Digital Twins of Cell Differentiation Integrating Centrosomal Dynamics

Authors

  • Jaba Tkemaladze Author

DOI:

https://doi.org/10.65649/b3xxd095

Keywords:

Digital Twin, Cell Differentiation, Centrosome Dynamics, Agent-Based Modeling, Multi-Omics Integration, Machine Learning, Regenerative Medicine

Abstract

The integration of centrosomal dynamics into digital twins (DTs) of cell differentiation represents a paradigm shift from descriptive, empirical protocols to predictive, mechanism-based engineering of cell fate. Digital twins in biomedicine act as dynamic, multi-scale virtual systems that integrate experimental data and generate testable predictions, yet most models overlook the centrosome—an organelle increasingly recognized as an active signal-integration hub rather than a passive microtubule-organizing center. This review synthesizes evidence that centrosomes orchestrate cell fate decisions through asymmetric inheritance, CAFD (cell fate determinant) docking, primary ciliogenesis, and coordination with polarity complexes. We propose a six-layer digital twin architecture that incorporates the centrosome as a mandatory computational module at the perception–integration level and CAFD logistics at the intracellular transport level. Data acquisition analysis shows that super-resolution live-cell imaging, APEX2 proximity proteomics, FRET-based biosensors, and imaging mass cytometry provide multiparametric data to parameterize centrosome-specific dynamics. Computational frameworks include agent-based modeling with explicit centrosomal state vectors, hybrid LSTM–CNN architectures for multimodal time-series integration, graph neural networks for CAFD–centrosome interactomes, and reinforcement learning for closed-loop protocol optimization. A case study optimizing cortical neuron differentiation from iPSCs via Aurora A kinase inhibition illustrates implementation from data acquisition through hybrid model training. Key challenges include dimensionality, computational demands, incomplete CAFD inventories, and validation costs. Ethical issues of data sovereignty, liability, and reproducibility remain. Over three to five years, protocol twins will enable pharmaceutical in silico screening; within five to ten years, cloud platforms with pretrained centrosomal modules will democratize access; beyond ten years, integrated virtual cells may support Human Digital Twin initiatives. This interdisciplinary effort will accelerate predictable, safe cell therapies by transforming trial-and-error into centrosome-informed engineering.

References

Abdelmohsen, K., Mazan-Mamczarz, K., Tsitsipatis, D., Rossi, M., Munk, R. B., & Gorospe, M. (2025). Dissecting the heterogeneity of senescent cells through CITE-seq integration. In The Surfaceome: Methods and Protocols (Methods in Molecular Biology, Vol. 2908, pp. 99-109). Springer US.

Aghasafari, P., et al. (2023). Generating synthetic multi-dimensional molecular-mediator time series data for artificial intelligence-based disease trajectory forecasting and drug development digital twins: Considerations. arXiv. arXiv:2303.09056

Argonne Leadership Computing Facility. (2025). EMERGE: ExaEpi calibration runs and surrogate models. Argonne National Laboratory. https://www.alcf.anl.gov

Benzinga. (2025, March 26). Morpheus Unveils Decentralized AI Forge For Smart Agents, Simplifying Development. Benzinga. https://www.benzinga.com

Bhardwaj, S., Kumar, G., Yang, H., Bhardwaj, S., Wang, Q., Shen, M., Wang, Y., & De Souza, C. M. (2025). Virtual cells: From conceptual frameworks to biomedical applications. arXiv. arXiv:2509.18220

Bian, S., Wang, Y., Zhou, Y., & Chen, Y. G. (2025). Integrated protocol for single-cell RNA sequencing, organoid culture, and RNA-protein spatial analysis in gastroesophageal tissues. BMC Methods, *2*, 15.

BIDS Specification. (2025). Microscopy modality-specific files. Brain Imaging Data Structure. https://bids-specification.readthedocs.io

Biocomplexity Institute. (2025). COPASI: Biochemical network simulation and analysis. University of Virginia. http://www.copasi.org

BSI Group. (2025). *PNW JTC1-SC41-543 ED1: Digital twin – Process and guidance for digital twin model construction*. BSI Standards Development. https://standardsdevelopment.bsigroup.com

Camacho Gómez, D., Gonçalves, I., Gomez-Benito, M. J., Hervas-Raluy, S., Perez, M. A., Guerrero, P., Borau, C., & García Aznar, J. M. (2023). Challenges in modeling the morphogenesis of human-cell-based organoids. Conference presentation, ICCB 2023.

CERN openlab. (2025). BioDynaMo: Biology Dynamics Modeller. CERN. https://openlab.cern/biodynamo

Chaparro-Cárdenas, S. L., Ramirez-Bautista, J. A., Terven, J., Córdova-Esparza, D. M., Romero-Gonzalez, J. A., Ramírez-Pedraza, A., & Chavez-Urbiola, E. A. (2025). A technological review of digital twins and artificial intelligence for personalized and predictive healthcare. Healthcare, *13*(14), 1763.

Dassault Systèmes. (2026, January 8). 達梭系統在 CES 2026 展示運用 AI 技術 重塑精準、預測與個人化醫療的未來 [Dassault Systèmes showcases AI technology at CES 2026 to reshape the future of precision, predictive, and personalized medicine]. TechOrange. https://buzzorange.com/techorange

Diez, A., Tsutsumi, R., & Plunder, S. (2025). Emergence of digit-like structures through mechanical instabilities: A hybrid computational and experimental study. *ACMB-JSMB2025*.

Doxsey, S. (2016). The centrosome, a multitalented renaissance organelle. Cold Spring Harbor Perspectives in Biology, *8*(12), a025049.

Du, L., et al. (2025). Spatial omics in 3D culture model systems: decoding cellular positioning mechanisms and microenvironmental dynamics. Journal of Translational Medicine, *23*(1), 1356.

Ebrahimi, A., Fotuhi Siahpirani, A., & Montazeri, H. (2025). sCIN: A contrastive learning framework for single-cell multi-omics data integration. bioRxiv. https://doi.org/10.1101/2025.02.03.636095

ECMI. (2024, March 21). Kaiserslautern. Mathematics for a challenging biomedical problem: Report on the project. European Consortium for Mathematics in Industry.

ELIXIR Norway. (2025). Cheat sheet: Light microscopy. Research Data Management resources. https://elixir.no

Eschment, M., Mercey, O., Aarts, E. M., Perego, L., Figueiro da Silva, J., Mennel, M., Abidi, A., Generali, M., Rauch, A., Guichard, P., Hamel, V., & Bachmann-Gagescu, R. (2025). CEP290-deficiency disrupts ciliary axonemal architecture in human iPSC-derived brain organoids. Journal of Cell Science, jcs.264092. Advance online publication.

Ferlito, B., et al. (2024). Navigating the landscape of digital twins in medicine: A relational bioethical inquiry. Asian Bioethics Review, *16*(3), 471-481.

Fernandes-Mariano, C., et al. (2025). Centrosome biogenesis and maintenance in homeostasis and disease. Current Opinion in Cell Biology, *94*, 102485.

Florin, L. (2026, February 13). Hesperos' Human-on-a-Chip® and digital twin platforms redefine disease modeling. MedTech Spectrum. https://medtechspectrum.com

Freederia Research. (2025). Automated cellular microfactory design optimization via reinforcement learning & digital twin simulation. DEV Community. https://dev.to/freederia-research/automated-cellular-microfactory-design-optimization-via-reinforcement-learning-digital-twin-57n5

Guo, H., et al. (2025). An enzymatic cascade enables sensitive and specific proximity labeling proteomics in challenging biological systems. Nature Communications, *16*, 9691.

Guo, H., et al. (2025a). An enzymatic cascade enables sensitive and specific proximity labeling proteomics in challenging biological systems. Nature Communications, *16*, 9691.

Guo, H., Zhang, C., & Qin, W. (2025b). Spatiotemporally resolved profiling of protein movement by TransitID. Methods in Molecular Biology, *2872*, 215-234.

Gurazada, G. (2025). multi-agent-AI: Developing a multi-agent AI system to predict cell viability collapse in biopharma manufacturing [Source code]. GitHub. https://github.com

Gurazada, G. (2025). multi-agent-AI: Developing a multi-agent AI system to predict cell viability collapse in biopharma manufacturing. GitHub repository.

Han, M., Vitelli, V., et al. (2025). Learning noisy tissue dynamics across time scales. arXiv. arXiv:2510.19090

He, Q., Wang, G., Wakade, S., Dasgupta, S., Dinkins, M., Kong, J. N., Spassieva, S. D., & Bieberich, E. (2014). Primary cilia in stem cells and neural progenitors are regulated by neutral sphingomyelinase 2 and ceramide. Molecular Biology of the Cell, *25*(11), 1715-1729.

Huang, K., & Nandakumar, D. (2024, October 23). Augmenting Security Operations Centers with Accelerated Alert Triage and LLM Agents Using NVIDIA Morpheus. NVIDIA Technical Blog. https://developer.nvidia.com/blog

Huang, Y., et al. (2025). CCHCR1 links P-body proteins to the centrosome and is required for ciliogenesis through interacting with OFD1 and PCM1. Cellular & Molecular Biology Letters, *30*, 102.

Iber, D., Tanaka, S., Fried, P., Germann, P., & Menshykau, D. (2013). Simulating tissue morphogenesis and signaling. Methods in Molecular Biology, *1189*, 323-338.

IEEE Xplore. (2025). Self-healing digital twins: Hybrid generative and privacy-preserving AI for adaptive wellness platforms. IEEE Xplore.

Jaba, T. (2022). Dasatinib and quercetin: short-term simultaneous administration yields senolytic effect in humans. Issues and Developments in Medicine and Medical Research Vol. 2, 22-31.

Johnson, J. A. I., et al. (2025). Human interpretable grammar encodes multicellular systems biology models to democratize virtual cell laboratories. Cell. DOI: 10.1016/j.cell.2025.06.048

Kabashkin, I. (2025). Mathematical framework for digital risk twins in safety-critical systems. Mathematics, *13*(19), 3222.

Kemkar, S., Tao, M., Ghosh, A., Stamatakos, G., Graf, N., Poorey, K., Balakrishnan, U., Trask, N., & Radhakrishnan, R. (2024). Towards verifiable cancer digital twins: tissue level modeling protocol for precision medicine. Frontiers in Physiology, *15*.

Kiyomitsu, T. (Ed.). (2025). The mitotic spindle: Methods and protocols. Methods in Molecular Biology, 2872. Humana Press.

Klein, D., Pahl, A., Krentzel, D., et al. (2025). Joint profiling of cell morphology and gene expression during in vitro neurodevelopment. eLife, *14*, e102578.

Konkuk University. (2026). Digital twin–guided development of stem cell organoids for disease modeling and tissue repair. Horizon Europe Project Proposal.

Lach, R. S., Qiu, C., Zeyaei Kajbaf, E., Baxter, N., Han, D., Wang, A., ... & Wilson, M. Z. (2022). Nucleation of the destruction complex on the centrosome accelerates degradation of β-catenin and regulates Wnt signal transmission. Proceedings of the National Academy of Sciences, *119*(36), e2204688119.

Lach, R. S., Qiu, C., Zeyaei Kajbaf, E., et al. (2022). Nucleation of the destruction complex on the centrosome accelerates degradation of β-catenin and regulates Wnt signal transmission. Proceedings of the National Academy of Sciences, *119*(36), e2204688119.

Lee, C. Y., et al. (2020). centrocortin RNA localization to centrosomes is regulated by FMRP and facilitates error-free mitosis. Journal of Cell Biology, *219*(3), e201906101.

Lee, D. F., Su, J., Ang, Y. S., Carvajal-Vergara, X., Mulero-Navarro, S., Pereira, C. F., Gingold, J., Wang, H. L., Zhao, R., Sevilla, A., Darr, H., Williamson, A. J., Chang, B., Niu, X., Aguilo, F., Flores, E. R., Sher, Y. P., Hung, M. C., Whetton, A. D., ... & Lemischka, I. R. (2012). Regulation of embryonic and induced pluripotency by aurora kinase-p53 signaling. Cell Stem Cell, *11*(2), 179-194.

Letort, G., Montagud, A., Stoll, G., Heiland, R., Barillot, E., Macklin, P., Zinovyev, A., & Calzone, L. (2019). PhysiBoSS: a multi-scale agent based modelling framework integrating physical dimension and cell signalling. Bioinformatics, *35*(7), 1188-1196.

Li, X. (2025, July). Digital twins power early diagnosis & targeted therapy. In ECTS–IFMRS Joint Session, Vienna. International Federation of Musculoskeletal Research Societies.

Li, X., Jensen, S. L., Christiansen, N. B., et al. (2026). A cloud-enabled digital twin platform for upstream processing in biotechnology: Integrating CFD, compartmentalization, and reaction kinetics. Computers and Chemical Engineering, *206*, 109488. https://doi.org/10.1016/j.compchemeng.2025.109488

Litinetskaya, A., Schulman, M., Curion, F., Szalata, A., Omidi, A., Lotfollahi, M., & Theis, F. (2025). Integration and querying of multimodal single-cell data with PoE-VAE. bioRxiv. https://doi.org/10.1101/2022.03.16.484643

Lyu, Y., et al. (2026). Building digital twins of different human organs for personalized healthcare. arXiv. arXiv:2601.11318

Meyer-Gerards, C., et al. (2025). Developmental and tissue-specific roles of mammalian centrosomes. The FEBS Journal, *292*(4), 709-726.

Molecular Quantum Solutions. (2025). Lab Connect: Laboratory digitalization and self-driving laboratories documentation. https://docs.mqs.dk

Ortolan, D., Sathe, P., Volkov, A., et al. (2026). AI driven 3D subcellular RPE map discovers cell state transitions in establishment of apical-basal polarity. Nature Partner Journal–AI. Advance online publication. https://doi.org/10.1038/s44387-026-00074-6

Qi, Y., Feng, Y., Liu, X., Li, J., Huang, Q., Li, Z., ... & Zheng, B. (2025). Cellular indexing of transcriptomes and epitopes by sequencing unveils coordinated RNA and protein landscape in ovary at single-cell resolution. Chemical Engineering Journal, Advance online publication.

Ramesh Babu, R., Krishnan, R., & Sunanda, R. (2025). Ensuring privacy and security: A framework for sharing anonymized patient data using blockchain and digital twins. In A Framework for Sharing Anonymized Patient Data. Taylor & Francis.

Ramírez Sierra, M. A. (2024, September). From multiscale models to digital twins. Paper presented at the FIAS Workshop, Frankfurt Institute for Advanced Studies.

Reina, J., & Gonzalez, C. (2014). When fate follows age: unequal centrosomes in asymmetric cell division. Philosophical Transactions of the Royal Society B: Biological Sciences, *369*(1650), 20130466.

Sadria, M., & Bury, T. M. (2024). FateNet: an integration of dynamical systems and deep learning for cell fate prediction. Bioinformatics, *40*(9), btae525.

Siemens. (2025). Improve food & beverage manufacturing quality with an integrated LIMS software system. Siemens Digital Industries Software.

Silva, A., et al. (2025). Digital twins in personalized medicine: Bridging innovation and clinical reality. Journal of Personalized Medicine, *15*(11), 503.

Tanaka, H. (2021). Viscoelastic phase separation in biological cells. arXiv. arXiv:2104.12541

Technology Networks. (2025, July 25). Scientists create digital twin to simulate cell behavior. Technology Networks.

The Jackson Laboratory. (2025, December 8). The Jackson Laboratory receives an up to $30 million contract award to revolutionize drug safety testing with AI-powered "virtual hearts." BioInformant. https://bioinformant.com

Tkemaladze, J. (2023). Reduction, proliferation, and differentiation defects of stem cells over time: a consequence of selective accumulation of old centrioles in the stem cells?. Molecular Biology Reports, 50(3), 2751-2761. DOI : https://pubmed.ncbi.nlm.nih.gov/36583780/

Tkemaladze, J. (2024). Editorial: Molecular mechanism of ageing and therapeutic advances through targeting glycative and oxidative stress. Front Pharmacol. 2024 Mar 6;14:1324446. DOI : 10.3389/fphar.2023.1324446. PMID: 38510429; PMCID: PMC10953819.

Tkemaladze, J. (2026). Old Centrioles Make Old Bodies. Annals of Rejuvenation Science, 1(1). DOI : https://doi.org/10.65649/yx9sn772

Tkemaladze, J. (2026). Visions of the Future. Longevity Horizon, 2(1). DOI : https://doi.org/10.65649/8be27s21

Turner, D. (2026, February 2). 2026年临床前研究与临床开发将发生哪些变革 [What will change in preclinical and clinical research in 2026]. Drug Discovery World. https://drugdiscoveryworld.com

Virtual Cell (VCell). (2025). Introduction to the Virtual Cell Modeling and Simulation Framework. National Resource for Cell Analysis and Modeling. https://vcell.org

Wang, G., Kam, Y., & Romero, N. (2025). Optimized workflow to assess metabolic profile during adipocyte differentiation. Diabetes, *74*(Supplement 1), 1573-P.

Wang, P.-K., Lin, K.-H., & Tang, T. K. (2025). Centrosome migration and apical membrane formation in polarized epithelial cells: Insights from the MDCK cyst model. Molecular Biology of the Cell. Advance online publication.

Wang, X., et al. (2025). Multi-omics and deep learning for programmed cell death pathways in gastric cancer. Frontiers in Immunology, *16*, 1690200.

Weidema, et al. (2025). The ethical aspects of human organ-on-chip models: A mapping review. Stem Cell Reports, *20*(11), 102686.

Woodruff, J. B., Ferreira Gomes, B., Widlund, P. O., Mahamid, J., Honigmann, A., & Hyman, A. A. (2017). The centrosome is a selective condensate that nucleates microtubules by concentrating tubulin. Cell, *169*(6), 1066-1077.

Yamashita, Y. M., Mahowald, A. P., Perlin, J. R., & Fuller, M. T. (2007). Asymmetric inheritance of mother versus daughter centrosome in stem cell division. Science, *315*(5811), 518-521.

YellowDog. (2025, October 7). Developing virtual twin hearts with Hybrid Cloud - ELEM BioTech [Case study]. YellowDog. https://yellowdog.ai

yjsshiwu.com. (2025). 数字孪生体校准 [Digital twin calibration]. yjsshiwu.com.

Yuan, B., et al. (2025). Causal models and prediction in cell line perturbation experiments. BMC Bioinformatics, *26*(1), 4.

Zhang, J., Li, X., Guo, X., You, Z., Böttcher, L., Mogilner, A., Hoffmann, A., Chou, T., & Xia, M. (2025). Reconstructing noisy gene regulation dynamics using extrinsic-noise-driven neural stochastic differential equations. arXiv. arXiv:2503.09007

Zhou, P. (2026). AI动态虚拟细胞构建的理论与算法 [Theories and algorithms for AI-driven dynamic virtual cell construction]. Invited talk, Wuhan University.

衍因科技 & 神拓生物. (2026, January 15). 衍因科技与神拓生物达成战略合作,共建虚拟细胞平台 [Yanyin Technology and Shentuo Bio reach strategic cooperation to jointly build virtual cell platform]. 衍因科技官网. https://yanyin.tech

Downloads

Published

2026-02-18

Issue

Section

In Silico Experimentation

How to Cite

Tkemaladze, J. (2026). Digital Twins of Cell Differentiation Integrating Centrosomal Dynamics. Longevity Horizon, 2(4). DOI : https://doi.org/10.65649/b3xxd095

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 9 > >> 

Similar Articles

1-10 of 72

You may also start an advanced similarity search for this article.