Toward Integral Field Tomography of Living Systems

Authors

  • Jaba Tkemaladze Author

DOI:

https://doi.org/10.65649/j2mx4727

Keywords:

Integral Field Tomography, Inverse Problem, Multi-Physics Imaging, Active Inference, Digital Twin, Systems Medicine, Preventive Diagnostic

Abstract

Modern medical diagnostics relies on modality-specific approximations—CT for density, MRI for proton environments, ultrasound for mechanical impedance, and PET for metabolic proxies—each observing a projection of the organism rather than the organism itself. Disease, however, is not merely a structural anomaly but a loss of system stability, often established long before macroscopic changes become detectable. This article introduces the concept of Integral Field Tomography (IFT), a novel framework for reconstructing the internal physiological state of a living organism by solving the inverse problem of its externally measurable physical fields. Living systems are conceptualized as unified, multi-field entities: electrodynamic, magnetodynamic, mechanical continua, metabolic dissipative structures, and information-processing systems far from equilibrium. These processes continuously generate electrical, magnetic, mechanical, and photonic fields that propagate beyond tissue boundaries, serving as fundamental expressions of physiological state. IFT proposes to capture these fields simultaneously using ultra-sensitive detectors—including optically pumped magnetometers, laser vibrometers, and quantum-limited photonic sensors—and to reconstruct the organism's internal state through multi-scale, multi-physics inverse modeling. Artificial intelligence plays an intrinsic role in learning personalized priors, enforcing physical constraints, integrating heterogeneous data, and maintaining a living digital twin of the organism. The framework aligns naturally with active inference, reconceptualizing diagnosis as the estimation of how well the organism minimizes its own variational free energy. This shift from episodic structural imaging to continuous state inference enables detection before structural damage, monitoring of aging as loss of system coherence, evaluation of interventions at the level of state recovery, and the establishment of individualized baselines instead of population norms. Fundamental physical limits—quantum noise, thermal fluctuations, and information-theoretic constraints—lie far above current clinical thresholds, confirming that the primary obstacles are conceptual and computational, not physical. Integral Field Tomography represents not merely a new device but a new epistemology of medicine, transforming diagnostics from looking at bodies to reading living systems as coherent, measurable, dynamic wholes.

References

Ahmadi, N., Cao, Q., Humphrey, J. D., & Karniadakis, G. E. (2025). Physics-informed machine learning in biomedical science and engineering. Annual Review of Biomedical Engineering, 27. Advance online publication.

Aoki, I. (2005). Nonequilibrium thermodynamics in biological systems. AGU Fall Meeting Abstracts, NG23A-0089.

Baillet, S., Mosher, J. C., & Leahy, R. M. (2001). Electromagnetic brain mapping. IEEE Signal Processing Magazine, 18(6), 14–30.

Biros, G. (2010, April). Toward petaflop algorithms for medical-image driven inverse problems in biophysics [Conference presentation]. High Performance Computing Seminar, Georgia Institute of Technology, Atlanta, GA, United States.

Boccardi, V. (2025). From telomeres and senescence to integrated longevity medicine: Redefining the path to extended healthspan. Biogerontology, 26(3), Article 107. https://doi.org/10.1007/s10522-025-10246-7

Bonnet, I., Marcq, P., Bosveld, F., Fetler, L., Bellaïche, Y., & Graner, F. (2012). Mechanical state, material properties and continuous description of an epithelial tissue. Journal of the Royal Society Interface, 9(75), 2614–2623.

Boto, E., Holmes, N., Leggett, J., Roberts, G., Shah, V., Meyer, S. S., Muñoz, L. D., Mullinger, K. J., Tierney, T. M., Bestmann, S., Barnes, G. R., & Brookes, M. J. (2018). Moving magnetoencephalography towards real-world applications with a wearable system. Nature, 555(7698), 657–661.

Britannica, T. (Ed.). (1998, July 20). Bioelectricity. Encyclopedia Britannica.

Butler, M. J., Spence, J. C., & Noseworthy, M. D. (2025). A series of personalized melatonin supplement interventions for poor sleep: Feasibility randomized crossover trial for personalized N-of-1 treatment. JMIR Formative Research, 9, e58192. https://doi.org/10.2196/58192

Cohen, D. (1972). Magnetoencephalography: Detection of the brain's electrical activity with a superconducting magnetometer. Science, 175(4022), 664–666.

Cossetto, T., et al. (2025). Charting dissipation across the microbial world. arXiv Preprint, arXiv:2510.02205.

Da Costa, L., Lanillos, P., Sajid, N., Friston, K., & Khan, S. (2026). Decision, inference, and information: Formal equivalences under active inference. Entropy, 28(1), Article 1. https://doi.org/10.3390/e28010001

Day, P., Hahn, I., Chui, T. C. P., Harter, A. W., Rowe, D., & Lipa, J. A. (1997). The fluctuation-imposed limit for temperature measurement. Journal of Low Temperature Physics, 109(3), 359–370. https://doi.org/10.1007/BF02435412

De Micheli, E., & Viano, G. A. (2009). Inverse optical imaging viewed as a backward channel communication problem. Journal of the Optical Society of America A, 26(6), 1393–1402. https://doi.org/10.1364/JOSAA.26.001393

Digma, L. A., Korthauer, L. E., & Salloway, S. (2025). Continuum of Core 1 biomarkers in preclinical Alzheimer's disease. medRxiv. Advance online publication. https://doi.org/10.1101/2025.09.17.25336007

Eckert, A.-L., Sterner, E., Smith, R., Maromotti, R., & Diaconescu, A. (2025). Active inference in psychiatry: Understanding mechanisms of psychopathology [Conference session]. PuG2025 Conference, Berlin, Germany. https://www.pug2025.org/de/sessions/active-inference-in-psychiatry%3A-understanding-mechanisms-of-psychopathology

Eswari, B., Balasubramanian, S., & Sridhar, K. (2025). Grasp-dependent modulations in EEG-EMG coherence are observed in young but not older adults. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 33, 1123–1132. https://doi.org/10.1109/TNSRE.2025.3569859

Fong, A., Hoffman, D. J., Hettinger, A. Z., Fairbanks, R. J., & Bisantz, A. M. (2016). Identifying visual search patterns in eye gaze data; gaining insights into physician visual workflow. Journal of the American Medical Informatics Association, 23(6), 1180–1184.

Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11(2), 127–138. https://doi.org/10.1038/nrn2787

Friston, K. J., Salvatori, T., Isomura, T., Tschantz, A., Kiefer, A., Verbelen, T., Koudahl, M., Paul, A., Parr, T., Razi, A., Kagan, B. J., Buckley, C. L., & Ramstead, M. J. D. (2025). Active inference and intentional behavior. Neural Computation, 37(4), 666–700. https://doi.org/10.1162/neco_a_01738

Gabriel, P., Rehani, P., Troy, T., Wyatt, T., Choma, M., & Singh, N. (2025). Continuous patient monitoring with AI: Real-time analysis of video in hospital care settings. Frontiers in Imaging, 4, Article 1547166. https://doi.org/10.3389/fimag.2025.1547166

Galarce, F., Lombardi, D., & Mula, O. (2022). State estimation with model reduction and shape variability. Application to biomedical problems. SIAM Journal on Scientific Computing, 44(3), B805–B833. https://doi.org/10.1137/21M1421781

Hämäläinen, M., Hari, R., Ilmoniemi, R. J., Knuutila, J., & Lounasmaa, O. V. (1993). Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Reviews of Modern Physics, 65(2), 413–497.

Hammerschlag, R., Levin, M., McCraty, R., & Oschman, J. L. (2015). Biofield physiology: A framework for an emerging discipline. Global Advances in Health and Medicine, 4(Suppl), 35–41.

Hussain, S., Mubeen, I., & Karim, A. (2025). A comprehensive review of techniques, algorithms, advancements, challenges, and clinical applications of multi-modal medical image fusion for improved diagnosis. Computer Methods and Programs in Biomedicine, 259, 108569. Advance online publication.

Irfan, M., & Mubarak, F. (2025). Structural, functional and molecular imaging in dementia and Alzheimer’s disease: A review of multimodal approaches. Pakistan Journal of Radiology, 35(3).

Jaba, T. (2022). Dasatinib and quercetin: short-term simultaneous administration yields senolytic effect in humans. Issues and Developments in Medicine and Medical Research Vol. 2, 22-31.

Johnson, J. A. I., Stein-O'Brien, G., & Macklin, P. (2025). Human interpretable grammar encodes multicellular systems biology models to democratize virtual cell laboratories. Cell, 188(15), 1–18. https://doi.org/10.1016/j.cell.2025.06.048

Khan, I., & Lowe, R. (2024). Surprise! Using physiological stress for allostatic regulation under the active inference framework [Preprint]. arXiv. https://arxiv.org/abs/2406.08471

Kim, K., Kim, K., & Jeong, B. (2019). Heartbeat evokes a dynamically changing cortical theta-synchronized network in the resting state. eNeuro, 6(4), ENEURO.0114-19.2019.

Kim-McManus, O., Wood, J., & Thompson, R. (2024). A framework for N-of-1 trials of individualized gene-targeted therapies for genetic diseases. Nature Communications, 15(1), Article 9802. https://doi.org/10.1038/s41467-024-54077-5

Kobayashi, K., Okada, H., & Ichihashi, M. (2020). Oxidative stress in human facial skin observed by ultraweak photon emission imaging and its correlation with biophysical properties of skin. Scientific Reports, 10(1), 9626.

Lattimer, J. C. (2019). Computed tomography in animals. In Merck Veterinary Manual. Merck & Co., Inc.

Legault, V., Pu, Y., Weinans, E., & Cohen, A. A. (2024). Application of early warning signs to physiological contexts: A comparison of multivariate indices in patients on long-term hemodialysis. Frontiers in Network Physiology, 4, Article 1299162. https://doi.org/10.3389/fnetp.2024.1299162

Leote, A. C., Beyer, A., & Saez-Rodriguez, J. (2024). Loss of coordination between basic cellular processes in human aging. Nature Aging, 4(10), 1432–1445. https://doi.org/10.1038/s43587-024-00696-y

Levin, M., Pezzulo, G., & Finkelstein, J. M. (2019). Endogenous bioelectric signaling networks: Exploiting voltage gradients for control of growth and form. Annual Review of Biomedical Engineering, 19, 51–77.

Li, L., Ding, W., Huang, L., Zhuang, X., & Grau, V. (2023). Multi-modality cardiac image computing: A survey. Medical Image Analysis, 88, 102869.

Li, Y., Li, J., Cui, X., Wang, S., & Wan, M. (2001). Microscopic elasticity imaging of vessel walls based on intravascular ultrasound. Acta Acustica, 26(4), 355-360.

Li, Z., Zhang, Y., & Wang, L. (2025). Task-related EEG as a biomarker for preclinical Alzheimer's disease: An explainable deep learning approach. Biomimetics, 10(7), Article 468. https://doi.org/10.3390/biomimetics10070468

Lissek, T. (2024). Aging as a consequence of the adaptation–maladaptation dilemma. Advanced Biology, 8(4), Article 2300654. https://doi.org/10.1002/adbi.202300654

Mafraji, M. A. (2025). Magnetic resonance imaging (MRI). In Merck Manual Professional Edition. Merck & Co., Inc.

Malmivuo, J., & Plonsey, R. (1995). Bioelectromagnetism: Principles and applications of bioelectric and biomagnetic fields. Oxford University Press.

Marchesseau, S., Delingette, H., Sermesant, M., & Ayache, N. (2016). Fast parameter calibration of a cardiac electromechanical model from medical images based on the unscented transform. Biomechanics and Modeling in Mechanobiology, 15(4), 927–943.

Mauranyapin, N. P., Madsen, L. S., Taylor, M. A., Waleed, M., & Bowen, W. P. (2017). Evanescent single-molecule biosensing with quantum-limited precision. Nature Photonics, 11(8), 477–481. https://doi.org/10.1038/nphoton.2017.99

Moosavi Basri, S. M., Al-Nashash, H., & Mir, H. (2025). Inverse problem for M/EEG source localization: A review. IEEE Sensors Journal, 25(2), 2103–2124.

Oblak, D. (2025, May 20). All humans emit subtle light until they die, study suggests. BBC Science Focus Magazine. https://www.sciencefocus.com/news/all-living-things-faintly-glow-ultraweak-photon-emission-upe

Oved, T., Lena, B., Najac, C. F., Shen, S., Rosen, M. S., Webb, A., & Shimron, E. (2025). Deep learning of personalized priors from past MRI scans enables fast, quality-enhanced point-of-care MRI with low-cost systems. arXiv Preprint, arXiv:2505.02470.

Polepogu, R., & Vaegae, N. K. (2021). Exploration of magnitude squared coherence for assessment of more functionally associated region of the brain to the heart of healthy subjects. In S. Choudhury, R. Gowri, B. S. Paul, & D.-T. Do (Eds.), Intelligent Communication, Control and Devices (pp. 399–414). Springer.

Prasad, A., & Pospíšil, P. (2013). Towards the two-dimensional imaging of spontaneous ultra-weak photon emission from microbial, plant and animal cells. Journal of Photochemistry and Photobiology B: Biology, 128, 53–61.

Rambo, R. P., & Tainer, J. A. (2025). Information theory optimization of signals from small-angle scattering measurements. Biophysical Journal, 124(15), 2511–2522. https://doi.org/10.1016/j.bpj.2025.06.031

Rastogi, A., & Yalavarthy, P. K. (2024). Greybox: A hybrid algorithm for direct estimation of tracer kinetic parameters from undersampled DCE-MRI data. Medical Physics, 51(7), 4838–4858. https://doi.org/10.1002/mp.17215

Ring, E. F. J., & Ammer, K. (2012). Infrared thermal imaging in medicine. Physiological Measurement, 33(3), R33–R46.

Scalise, L. (2012). Non-contact heart monitoring. In R. M. Rangayyan (Ed.), Advances in cardiac signal processing (pp. 381–406). Springer.

Sihong, Z., & Ueno, S. (1995). Biomagnetism: Fundamental research and clinical applications. In Studies in Applied Electromagnetics and Mechanics (Vol. 7). IOS Press.

Silva, A., Pinho, S., & Friston, K. (2024). Increasing the construct validity of computational phenotypes of mental illness through active inference and brain imaging. Brain Sciences, 14(12), Article 1278. https://doi.org/10.3390/brainsci14121278

Sisken, J. E., et al. (2025). Resonant convergence: An integrative model for electromagnetic interactions in biological systems. International Journal of Molecular Sciences, 27(1), 423.

StatPearls. (2025). PET Scanning. StatPearls Publishing.

Steiner, G., Soleimani, M., & Watzenig, D. (2008). A bio-electromechanical imaging technique with combined electrical impedance and ultrasound tomography. Physiological Measurement, 29(6), S63–S75.

Sterling, P. (2012). Allostasis: A model of predictive regulation. Physiology & Behavior, 106(1), 5–15. https://doi.org/10.1016/j.physbeh.2011.06.004

Suzuki, M., Tanaka, S., Saito, K., Cho, K., Iso, N., Okabe, T., Suzuki, T., & Yamamoto, J. (2023). Baseline variability affects N-of-1 intervention effect: Simulation and field studies. Journal of Personalized Medicine, 13(5), Article 720. https://doi.org/10.3390/jpm13050720

Szabó, I., & Zoratti, M. (2014). Mitochondrial channels: ion fluxes and more. Physiological Reviews, 94(2), 519–608.

Takagi, H., Furusawa, C., Sawai, S., & Kaneko, K. (2025). Introduction to dynamical systems for biology. In Theoretical biology of the cell: A dynamical-systems perspective (pp. 1–40). Cambridge University Press.

Taylor, M. A., Janousek, J., Daria, V., Knittel, J., Hage, B., Bachor, H. A., & Bowen, W. P. (2013). Biological measurement beyond the quantum limit. Nature Photonics, 7(3), 229–233. https://doi.org/10.1038/nphoton.2012.346

Tippairote, T., Hoonkaew, P., Suksawang, A., & Tippairote, P. (2025). From adaptation to exhaustion: Defining exposure-related malnutrition as a bioenergetic phenotype of aging. Biogerontology, 26(5), Article 161. https://doi.org/10.1007/s10522-025-10202-9

Tkemaladze, J. (2023). Reduction, proliferation, and differentiation defects of stem cells over time: a consequence of selective accumulation of old centrioles in the stem cells?. Molecular Biology Reports, 50(3), 2751-2761. DOI : https://pubmed.ncbi.nlm.nih.gov/36583780/

Tkemaladze, J. (2024). Editorial: Molecular mechanism of ageing and therapeutic advances through targeting glycative and oxidative stress. Front Pharmacol. 2024 Mar 6;14:1324446. DOI : 10.3389/fphar.2023.1324446. PMID: 38510429; PMCID: PMC10953819.

Tkemaladze, J. (2026). Old Centrioles Make Old Bodies. Annals of Rejuvenation Science, 1(1). DOI : https://doi.org/10.65649/yx9sn772

Tkemaladze, J. (2026). Visions of the Future. Longevity Horizon, 2(1). DOI : https://doi.org/10.65649/8be27s21

University of Pennsylvania. (2025, February 25). Condensed & soft & living matter seminar: Far from equilibrium statistical physics, information, and biological response [Event announcement]. Department of Physics and Astronomy.

Vainio, O. (2025). The gaze of the machine: Technology, diagnostics, and the fragmentation of the body in twentieth-century medicine. Cambridge University Press.

Van Uitert, R., Weinstein, D., & Johnson, C. (2003). Volume currents in forward and inverse MEG simulations using realistic head models. Annals of Biomedical Engineering, 31(1), 21–31.

Wan, M., Li, Y., Li, J., Cui, X., & Wang, S. (2001). Microscopic elasticity imaging of vessel walls based on intravascular ultrasound. Acta Acustica, 26(4), 355-360.

Weidner, J., Ezhov, I., Balcerak, M., Metz, M. C., Litvinov, S., Kaltenbach, S., Feiner, L., Lux, L., Kofler, F., Lipkova, J., Latz, J., Rueckert, D., Menze, B., & Wiestler, B. (2024). A learnable prior improves inverse tumor growth modeling. IEEE Transactions on Medical Imaging. Advance online publication.

Downloads

Published

2026-02-15

Issue

Section

In Silico Experimentation

How to Cite

Tkemaladze, J. (2026). Toward Integral Field Tomography of Living Systems. Longevity Horizon, 2(4). DOI : https://doi.org/10.65649/j2mx4727

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 9 > >> 

Similar Articles

11-20 of 66

You may also start an advanced similarity search for this article.