). Relational Quantum Mechanics. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Spring 2022 Edition).

Lin, J. (1991). Divergence measures based on the Shannon entropy. IEEE Transactions on Information theory, 37(1), 145-151. DOI: https://doi.org/10.1109/18.61115

MacKay, D. J. (2003). Information theory, inference and learning algorithms. Cambridge university press.

Ollivier, H., Poulin, D., & Zurek, W. H. (2004). Objective properties from subjective quantum states: Environment as a witness. Physical Review Letters, 93(22), 220401. DOI: https://doi.org/10.1103/PhysRevLett.93.220401

Orrell, D. (2020). A quantum framework for probability in physics. Proceedings of the Royal Society A, 476(2244), 20200257.

Parr, T., & Friston, K. J. (2017). Uncertainty, epistemics and active inference. Journal of The Royal Society Interface, 14(136), 20170376. DOI: https://doi.org/10.1098/rsif.2017.0376

Parr, T., & Friston, K. J. (2019). Generalised free energy and active inference. Biological Cybernetics, 113(5-6), 495–513. DOI: https://doi.org/10.1007/s00422-019-00805-w

Parr, T., Pezzulo, G., & Friston, K. J. (2022). Active Inference: The Free Energy Principle in Mind, Brain, and Behavior. MIT Press. DOI: https://doi.org/10.7551/mitpress/12441.001.0001

Rovelli, C. (1996). Relational quantum mechanics. International Journal of Theoretical Physics, 35(8), 1637–1678. DOI: https://doi.org/10.1007/BF02302261

Schlosshauer, M. (2019). Quantum decoherence. Physics Reports, 831, 1–57. DOI: https://doi.org/10.1016/j.physrep.2019.10.001

Scully, M. O., Englert, B.-G., & Walther, H. (1991). Quantum optical tests of complementarity. Nature, 351(6322), 111–116. DOI: https://doi.org/10.1038/351111a0

Smerlak, M., & Rovelli, C. (2007). Relational EPR. Foundations of Physics, 37, 427–445. DOI: https://doi.org/10.1007/s10701-007-9105-0

Tagliazucchi, E., Carhart-Harris, R., Leech, R., Nutt, D., & Chialvo, D. R. (2014). Enhanced repertoire of brain dynamical states during the psychedelic experience. Human Brain Mapping, 35(11), 5442–5456. DOI: https://doi.org/10.1002/hbm.22562

Tkemaladze, J. (2023). Reduction, proliferation, and differentiation defects of stem cells over time: a consequence of selective accumulation of old centrioles in the stem cells?. Molecular Biology Reports, 50(3), 2751-2761. DOI : https://pubmed.ncbi.nlm.nih.gov/36583780/ DOI: https://doi.org/10.1007/s11033-022-08203-5

Tkemaladze, J. (2024). Editorial: Molecular mechanism of ageing and therapeutic advances through targeting glycative and oxidative stress. Front Pharmacol. 2024 Mar 6;14:1324446. DOI : 10.3389/fphar.2023.1324446. PMID: 38510429; PMCID: PMC10953819. DOI: https://doi.org/10.3389/fphar.2023.1324446

Tkemaladze, J. (2026). Old Centrioles Make Old Bodies. Annals of Rejuvenation Science, 1(1). DOI : https://doi.org/10.65649/yx9sn772

Tkemaladze, J. (2026). Visions of the Future. Longevity Horizon, 2(1). DOI : https://doi.org/10.65649/8be27s21 DOI: https://doi.org/10.65649/8be27s21

Tuziemski, J., & Korbicz, J. K. (2019). Dynamical objectivity in non-Markovian quantum Brownian motion. EPL (Europhysics Letters), 128(1), 10002.

Tuziemski, J., & Korbicz, J. K. (2019). Dynamical objectivity in non-Markovian quantum Brownian motion. EPL (Europhysics Letters), 128(1), 10002.

Vaidman, L. (2021). Many-worlds interpretation of quantum mechanics. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Fall 2021 Edition).

Walborn, S. P., Cunha, M. O. T., Pádua, S., & Monken, C. H. (2002). Double-slit quantum eraser. Physical Review A, 65(3), 033818. DOI: https://doi.org/10.1103/PhysRevA.65.033818

Wigner, E. P. (1961). Remarks on the mind-body question. In I. J. Good (Ed.), The Scientist Speculates (pp. 284–302). Heinemann.

Zeilinger, A. (1999). Experiment and the foundations of quantum physics. Reviews of Modern Physics, 71(2), S288. DOI: https://doi.org/10.1103/RevModPhys.71.S288

Zurek, W. H. (2003). Decoherence, einselection, and the quantum origins of the classical. Reviews of Modern Physics, 75(3), 715. DOI: https://doi.org/10.1103/RevModPhys.75.715

Zurek, W. H. (2009). Quantum Darwinism. Nature Physics, 5(3), 181–188. DOI: https://doi.org/10.1038/nphys1202

Downloads

Published

2026-01-15

Issue

Section

Theoretical Frameworks

How to Cite

Tkemaladze, J. (2026). Ze and Relational QM. Longevity Horizon, 2(2). DOI : https://doi.org/10.65649/223jgc16

Most read articles by the same author(s)

<< < 2 3 4 5 6 7 

Similar Articles

1-10 of 28

You may also start an advanced similarity search for this article.