Ze, decoherence, and the quantum eraser

Authors

  • Jaba Tkemaladze waklabu Author

DOI:

https://doi.org/10.65649/39hf1h41

Keywords:

Quantum Eraser, Decoherence, Generative Models, Measurement Problem, Variational Free Energy, Objective Collapse, Quantum Foundations

Abstract

The quantum eraser experiment, while confirming the mathematical formalism of quantum mechanics, has persistently challenged intuitive understanding, often invoking concepts of retrocausality or the necessity of a conscious observer. This paper develops and articulates the Ze interpretation as a comprehensive framework that resolves these conceptual challenges without such metaphysical additions. We propose that quantum dynamics is fundamentally governed by the competition between two active generative models: a direct causal model (Model A, "particle-like") and a counterfactual wave model (Model B, "wave-like"). Decoherence is reinterpreted not as information loss, but as the environmental amplification of a structural incompatibility between these models, leading to a forced stabilization of the system into a state compatible with a single, definite narrative—a process we identify as physical collapse. The quantum eraser is shown to be an active intervention that dismantles this incompatibility by removing the environmental basis for discriminating between models, thereby restoring the conditions for a low-conflict consensus state that manifests as interference. This framework seamlessly unifies unitary evolution, decoherence, collapse, and erasure as facets of a single process of model competition and stabilization. It eliminates the need for an observer-centric explanation, replaces the "collapse" postulate with a dynamical physical mechanism, and yields novel, testable predictions regarding interference in complex systems and the dynamic nature of the quantum-classical threshold.

References

Adler, S. L. (2003). Why decoherence has not solved the measurement problem: A response to P. W. Anderson. Studies in History and Philosophy of Modern Physics, 34(1), 135–142.

Aharonov, Y., & Vaidman, L. (2008). The two-state vector formalism: An updated review. In Time in Quantum Mechanics (pp. 399–447). Springer.

Arndt, M., Juffmann, T., & Vedral, V. (2009). Quantum physics meets biology. HFSP Journal, 3(6), 386–400.

Bassi, A., & Ghirardi, G. C. (2003). Dynamical reduction models. Physics Reports, 379(5-6), 257–426.

Blatt, R., & Roos, C. F. (2012). Quantum simulations with trapped ions. Nature Physics, 8(4), 277–284.

Blatter, G. (2020). Fundamentals of Many-body Physics: Principles and Methods. Springer.

Blume-Kohout, R., & Zurek, W. H. (2008). Quantum Darwinism in quantum Brownian motion. Physical Review Letters, 101(24), 240405.

Brand, C., Sclafani, M., Knobloch, C., Lilach, Y., Juffmann, T., Kotakoski, J., ... & Arndt, M. (2015). An atomically thin matter-wave beamsplitter. Nature Nanotechnology, 10(10), 845–848.

Briegel, H. J., & Popescu, S. (2008). Entanglement and intra-molecular cooling in biological systems? A quantum thermodynamic perspective. arXiv preprint arXiv:0806.4552.

Bruza, P. D., Kitto, K., Ramm, B., & Sitbon, L. (2015). A probabilistic framework for analysing the compositionality of conceptual combinations. Journal of Mathematical Psychology, 67, 26–38.

Buckley, C. L., Kim, C. S., McGregor, S., & Seth, A. K. (2017). The free energy principle for action and perception: A mathematical review. Journal of Mathematical Psychology, 81, 55–79.

Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(3), 181–204.

Conant, R. C., & Ashby, W. R. (1970). Every good regulator of a system must be a model of that system. International Journal of Systems Science, 1(2), 89–97.

d'Espagnat, B. (1976). Conceptual Foundations of Quantum Mechanics (2nd ed.). W. A. Benjamin.

Eibenberger, S., Gerlich, S., Arndt, M., Mayor, M., & Tüxen, J. (2013). Matter-wave interference with particles selected from a molecular library with masses exceeding 10 000 amu. Physical Chemistry Chemical Physics, 15(35), 14696–14700.

Englert, B. G. (1996). Fringe visibility and which-way information: An inequality. Physical Review Letters, 77(11), 2154–2157.

Fein, Y. Y., Geyer, P., Zwick, P., Kiałka, F., Pedalino, S., Mayor, M., ... & Arndt, M. (2019). Quantum superposition of molecules beyond 25 kDa. Nature Physics, 15(12), 1242–1245.

Fields, C., & Levin, M. (2020). How do living systems create meaning? Philosophies, 5(4), 36.

Fields, C., Glazebrook, J. F., & Levin, M. (2021). Minimal physicalism as a scale-free substrate for cognition and consciousness. Neuroscience of Consciousness, 2021(2), niab013.

Fields, C., Glazebrook, J. F., & Marcianò, A. (2017). Reference frame induced symmetry breaking on holographic screens. Symmetry, 9(8), 136.

Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1456), 815–836.

Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11(2), 127–138.

Friston, K. (2019). A free energy principle for a particular physics. arXiv preprint arXiv:1906.10184.

Fuchs, C. A., & Peres, A. (2000). Quantum theory needs no ‘interpretation’. Physics Today, 53(3), 70–71.

Gallagher, T. F., & DeMille, D. (2019). Possibilities for molecular physics using pulsed beams. Annual Review of Physical Chemistry, 70, 123–152.

Gallís, M. R., & Fleming, G. N. (1990). Environmental and spontaneous localization. Physical Review A, 42(1), 38–48.

Gell-Mann, M., & Hartle, J. B. (1993). Classical equations for quantum systems. Physical Review D, 47(8), 3345–3382.

Gerlich, S., Eibenberger, S., Tomandl, M., Nimmrichter, S., Hornberger, K., Fagan, P. J., ... & Arndt, M. (2011). Quantum interference of large organic molecules. Nature Communications, 2(1), 263.

Hackermüller, L., Hornberger, K., & Arndt, M. (2004). Influence of molecular temperature on the coherence of fullerenes in a near-field interferometer. Applied Physics B, 77(8), 781–787.

Hornberger, K., Gerlich, S., Ulbricht, H., & Arndt, M. (2012). Theory and experimental verification of Kapitza-Dirac-Talbot-Lau interferometry. New Journal of Physics, 14(4), 043008.

Hornberger, K., Sipe, J. E., & Arndt, M. (2004). Theory of decoherence in a matter wave Talbot-Lau interferometer. Physical Review A, 70(5), 053608.

Jaba, T. (2022). Dasatinib and quercetin: short-term simultaneous administration yields senolytic effect in humans. Issues and Developments in Medicine and Medical Research Vol. 2, 22-31.

Jacques, V., Wu, E., Grosshans, F., Treussart, F., Grangier, P., Aspect, A., & Roch, J.-F. (2007). Experimental realization of Wheeler's delayed-choice gedanken experiment. Science, 315(5814), 966–968.

Joos, E., & Zeh, H. D. (1985). The emergence of classical properties through interaction with the environment. Zeitschrift für Physik B Condensed Matter, 59(2), 223–243.

Joos, E., Zeh, H. D., Kiefer, C., Giulini, D., Kupsch, J., & Stamatescu, I.-O. (2003). Decoherence and the Appearance of a Classical World in Quantum Theory (2nd ed.). Springer.

Juffmann, T., Truppe, S., Geyer, P., Major, A. G., Deachapunya, S., Ulbricht, H., & Arndt, M. (2012). Wave and particle in molecular interference lithography. Physical Review Letters, 109(26), 263601.

Kent, A. (2010). One world versus many: The inadequacy of Everettian accounts of evolution, probability, and scientific confirmation. In S. Saunders, J. Barrett, A. Kent, & D. Wallace (Eds.), Many Worlds? Everett, Quantum Theory, and Reality (pp. 307–354). Oxford University Press.

Kiefer, C., & Joos, E. (1999). Decoherence: Concepts and examples. In P. Blanchard, E. Joos, D. Giulini, C. Kiefer, & I.-O. Stamatescu (Eds.), Decoherence: Theoretical, Experimental, and Conceptual Problems (pp. 105–128). Springer.

Kim, Y.-H., Yu, R., Kulik, S. P., Shih, Y., & Scully, M. O. (2000). Delayed "choice" quantum eraser. Physical Review Letters, 84(1), 1–5.

Kochen, S., & Specker, E. P. (1967). The problem of hidden variables in quantum mechanics. Journal of Mathematics and Mechanics, 17(1), 59–87.

Korotkov, A. N., & Jordan, A. N. (2006). Undoing a weak quantum measurement of a solid-state qubit. Physical Review Letters, 97(16), 166805.

Kwiat, P. G., Steinberg, A. M., & Chiao, R. Y. (1992). Observation of a "quantum eraser": A revival of coherence in a two-photon interference experiment. Physical Review A, 45(11), 7729–7739.

Leggett, A. J. (2002). Testing the limits of quantum mechanics: Motivation, state of play, prospects. Journal of Physics: Condensed Matter, 14(15), R415–R451.

Ma, X.-S., Kofler, J., & Zeilinger, A. (2013). Delayed-choice gedanken experiments and their realizations. Reviews of Modern Physics, 88(1), 015005.

Ma, X.-S., Kofler, J., & Zeilinger, A. (2016). Delayed-choice gedanken experiments and their realizations. Reviews of Modern Physics, 88(1), 015005.

Nimmrichter, S., & Hornberger, K. (2013). Theory of near-field matter-wave interference beyond the eikonal approximation. Physical Review A, 88(4), 043622.

Omnès, R. (1992). Consistent interpretations of quantum mechanics. Reviews of Modern Physics, 64(2), 339–382.

Paz, J. P., & Zurek, W. H. (2001). Environment-induced decoherence and the transition from quantum to classical. In D. Heiss (Ed.), Fundamentals of Quantum Information (pp. 77–148). Springer.

Penrose, R. (1996). On gravity's role in quantum state reduction. General Relativity and Gravitation, 28(5), 581–600.

Riedel, C. J., Zurek, W. H., & Zwolak, M. (2016). Objective past of a quantum universe: Redundant records of consistent histories. Physical Review A, 93(3), 032126.

Romero-Isart, O., Juan, M. L., Quidant, R., & Cirac, J. I. (2011). Toward quantum superposition of living organisms. New Journal of Physics, 13(3), 033015.

Rovelli, C. (1996). Relational quantum mechanics. International Journal of Theoretical Physics, 35(8), 1637–1678.

Schlosshauer, M. (2005). Decoherence, the measurement problem, and interpretations of quantum mechanics. Reviews of Modern Physics, 76(4), 1267–1305.

Schlosshauer, M. (2019). Quantum decoherence. Physics Reports, 831, 1–57.

Schwartenbeck, P., FitzGerald, T., Dolan, R., & Friston, K. (2013). Exploration, novelty, surprise, and free energy minimization. Frontiers in Psychology, 4, 710.

Scully, M. O., & Drühl, K. (1982). Quantum eraser: A proposed photon correlation experiment concerning observation and "delayed choice" in quantum mechanics. Physical Review A, 25(4), 2208–2213.

Tegmark, M. (2000). Why the brain is probably not a quantum computer. Information Sciences, 128(3-4), 155–179.

Tkemaladze, J. (2023). Reduction, proliferation, and differentiation defects of stem cells over time: a consequence of selective accumulation of old centrioles in the stem cells?. Molecular Biology Reports, 50(3), 2751-2761. DOI : https://pubmed.ncbi.nlm.nih.gov/36583780/

Tkemaladze, J. (2024). Editorial: Molecular mechanism of ageing and therapeutic advances through targeting glycative and oxidative stress. Front Pharmacol. 2024 Mar 6;14:1324446. DOI : 10.3389/fphar.2023.1324446. PMID: 38510429; PMCID: PMC10953819.

Tkemaladze, J. (2026). Old Centrioles Make Old Bodies. Annals of Rejuvenation Science, 1(1). DOI : https://doi.org/10.65649/yx9sn772

Tkemaladze, J. (2026). Visions of the Future. Longevity Horizon, 2(1). DOI : https://doi.org/10.65649/8be27s21

Vaidman, L. (2014). Many-worlds interpretation of quantum mechanics. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Fall 2014 ed.).

Walborn, S. P., Terra Cunha, M. O., Pádua, S., & Monken, C. H. (2002). Double-slit quantum eraser. Physical Review A, 65(3), 033818.

Wallace, D. (2012). The Emergent Multiverse: Quantum Theory according to the Everett Interpretation. Oxford University Press.

Wheeler, J. A. (1978). The “past” and the “delayed-choice” double-slit experiment. In A. R. Marlow (Ed.), Mathematical Foundations of Quantum Theory (pp. 9–48). Academic Press.

Zurek, W. H. (1982). Environment-induced superselection rules. Physical Review D, 26(8), 1862–1880.

Zurek, W. H. (1991). Decoherence and the transition from quantum to classical. Physics Today, 44(10), 36–44.

Zurek, W. H. (1998). Decoherence, einselection, and the existential interpretation (the rough guide). Philosophical Transactions of the Royal Society A, 356(1743), 1793–1821.

Zurek, W. H. (2003). Decoherence, einselection, and the quantum origins of the classical. Reviews of Modern Physics, 75(3), 715–775.

Zurek, W. H. (2009). Quantum Darwinism. Nature Physics, 5(3), 181–188.

Downloads

Published

2026-01-10

Issue

Section

Theoretical Frameworks

How to Cite

Tkemaladze, J. (2026). Ze, decoherence, and the quantum eraser. Longevity Horizon, 2(1). DOI : https://doi.org/10.65649/39hf1h41

Most read articles by the same author(s)

1 2 3 4 5 > >> 

Similar Articles

1-10 of 18

You may also start an advanced similarity search for this article.