Ze, Decoherence, and the Quantum Eraser

Authors

  • Jaba Tkemaladze waklabu Author

DOI:

https://doi.org/10.65649/39hf1h41

Keywords:

Quantum Eraser, Decoherence, Generative Models, Measurement Problem, Variational Free Energy, Objective Collapse, Quantum Foundations

Abstract

The quantum eraser experiment, while confirming the mathematical formalism of quantum mechanics, has persistently challenged intuitive understanding, often invoking concepts of retrocausality or the necessity of a conscious observer. This paper develops and articulates the Ze interpretation as a comprehensive framework that resolves these conceptual challenges without such metaphysical additions. We propose that quantum dynamics is fundamentally governed by the competition between two active generative models: a direct causal model (Model A, "particle-like") and a counterfactual wave model (Model B, "wave-like"). Decoherence is reinterpreted not as information loss, but as the environmental amplification of a structural incompatibility between these models, leading to a forced stabilization of the system into a state compatible with a single, definite narrative—a process we identify as physical collapse. The quantum eraser is shown to be an active intervention that dismantles this incompatibility by removing the environmental basis for discriminating between models, thereby restoring the conditions for a low-conflict consensus state that manifests as interference. This framework seamlessly unifies unitary evolution, decoherence, collapse, and erasure as facets of a single process of model competition and stabilization. It eliminates the need for an observer-centric explanation, replaces the "collapse" postulate with a dynamical physical mechanism, and yields novel, testable predictions regarding interference in complex systems and the dynamic nature of the quantum-classical threshold.

References

Adler, S. L. (2003). Why decoherence has not solved the measurement problem: A response to P. W. Anderson. Studies in History and Philosophy of Modern Physics, 34(1), 135–142. DOI: https://doi.org/10.1016/S1355-2198(02)00086-2

Aharonov, Y., & Vaidman, L. (2008). The two-state vector formalism: An updated review. In Time in Quantum Mechanics (pp. 399–447). Springer. DOI: https://doi.org/10.1007/978-3-540-73473-4_13

Arndt, M., Juffmann, T., & Vedral, V. (2009). Quantum physics meets biology. HFSP Journal, 3(6), 386–400. DOI: https://doi.org/10.2976/1.3244985

Bassi, A., & Ghirardi, G. C. (2003). Dynamical reduction models. Physics Reports, 379(5-6), 257–426. DOI: https://doi.org/10.1016/S0370-1573(03)00103-0

Blatt, R., & Roos, C. F. (2012). Quantum simulations with trapped ions. Nature Physics, 8(4), 277–284. DOI: https://doi.org/10.1038/nphys2252

Blatter, G. (2020). Fundamentals of Many-body Physics: Principles and Methods. Springer.

Blume-Kohout, R., & Zurek, W. H. (2008). Quantum Darwinism in quantum Brownian motion. Physical Review Letters, 101(24), 240405. DOI: https://doi.org/10.1103/PhysRevLett.101.240405

Brand, C., Sclafani, M., Knobloch, C., Lilach, Y., Juffmann, T., Kotakoski, J., ... & Arndt, M. (2015). An atomically thin matter-wave beamsplitter. Nature Nanotechnology, 10(10), 845–848. DOI: https://doi.org/10.1038/nnano.2015.179

Briegel, H. J., & Popescu, S. (2008). Entanglement and intra-molecular cooling in biological systems? A quantum thermodynamic perspective. arXiv preprint arXiv:0806.4552.

Bruza, P. D., Kitto, K., Ramm, B., & Sitbon, L. (2015). A probabilistic framework for analysing the compositionality of conceptual combinations. Journal of Mathematical Psychology, 67, 26–38. DOI: https://doi.org/10.1016/j.jmp.2015.06.002

Buckley, C. L., Kim, C. S., McGregor, S., & Seth, A. K. (2017). The free energy principle for action and perception: A mathematical review. Journal of Mathematical Psychology, 81, 55–79. DOI: https://doi.org/10.1016/j.jmp.2017.09.004

Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(3), 181–204. DOI: https://doi.org/10.1017/S0140525X12000477

Conant, R. C., & Ashby, W. R. (1970). Every good regulator of a system must be a model of that system. International Journal of Systems Science, 1(2), 89–97. DOI: https://doi.org/10.1080/00207727008920220

d'Espagnat, B. (1976). Conceptual Foundations of Quantum Mechanics (2nd ed.). W. A. Benjamin.

Eibenberger, S., Gerlich, S., Arndt, M., Mayor, M., & Tüxen, J. (2013). Matter-wave interference with particles selected from a molecular library with masses exceeding 10 000 amu. Physical Chemistry Chemical Physics, 15(35), 14696–14700. DOI: https://doi.org/10.1039/c3cp51500a

Englert, B. G. (1996). Fringe visibility and which-way information: An inequality. Physical Review Letters, 77(11), 2154–2157. DOI: https://doi.org/10.1103/PhysRevLett.77.2154

Fein, Y. Y., Geyer, P., Zwick, P., Kiałka, F., Pedalino, S., Mayor, M., ... & Arndt, M. (2019). Quantum superposition of molecules beyond 25 kDa. Nature Physics, 15(12), 1242–1245. DOI: https://doi.org/10.1038/s41567-019-0663-9

Fields, C., & Levin, M. (2020). How do living systems create meaning? Philosophies, 5(4), 36. DOI: https://doi.org/10.3390/philosophies5040036

Fields, C., Glazebrook, J. F., & Levin, M. (2021). Minimal physicalism as a scale-free substrate for cognition and consciousness. Neuroscience of Consciousness, 2021(2), niab013. DOI: https://doi.org/10.1093/nc/niab013

Fields, C., Glazebrook, J. F., & Marcianò, A. (2017). Reference frame induced symmetry breaking on holographic screens. Symmetry, 9(8), 136.

Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1456), 815–836. DOI: https://doi.org/10.1098/rstb.2005.1622

Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11(2), 127–138. DOI: https://doi.org/10.1038/nrn2787

Friston, K. (2019). A free energy principle for a particular physics. arXiv preprint arXiv:1906.10184.

Fuchs, C. A., & Peres, A. (2000). Quantum theory needs no ‘interpretation’. Physics Today, 53(3), 70–71. DOI: https://doi.org/10.1063/1.883004

Gallagher, T. F., & DeMille, D. (2019). Possibilities for molecular physics using pulsed beams. Annual Review of Physical Chemistry, 70, 123–152. DOI: https://doi.org/10.1146/annurev-physchem-042018-052628

Gallís, M. R., & Fleming, G. N. (1990). Environmental and spontaneous localization. Physical Review A, 42(1), 38–48. DOI: https://doi.org/10.1103/PhysRevA.42.38

Gell-Mann, M., & Hartle, J. B. (1993). Classical equations for quantum systems. Physical Review D, 47(8), 3345–3382. DOI: https://doi.org/10.1103/PhysRevD.47.3345

Gerlich, S., Eibenberger, S., Tomandl, M., Nimmrichter, S., Hornberger, K., Fagan, P. J., ... & Arndt, M. (2011). Quantum interference of large organic molecules. Nature Communications, 2(1), 263. DOI: https://doi.org/10.1038/ncomms1263

Hackermüller, L., Hornberger, K., & Arndt, M. (2004). Influence of molecular temperature on the coherence of fullerenes in a near-field interferometer. Applied Physics B, 77(8), 781–787. DOI: https://doi.org/10.1007/s00340-003-1312-6

Hornberger, K., Gerlich, S., Ulbricht, H., & Arndt, M. (2012). Theory and experimental verification of Kapitza-Dirac-Talbot-Lau interferometry. New Journal of Physics, 14(4), 043008.

Hornberger, K., Sipe, J. E., & Arndt, M. (2004). Theory of decoherence in a matter wave Talbot-Lau interferometer. Physical Review A, 70(5), 053608. DOI: https://doi.org/10.1103/PhysRevA.70.053608

Jaba, T. (2022). Dasatinib and quercetin: short-term simultaneous administration yields senolytic effect in humans. Issues and Developments in Medicine and Medical Research Vol. 2, 22-31. DOI: https://doi.org/10.9734/bpi/idmmr/v2/15155D

Jacques, V., Wu, E., Grosshans, F., Treussart, F., Grangier, P., Aspect, A., & Roch, J.-F. (2007). Experimental realization of Wheeler's delayed-choice gedanken experiment. Science, 315(5814), 966–968. DOI: https://doi.org/10.1126/science.1136303

Joos, E., & Zeh, H. D. (1985). The emergence of classical properties through interaction with the environment. Zeitschrift für Physik B Condensed Matter, 59(2), 223–243. DOI: https://doi.org/10.1007/BF01725541

Joos, E., Zeh, H. D., Kiefer, C., Giulini, D., Kupsch, J., & Stamatescu, I.-O. (2003). Decoherence and the Appearance of a Classical World in Quantum Theory (2nd ed.). Springer. DOI: https://doi.org/10.1007/978-3-662-05328-7

Juffmann, T., Truppe, S., Geyer, P., Major, A. G., Deachapunya, S., Ulbricht, H., & Arndt, M. (2012). Wave and particle in molecular interference lithography. Physical Review Letters, 109(26), 263601. DOI: https://doi.org/10.1103/PhysRevLett.103.263601

Kent, A. (2010). One world versus many: The inadequacy of Everettian accounts of evolution, probability, and scientific confirmation. In S. Saunders, J. Barrett, A. Kent, & D. Wallace (Eds.), Many Worlds? Everett, Quantum Theory, and Reality (pp. 307–354). Oxford University Press. DOI: https://doi.org/10.1093/acprof:oso/9780199560561.003.0012

Kiefer, C., & Joos, E. (1999). Decoherence: Concepts and examples. In P. Blanchard, E. Joos, D. Giulini, C. Kiefer, & I.-O. Stamatescu (Eds.), Decoherence: Theoretical, Experimental, and Conceptual Problems (pp. 105–128). Springer.

Kim, Y.-H., Yu, R., Kulik, S. P., Shih, Y., & Scully, M. O. (2000). Delayed "choice" quantum eraser. Physical Review Letters, 84(1), 1–5. DOI: https://doi.org/10.1103/PhysRevLett.84.1

Kochen, S., & Specker, E. P. (1967). The problem of hidden variables in quantum mechanics. Journal of Mathematics and Mechanics, 17(1), 59–87. DOI: https://doi.org/10.1512/iumj.1968.17.17004

Korotkov, A. N., & Jordan, A. N. (2006). Undoing a weak quantum measurement of a solid-state qubit. Physical Review Letters, 97(16), 166805. DOI: https://doi.org/10.1103/PhysRevLett.97.166805

Kwiat, P. G., Steinberg, A. M., & Chiao, R. Y. (1992). Observation of a "quantum eraser": A revival of coherence in a two-photon interference experiment. Physical Review A, 45(11), 7729–7739. DOI: https://doi.org/10.1103/PhysRevA.45.7729

Leggett, A. J. (2002). Testing the limits of quantum mechanics: Motivation, state of play, prospects. Journal of Physics: Condensed Matter, 14(15), R415–R451. DOI: https://doi.org/10.1088/0953-8984/14/15/201

Ma, X.-S., Kofler, J., & Zeilinger, A. (2013). Delayed-choice gedanken experiments and their realizations. Reviews of Modern Physics, 88(1), 015005.

Ma, X.-S., Kofler, J., & Zeilinger, A. (2016). Delayed-choice gedanken experiments and their realizations. Reviews of Modern Physics, 88(1), 015005. DOI: https://doi.org/10.1103/RevModPhys.88.015005

Nimmrichter, S., & Hornberger, K. (2013). Theory of near-field matter-wave interference beyond the eikonal approximation. Physical Review A, 88(4), 043622.

Omnès, R. (1992). Consistent interpretations of quantum mechanics. Reviews of Modern Physics, 64(2), 339–382. DOI: https://doi.org/10.1103/RevModPhys.64.339

Paz, J. P., & Zurek, W. H. (2001). Environment-induced decoherence and the transition from quantum to classical. In D. Heiss (Ed.), Fundamentals of Quantum Information (pp. 77–148). Springer. DOI: https://doi.org/10.1007/3-540-45933-2_4

Penrose, R. (1996). On gravity's role in quantum state reduction. General Relativity and Gravitation, 28(5), 581–600. DOI: https://doi.org/10.1007/BF02105068

Riedel, C. J., Zurek, W. H., & Zwolak, M. (2016). Objective past of a quantum universe: Redundant records of consistent histories. Physical Review A, 93(3), 032126. DOI: https://doi.org/10.1103/PhysRevA.93.032126

Romero-Isart, O., Juan, M. L., Quidant, R., & Cirac, J. I. (2011). Toward quantum superposition of living organisms. New Journal of Physics, 13(3), 033015. DOI: https://doi.org/10.1088/1367-2630/12/3/033015

Rovelli, C. (1996). Relational quantum mechanics. International Journal of Theoretical Physics, 35(8), 1637–1678. DOI: https://doi.org/10.1007/BF02302261

Schlosshauer, M. (2005). Decoherence, the measurement problem, and interpretations of quantum mechanics. Reviews of Modern Physics, 76(4), 1267–1305. DOI: https://doi.org/10.1103/RevModPhys.76.1267

Schlosshauer, M. (2019). Quantum decoherence. Physics Reports, 831, 1–57. DOI: https://doi.org/10.1016/j.physrep.2019.10.001

Schwartenbeck, P., FitzGerald, T., Dolan, R., & Friston, K. (2013). Exploration, novelty, surprise, and free energy minimization. Frontiers in Psychology, 4, 710. DOI: https://doi.org/10.3389/fpsyg.2013.00710

Scully, M. O., & Drühl, K. (1982). Quantum eraser: A proposed photon correlation experiment concerning observation and "delayed choice" in quantum mechanics. Physical Review A, 25(4), 2208–2213. DOI: https://doi.org/10.1103/PhysRevA.25.2208

Tegmark, M. (2000). Why the brain is probably not a quantum computer. Information Sciences, 128(3-4), 155–179. DOI: https://doi.org/10.1016/S0020-0255(00)00051-7

Tkemaladze, J. (2023). Reduction, proliferation, and differentiation defects of stem cells over time: a consequence of selective accumulation of old centrioles in the stem cells?. Molecular Biology Reports, 50(3), 2751-2761. DOI : https://pubmed.ncbi.nlm.nih.gov/36583780/ DOI: https://doi.org/10.1007/s11033-022-08203-5

Tkemaladze, J. (2024). Editorial: Molecular mechanism of ageing and therapeutic advances through targeting glycative and oxidative stress. Front Pharmacol. 2024 Mar 6;14:1324446. DOI : 10.3389/fphar.2023.1324446. PMID: 38510429; PMCID: PMC10953819. DOI: https://doi.org/10.3389/fphar.2023.1324446

Tkemaladze, J. (2026). Old Centrioles Make Old Bodies. Annals of Rejuvenation Science, 1(1). DOI : https://doi.org/10.65649/yx9sn772

Tkemaladze, J. (2026). Visions of the Future. Longevity Horizon, 2(1). DOI : https://doi.org/10.65649/8be27s21 DOI: https://doi.org/10.65649/8be27s21

Vaidman, L. (2014). Many-worlds interpretation of quantum mechanics. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Fall 2014 ed.).

Walborn, S. P., Terra Cunha, M. O., Pádua, S., & Monken, C. H. (2002). Double-slit quantum eraser. Physical Review A, 65(3), 033818. DOI: https://doi.org/10.1103/PhysRevA.65.033818

Wallace, D. (2012). The Emergent Multiverse: Quantum Theory according to the Everett Interpretation. Oxford University Press. DOI: https://doi.org/10.1093/acprof:oso/9780199546961.001.0001

Wheeler, J. A. (1978). The “past” and the “delayed-choice” double-slit experiment. In A. R. Marlow (Ed.), Mathematical Foundations of Quantum Theory (pp. 9–48). Academic Press. DOI: https://doi.org/10.1016/B978-0-12-473250-6.50006-6

Zurek, W. H. (1982). Environment-induced superselection rules. Physical Review D, 26(8), 1862–1880. DOI: https://doi.org/10.1103/PhysRevD.26.1862

Zurek, W. H. (1991). Decoherence and the transition from quantum to classical. Physics Today, 44(10), 36–44. DOI: https://doi.org/10.1063/1.881293

Zurek, W. H. (1998). Decoherence, einselection, and the existential interpretation (the rough guide). Philosophical Transactions of the Royal Society A, 356(1743), 1793–1821. DOI: https://doi.org/10.1098/rsta.1998.0250

Zurek, W. H. (2003). Decoherence, einselection, and the quantum origins of the classical. Reviews of Modern Physics, 75(3), 715–775. DOI: https://doi.org/10.1103/RevModPhys.75.715

Zurek, W. H. (2009). Quantum Darwinism. Nature Physics, 5(3), 181–188. DOI: https://doi.org/10.1038/nphys1202

Downloads

Published

2026-01-10

Issue

Section

Theoretical Frameworks

How to Cite

Tkemaladze, J. (2026). Ze, Decoherence, and the Quantum Eraser. Longevity Horizon, 2(1). DOI : https://doi.org/10.65649/39hf1h41

Most read articles by the same author(s)

<< < 1 2 3 4 5 6 7 > >> 

Similar Articles

1-10 of 32

You may also start an advanced similarity search for this article.