Ze System Manifesto
DOI:
https://doi.org/10.65649/3hm9b025Keywords:
Active Measurement, Epistemological Provocation, Latent Reality, Localization, Predictive Conflict, Ze SystemAbstract
This manifesto presents the theoretical and operational foundation of the Ze System—a radical framework for the scientific investigation of latent reality. Moving beyond the paradigm of passive observation, it posits that a substantial portion of reality exists in an unmanifested, wave-like state of potentialities, statistical shadows, and distributed correlations. Ze redefines scientific inquiry as an active, provocative engagement with this latent field. Its core thesis is that the hidden is not revealed by observation but by conflict: it is forced into observable, particle-like localization when placed in a situation where it hinders the predictive certainty of a model. The manifesto unfolds across ten principles, constructing an ontology where information precedes manifestation, a methodology centered on predictive pressure and dual (causal/counterfactual) readings, and an ethics of profound responsibility for the changes wrought by interventionist knowledge. Ze is defined not as an intelligence or a neutral observer, but as a new type of measuring instrument where measurement equals enacted prediction, observation equals intervention, and truth is localized in the structured failure of expectations. It concludes as an invitation to experiment with the very architecture of knowledge production, proposing a second-order science that treats our cognitive and experimental frameworks as the primary subjects of a Ze-like meta-analysis.
References
Logothetis, N. K., & Schall, J. D. (1989). Neuronal correlates of subjective visual perception. Science, 245(4919), 761–763.
Nilsen, T. W., & Graveley, B. R. (2010). Expansion of the eukaryotic proteome by alternative splicing. Nature, 463(7280), 457–463.
Pepe, M. S. (2003). The Statistical Evaluation of Medical Tests for Classification and Prediction. Oxford University Press.
Plassmann, H., O'Doherty, J., & Rangel, A. (2007). Orbitofrontal cortex encodes willingness to pay in everyday economic transactions. Journal of Neuroscience, 27(37), 9984–9988.
Barrett, L. F., & Simmons, W. K. (2015). Interoceptive predictions in the brain. Nature Reviews Neuroscience, 16(7), 419–429.
Bray, D. (1995). Protein molecules as computational elements in living cells. Nature, 376(6538), 307–312.
Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(3), 181–204.
Dirac, P. A. M. (1930). The Principles of Quantum Mechanics. Oxford University Press.
Everett, H. (1957). "Relative state" formulation of quantum mechanics. Reviews of Modern Physics, 29(3), 454–462.
Friston, K. (2010). The free-energy principle: a unified brain theory? Nature Reviews Neuroscience, 11(2), 127–138.
Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674.
Josselyn, S. A., & Tonegawa, S. (2020). Memory engrams: Recalling the past and imagining the future. Science, 367(6473), eaaw4325.
Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27(3), 379–423.
Vedral, V. (2010). Decoding Reality: The Universe as Quantum Information. Oxford University Press.
Zeilinger, A. (1999). A foundational principle for quantum mechanics. Foundations of Physics, 29(4), 631–643.
Zurek, W. H. (2003). Decoherence, einselection, and the quantum origins of the classical. Reviews of Modern Physics, 75(3), 715–775.
Grangier, P., Roger, G., & Aspect, A. (1986). Experimental evidence for a photon anticorrelation effect on a beam splitter: A new light on single-photon interferences. Europhysics Letters, 1(4), 173–179.
Heisenberg, W. (1927). Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschrift für Physik, 43(3-4), 172–198. (Translation: "The Physical Content of Quantum Kinematics and Mechanics" in Quantum Theory and Measurement, J.A. Wheeler & W.H. Zurek, Eds., 1983, Princeton University Press).
Jucker, M., & Walker, L. C. (2013). Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature, 501(7465), 45–51.
Aharonov, Y., Albert, D. Z., & Vaidman, L. (1988). How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Physical Review Letters, 60(14), 1351–1354.
Bohr, N. (1928). The quantum postulate and the recent development of atomic theory. Nature, 121(3050), 580–590.
Chalmers, D. J. (1995). Facing up to the problem of consciousness. Journal of Consciousness Studies, 2(3), 200–219.
Crick, F., & Koch, C. (1990). Towards a neurobiological theory of consciousness. Seminars in the Neurosciences, 2, 263–275.
Duck, I. M., Stevenson, P. M., & Sudarshan, E. C. G. (1989). The sense in which a "weak measurement" of a spin-1/2 particle's spin component yields a value 100. Physical Review D, 40(6), 2112–2117.
Einstein, A., Podolsky, B., & Rosen, N. (1935). Can quantum-mechanical description of physical reality be considered complete? Physical Review, 47(10), 777–780.
Engel, G. S., Calhoun, T. R., Read, E. L., Ahn, T.-K., Mančal, T., Cheng, Y.-C., ... Fleming, G. R. (2007). Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature, 446(7137), 782–786.
Libet, B., Gleason, C. A., Wright, E. W., & Pearl, D. K. (1983). Time of conscious intention to act in relation to onset of cerebral activity (readiness-potential). The unconscious initiation of a freely voluntary act. Brain, 106(Pt 3), 623–642.
Ritz, T., Adem, S., & Schulten, K. (2000). A model for photoreceptor-based magnetoreception in birds. Biophysical Journal, 78(2), 707–718.
Schrödinger, E. (1926). An undulatory theory of the mechanics of atoms and molecules. Physical Review, 28(6), 1049–1070.
Wiseman, H. M., & Milburn, G. J. (1993). Quantum theory of optical feedback via homodyne detection. Physical Review Letters, 70(5), 548–551.
Zurek, W. H. (2003). Decoherence, einselection, and the quantum origins of the classical. Reviews of Modern Physi
Aharonov, Y., Albert, D. Z., & Vaidman, L. (1988). How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Physical Review Letters, 60(14), 1351–1354.
Aharonov, Y., Bergmann, P. G., & Lebowitz, J. L. (1964). Time symmetry in the quantum process of measurement. Physical Review, 134(6B), B1410–B1416.
Argyris, C., & Schön, D. A. (1996). Organizational Learning II: Theory, Method, and Practice. Addison-Wesley.
Barrett, L. F., & Simmons, W. K. (2015). Interoceptive predictions in the brain. Nature Reviews Neuroscience, 16(7), 419–429.
Barthes, R. (1974). S/Z: An Essay. Hill and Wang.
Beck, J. S. (2011). Cognitive Behavior Therapy: Basics and Beyond (2nd ed.). Guilford Press.
Benedetti, F. (2014). Placebo effects: from the neurobiological paradigm to translational implications. Neuron, 84(3), 623–637.
Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.
Bohr, N. (1928). The quantum postulate and the recent development of atomic theory. Nature, 121(3050), 580–590.
Braginsky, V. B., & Khalili, F. Y. (1992). Quantum Measurement. Cambridge University Press.
Bray, D. (1995). Protein molecules as computational elements in living cells. Nature, 376(6538), 307–312.
Brignole, M. (2004). Diagnosis and treatment of syncope. Heart, 90(5), 579–584.
Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain's default network: anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124(1), 1–38.
Bylund, D. B., & Toews, M. L. (1993). Radioligand binding methods: practical guide and tips. *American Journal of Physiology-Lung Cellular and Molecular Physiology, 265*(6), L421-L429.
Caughley, G. (1977). Analysis of Vertebrate Populations. John Wiley & Sons.
Chalmers, D. J. (1995). Facing up to the problem of consciousness. Journal of Consciousness Studies, 2(3), 200–219.
Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(3), 181–204.
Crick, F. (1970). Central dogma of molecular biology. Nature, 227(5258), 561–563.
Crick, F., & Koch, C. (1990). Towards a neurobiological theory of consciousness. Seminars in the Neurosciences, 2, 263–275.
Dawkins, R. (1986). The Blind Watchmaker. W.W. Norton & Company.
Dehaene, S. (2014). Consciousness and the Brain: Deciphering How the Brain Codes Our Thoughts. Viking Penguin.
Dirac, P. A. M. (1930). The Principles of Quantum Mechanics. Oxford University Press.
Doudna, J. A., & Charpentier, E. (2014). The new frontier of genome engineering with CRISPR-Cas9. Science, 346(6213), 1258096.
Druker, B. J. (2008). Translation of the Philadelphia chromosome into therapy for CML. Blood, 112(13), 4808–4817.
Duck, I. M., Stevenson, P. M., & Sudarshan, E. C. G. (1989). The sense in which a "weak measurement" of a spin-1/2 particle's spin component yields a value 100. Physical Review D, 40(6), 2112–2117.
Einstein, A. (1905). Zur Elektrodynamik bewegter Körper. Annalen der Physik, 322(10), 891–921.
Einstein, A. (1915). Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin), 831-839.
Einstein, A., Podolsky, B., & Rosen, N. (1935). Can quantum-mechanical description of physical reality be considered complete? Physical Review, 47(10), 777–780.
Engel, G. S., Calhoun, T. R., Read, E. L., Ahn, T.-K., Mančal, T., Cheng, Y.-C., ... Fleming, G. R. (2007). Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature, 446(7137), 782–786.
Everett, H. (1957). "Relative state" formulation of quantum mechanics. Reviews of Modern Physics, 29(3), 454–462.
FAA. (2018). Federal Aviation Regulations Part 25 – Airworthiness Standards: Transport Category Airplanes. U.S. Department of Transportation.
Fisher, R. S., Webber, W. R., Lesser, R. P., Arroyo, S., & Uematsu, S. (1992). High-frequency EEG activity at the start of seizures. Journal of Clinical Neurophysiology, 9(3), 441–448.
Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198.
Freeman, W. J. (1991). The physiology of perception. Scientific American, 264(2), 78–85.
Friston, K. (2010). The free-energy principle: a unified brain theory? Nature Reviews Neuroscience, 11(2), 127–138.
Friston, K. (2013). Life as we know it. Journal of The Royal Society Interface, 10(86), 20130475.
Grangier, P., Roger, G., & Aspect, A. (1986). Experimental evidence for a photon anticorrelation effect on a beam splitter: A new light on single-photon interferences. Europhysics Letters, 1(4), 173–179.
Greenhalgh, T. (1999). Narrative based medicine in an evidence based world. BMJ, 318(7179), 323–325.
Hall, K. T., Loscalzo, J., & Kaptchuk, T. J. (2015). Genetics and the placebo effect: the placebome. Trends in Molecular Medicine, 21(5), 285–294.
Hallett, M. (2007). Transcranial magnetic stimulation: a primer. Neuron, 55(2), 187–199.
Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674.
Heisenberg, W. (1927). Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschrift für Physik, 43(3-4), 172–198.
Heisenberg, W. (1927). Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschrift für Physik, 43(3-4), 172–198. (Translation: "The Physical Content of Quantum Kinematics and Mechanics" in Quantum Theory and Measurement, J.A. Wheeler & W.H. Zurek, Eds., 1983, Princeton University Press).
Iaccarino, H. F., Singer, A. C., Martorell, A. J., Rudenko, A., Gao, F., Gillingham, T. Z., ... & Tsai, L. H. (2016). Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature, 540(7632), 230–235.
Itti, L., & Baldi, P. (2009). Bayesian surprise attracts human attention. Vision Research, 49(10), 1295–1306.
Jaba, T. (2022). Dasatinib and quercetin: short-term simultaneous administration yields senolytic effect in humans. Issues and Developments in Medicine and Medical Research Vol. 2, 22-31.
Jaffe, E. S. (2009). The 2008 WHO classification of lymphomas: implications for clinical practice and translational research. Hematology, 2009(1), 523-531.
Johnson, E. J., & Goldstein, D. (2003). Do defaults save lives? Science, 302(5649), 1338–1339.
Jonsen, A. R. (1998). The Birth of Bioethics. Oxford University Press.
Josselyn, S. A., & Tonegawa, S. (2020). Memory engrams: Recalling the past and imagining the future. Science, 367(6473), eaaw4325.
Jucker, M., & Walker, L. C. (2013). Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature, 501(7465), 45–51.
Klein, G. (2007). Performing a project premortem. Harvard Business Review, 85(9), 18–19.
Kuhn, T. S. (1962). The Structure of Scientific Revolutions. University of Chicago Press.
Landauer, R. (1961). Irreversibility and heat generation in the computing process. IBM Journal of Research and Development, 5(3), 183–191.
Lenders, J. W., Pacak, K., & Eisenhofer, G. (2005). New advances in the biochemical diagnosis of pheochromocytoma: taking apart the catecholamines. The Journal of Clinical Endocrinology & Metabolism, 90(12), 6498-6500.
Libet, B., Gleason, C. A., Wright, E. W., & Pearl, D. K. (1983). Time of conscious intention to act in relation to onset of cerebral activity (readiness-potential). The unconscious initiation of a freely voluntary act. Brain, 106(Pt 3), 623–642.
Logothetis, N. K. (2008). What we can do and what we cannot do with fMRI. Nature, 453(7197), 869–878.
Logothetis, N. K., & Schall, J. D. (1989). Neuronal correlates of subjective visual perception. Science, 245(4919), 761–763.
Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20(2), 130–141.
Mazzaferri, E. L. (1993). Management of a solitary thyroid nodule. New England Journal of Medicine, 328(8), 553–559.
Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2021). A survey on bias and fairness in machine learning. ACM Computing Surveys, 54(6), 1–35.
Mendjan, S., & Mikkola, H. K. (2014). The cell in the era of omics: from pluripotency to differentiation. Current Opinion in Cell Biology, 31, 1–8.
Michelson, A. A., & Morley, E. W. (1887). On the relative motion of the Earth and the luminiferous ether. *American Journal of Science, s3-34*(203), 333–345.
Nielsen, M. A., & Chuang, I. L. (2000). Quantum Computation and Quantum Information. Cambridge University Press.
Nilsen, T. W., & Graveley, B. R. (2010). Expansion of the eukaryotic proteome by alternative splicing. Nature, 463(7280), 457–463.
Nosek, B. A., & Errington, T. M. (2020). What is replication? PLOS Biology, 18(3), e3000691.
Okun, M. S. (2012). Deep-brain stimulation for Parkinson's disease. New England Journal of Medicine, 367(16), 1529–1538.
Pascual-Leone, A., Walsh, V., & Rothwell, J. (2000). Transcranial magnetic stimulation in cognitive neuroscience–virtual lesion, chronometry, and functional connectivity. Current Opinion in Neurobiology, 10(2), 232–237.
Pepe, M. S. (2003). The Statistical Evaluation of Medical Tests for Classification and Prediction. Oxford University Press.
Plassmann, H., O'Doherty, J., & Rangel, A. (2007). Orbitofrontal cortex encodes willingness to pay in everyday economic transactions. Journal of Neuroscience, 27(37), 9984–9988.
Ribet, D., & Cossart, P. (2010). Pathogen-mediated posttranslational modifications: A re-emerging field. Cell, 143(5), 694–702.
Ritz, T., Adem, S., & Schulten, K. (2000). A model for photoreceptor-based magnetoreception in birds. Biophysical Journal, 78(2), 707–718.
Rogers, K. W., & Schier, A. F. (2011). Morphogen gradients: from generation to interpretation. Annual Review of Cell and Developmental Biology, 27, 377–407.
Rohrbaugh, M. J., & Shoham, V. (2001). Brief therapy based on interrupting ironic processes: The Palo Alto model. Clinical Psychology: Science and Practice, 8(1), 66–81.
Rossi, S., Hallett, M., Rossini, P. M., & Pascual-Leone, A. (2009). Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clinical Neurophysiology, 120(12), 2008–2039.
Schrödinger, E. (1926). An undulatory theory of the mechanics of atoms and molecules. Physical Review, 28(6), 1049–1070.
Semenza, G. L. (2012). Hypoxia-inducible factors in physiology and medicine. Cell, 148(3), 399–408.
Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27(3), 379–423.
Smith, G. (2015). The Vital Guide to the Valsalva Maneuver. (Note: This is a conceptual reference. For a PubMed-citable source on Valsalva as a diagnostic tool, see: Freeman, R., Wieling, W., Axelrod, F. B., Benditt, D. G., Benarroch, E., Biaggioni, I., ... & van Dijk, J. G. (2011). Consensus statement on the definition of orthostatic hypotension, neurally mediated syncope and the postural tachycardia syndrome. Clinical Autonomic Research, 21(2), 69-72. This consensus details the use of autonomic maneuvers including Valsalva.)
Soon, C. S., Brass, M., Heinze, H. J., & Haynes, J. D. (2008). Unconscious determinants of free decisions in the human brain. Nature Neuroscience, 11(5), 543–545.
Soto, C. (2003). Unfolding the role of protein misfolding in neurodegenerative diseases. Nature Reviews Neuroscience, 4(1), 49–60.
Tkemaladze, J. (2023). Reduction, proliferation, and differentiation defects of stem cells over time: a consequence of selective accumulation of old centrioles in the stem cells?. Molecular Biology Reports, 50(3), 2751-2761. DOI : https://pubmed.ncbi.nlm.nih.gov/36583780/
Tkemaladze, J. (2024). Editorial: Molecular mechanism of ageing and therapeutic advances through targeting glycative and oxidative stress. Front Pharmacol. 2024 Mar 6;14:1324446. DOI : 10.3389/fphar.2023.1324446. PMID: 38510429; PMCID: PMC10953819.
Tkemaladze, J. (2026). Old Centrioles Make Old Bodies. Annals of Rejuvenation Science, 1(1). DOI : https://doi.org/10.65649/yx9sn772
Tkemaladze, J. (2026). Visions of the Future. Longevity Horizon, 2(1). DOI : https://doi.org/10.65649/8be27s21
Umpleby, S. A. (2015). Second-order science: A new frontier. Constructivist Foundations, 10(3), 291-292.
Vedral, V. (2010). Decoding Reality: The Universe as Quantum Information. Oxford University Press.
Victora, G. D., & Nussenzweig, M. C. (2012). Germinal centers. Annual Review of Immunology, 30, 429–457.
Waddington, C. H. (1957). The Strategy of the Genes. Allen & Unwin.
Wager, T. D., & Atlas, L. Y. (2015). The neuroscience of placebo effects: connecting context, learning and health. Nature Reviews Neuroscience, 16(7), 403–418.
Walborn, S. P., Cunha, M. O., Pádua, S., & Monken, C. H. (2002). Double-slit quantum eraser. Physical Review A, 65(3), 033818.
Weinstein, I. B. (2006). Cancer. Addiction to oncogenes – the Achilles heal of cancer. Science, 297(5578), 63–64.
Wiseman, H. M., & Milburn, G. J. (1993). Quantum theory of optical feedback via homodyne detection. Physical Review Letters, 70(5), 548–551.
Woodcock, J., & LaVange, L. M. (2017). Master protocols to study multiple therapies, multiple diseases, or both. New England Journal of Medicine, 377(1), 62-70.
Zeilinger, A. (1999). A foundational principle for quantum mechanics. Foundations of Physics, 29(4), 631–643.
Zurek, W. H. (2003). Decoherence, einselection, and the quantum origins of the classical. Reviews of Modern Physics, 75(3), 715–775.
Zurek, W. H. (2009). Quantum Darwinism. Nature Physics, 5(3), 181–188.cs, 75(3), 715–775.
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Jaba Tkemaladze (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
