Bayesian Order in Ze

Main Article Content

Jaba Tkemaladze

Abstract

This article presents the Ze artificial life system, a novel bio-inspired architecture for predictive processing in infinite data streams under severe memory constraints. The system implements Bayesian probability updating through a mechanism of dynamic chronotropic frequency analysis, demonstrating remarkable computational efficiency and biological plausibility. Unlike traditional approaches such as LSTM networks and Markov models, Ze processes information through parallel beginning and inverse processors, enabling complementary pattern discovery while maintaining sublinear memory complexity. The core algorithm exhibits distinctive probability dynamics characterized by an initial match probability of 0.5 with exponential decay to 0.00001 as counter diversity increases, achieving 78-92% prediction accuracy for stable data flows. Experimental results using synthetic datasets (1,048,576 binary sequences) confirm 37-42% operational savings compared to conventional methods, rapid adaptation to changing stream characteristics within 2-3 seconds, and robust noise tolerance up to 15% input distortion. The Go implementation processes 1.2 million operations per second with 850 nanosecond latency while maintaining memory usage of 12.8 bytes per counter. The system's architecture shows strong neurobiological correlations with predictive coding principles and synaptic plasticity mechanisms, providing both a practical solution for resource-constrained environments and a computational model of Bayesian inference in neural systems. Future development pathways include extension to non-binary data streams, integration with hierarchical Bayesian models, and hardware acceleration through memristor-based implementations.

Article Details

Section

Technology and Innovations

Author Biography

Jaba Tkemaladze, Longevity Clinic

The Goal of Dr. Jaba Tkemaladze - Systemic Rejuvenation Through in Vitro–Derived Safe Adult Stem Cells and Their Transplantation. His theoretical works include the development of the Centriolar Theory of Differentiation and the Centriolar Theory of Organismal Aging, which suggest the role of centrioles in the aging and development of cells and tissues. President, Longevity Alliance Georgia. Head of Department, Longevity Clinic, Inc., Georgia.

 

A physician-scientist specializing in the biology of ageing and longevity. His research focuses on the potential of stem cell therapies for age-related diseases and healthspan extension.

Current Roles:

  • President, Longevity Alliance Georgia.
  • Head of Department, Longevity Clinic, Inc., Georgia.

Research Focus:
His main research is related to the study of methodologies for returning the regeneration rate to the indicators of 12-24 years, in particular with the potential application of the technology of producing young safe stem cells from one's own somatic cells. His theoretical works include the development of the Centriolar Theory of Differentiation and the Centriolar Theory of Organismal Aging, which suggest the role of centrioles in the aging and development of cells and tissues.

Background:
Dr. Tkemaladze received his medical education at the Tbilisi State Medical University and continued his research in the laboratories of the Institute of Morphology and the Research Institute of Psychiatry. In his work, he uses a combined approach, combining experimental and computational methods, to study the aging process and develop treatments for age-related diseases.

Service and Recognition:
He has served on scientific advisory boards, including for the Georgian Ministry of Defense and the Longevity Alliance. He is the author of over 100 scientific publications and has been an invited speaker at numerous national and international conferences.

How to Cite

Tkemaladze, J. (2025). Bayesian Order in Ze. Longevity Horizon, 1(4). DOI:https://doi.org/10.5281/zenodo.17359987

References

Abraham, W. C., & Robins, A. (2005). Memory retention—the synaptic stability versus plasticity dilemma. Trends in Neurosciences, 28(2), 73–78. https://doi.org/10.1016/j.tins.2004.12.003

Agarwal, P. K., Cormode, G., Huang, Z., Phillips, J. M., Wei, Z., & Yi, K. (2014). Mergeable summaries. ACM Transactions on Database Systems, 39(4), 1–35. https://doi.org/10.1145/2660767

Alon, N., Matias, Y., & Szegedy, M. (1996). The space complexity of approximating the frequency moments. Journal of Computer and System Sciences, 58(1), 137–147. https://doi.org/10.1006/jcss.1996.0062

Anderson, J. R., & Schooler, L. J. (1991). Reflections of the environment in memory. Psychological Science, 2(6), 396–408. https://doi.org/10.1111/j.1467-9280.1991.tb00174.x

Aphkhazava, D., Sulashvili, N., & Tkemaladze, J. (2025). Stem Cell Systems and Regeneration. Georgian Scientists, 7(1), 271–319. doi : https://doi.org/10.52340/gs.2025.07.01.26

Aphkhazava, D., Sulashvili, N., Maglakelidze, G., & Tkemaladze, J. (2025). Ageless Creatures: Molecular Insights into Organisms That Defy Aging. Georgian Scientists, 7(3), 346–396. doi : https://doi.org/10.52340/gs.2025.07.03.24

Bao, S., Chan, V. T., & Merzenich, M. M. (2001). Cortical remodelling induced by activity of ventral tegmental dopamine neurons. Nature, 412(6842), 79–83. https://doi.org/10.1038/35083586

Bar, M. (2004). Visual objects in context. Nature Reviews Neuroscience, 5(8), 617–629. https://doi.org/10.1038/nrn1476

Barlow, H. B. (1961). Possible principles underlying the transformation of sensory messages. In Sensory Communication (pp. 217–234). MIT Press.

Begleiter, R., El-Yaniv, R., & Yona, G. (2004). On prediction using variable order Markov models. Journal of Artificial Intelligence Research, 22, 385–421. https://doi.org/10.1613/jair.1491

Behrens, T. E., Woolrich, M. W., Walton, M. E., & Rushworth, M. F. (2007). Learning the value of information in an uncertain world. Nature Neuroscience, 10(9), 1214–1221. https://doi.org/10.1038/nn1954

Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157–166. https://doi.org/10.1109/72.279181

Bi, G. Q., & Poo, M. M. (1998). Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. Journal of Neuroscience, 18(24), 10464–10472. https://doi.org/10.1523/JNEUROSCI.18-24-10464.1998

Bialek, W., Rieke, F., de Ruyter van Steveninck, R. R., & Warland, D. (1991). Reading a neural code. Science, 252(5014), 1854–1857. https://doi.org/10.1126/science.2063199

Bifet, A. (2010). Adaptive learning and mining for data streams and frequent patterns. ACM SIGKDD Explorations Newsletter, 11(2), 55–56. https://doi.org/10.1145/1809400.1809414

Bifet, A., & Gavaldá, R. (2009). Adaptive learning from evolving data streams. In Advances in Intelligent Data Analysis VIII (pp. 249–260). Springer. https://doi.org/10.1007/978-3-642-03915-7_22

Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19(12), 2767–2796. https://doi.org/10.1093/cercor/bhp055

Brown, S. D., Steyvers, M., & Wagenmakers, E. J. (2009). Observing evidence accumulation during decision making in continuous time. Journal of Mathematical Psychology, 53(4), 252–262. https://doi.org/10.1016/j.jmp.2009.04.003

Buhlmann, P., & Wyner, A. J. (1999). Variable length Markov chains. The Annals of Statistics, 27(2), 480–513. https://doi.org/10.1214/aos/1018031204

Busemeyer, J. R., & Bruza, P. D. (2012). Quantum models of cognition and decision. Cambridge University Press.

Buzsáki, G. (2006). Rhythms of the brain. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195301069.001.0001

Buzsáki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science, 304(5679), 1926–1929. https://doi.org/10.1126/science.1099745

Cai, F., Correll, J. M., Lee, S. H., Lim, Y., Bothra, V., Zhang, Z., ... & Lu, W. D. (2019). A fully integrated reprogrammable memristor–CMOS system for efficient multiply–accumulate operations. Nature Electronics, 2(7), 290–299. https://doi.org/10.1038/s41928-019-0270-x

Carandini, M., & Heeger, D. J. (2012). Normalization as a canonical neural computation. Nature Reviews Neuroscience, 13(1), 51–62. https://doi.org/10.1038/nrn3136

Chen, S. F., & Goodman, J. (1999). An empirical study of smoothing techniques for language modeling. Computer Speech & Language, 13(4), 359–394. https://doi.org/10.1006/csla.1999.0128

Chichinadze, K. N., & Tkemaladze, D. V. (2008). Centrosomal hypothesis of cellular aging and differentiation. Advances in Gerontology= Uspekhi Gerontologii, 21(3), 367-371.

Chichinadze, K., Lazarashvili, A., & Tkemaladze, J. (2013). RNA in centrosomes: structure and possible functions. Protoplasma, 250(1), 397-405.

Chichinadze, K., Tkemaladze, D., & Lazarashvili, A. (2012). New class of RNA and centrosomal hypothesis of cell aging. Advances in Gerontology= Uspekhi Gerontologii, 25(1), 23-28.

Chichinadze, K., Tkemaladze, J., & Lazarashvili, A. (2012). A new class of RNAs and the centrosomal hypothesis of cell aging. Advances in Gerontology, 2(4), 287-291.

Chichinadze, K., Tkemaladze, J., & Lazarashvili, A. (2012). Discovery of centrosomal RNA and centrosomal hypothesis of cellular ageing and differentiation. Nucleosides, Nucleotides and Nucleic Acids, 31(3), 172-183.

Ching, W. K., Huang, X., Ng, M. K., & Siu, T. K. (2013). Markov chains: models, algorithms and applications. International Series in Operations Research & Management Science, 189.

Clements, A. (2013). The Go programming language. Communications of the ACM, 56(5), 42–49. https://doi.org/10.1145/2447976.2447991

Cohen, E., & Strauss, M. J. (2006). Maintaining time-decaying stream aggregates. Journal of Algorithms, 59(1), 19–36. https://doi.org/10.1016/j.jalgor.2005.01.006

Cohen, J. D., McClure, S. M., & Yu, A. J. (2007). Should I stay or should I go? How the human brain manages the trade-off between exploitation and exploration. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1481), 933–942. https://doi.org/10.1098/rstb.2007.2098

Collins, A. M., & Loftus, E. F. (1975). A spreading-activation theory of semantic processing. Psychological Review, 82(6), 407–428. https://doi.org/10.1037/0033-295X.82.6.407

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to algorithms (3rd ed.). MIT Press.

Cormode, G., & Muthukrishnan, S. (2005). An improved data stream summary: the count-min sketch and its applications. Journal of Algorithms, 55(1), 58–75. https://doi.org/10.1016/j.jalgor.2003.12.001

Cover, T. M., & Thomas, J. A. (2006). Elements of information theory (2nd ed.). Wiley-Interscience.

Datar, M., Gionis, A., Indyk, P., & Motwani, R. (2002). Maintaining stream statistics over sliding windows. SIAM Journal on Computing, 31(6), 1794–1813. https://doi.org/10.1137/S0097539701398363

Daw, N. D., O'Doherty, J. P., Dayan, P., Seymour, B., & Dolan, R. J. (2006). Cortical substrates for exploratory decisions in humans. Nature, 441(7095), 876–879. https://doi.org/10.1038/nature04766

Dean, J. (2012). Large-scale deep learning for building intelligent computer systems. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1–1). ACM.

Deneve, S. (2008). Bayesian spiking neurons I: Inference. Neural Computation, 20(1), 91–117. https://doi.org/10.1162/neco.2008.20.1.91

Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18(1), 193–222. https://doi.org/10.1146/annurev.ne.18.030195.001205

Donovan, A. A., & Kernighan, B. W. (2015). The Go programming language. Addison-Wesley Professional.

Doya, K. (2008). Modulators of decision making. Nature Neuroscience, 11(4), 410–416. https://doi.org/10.1038/nn2077

Elfettahi, A. E., & Tkemaladze, J.(2025). The Neuro-Hepatic-Affective Model (NHAM): A Systems Framework for Liver–Brain Modulation of Emotion in Precision Psychiatry. Preprints. doi : https://doi. org/10.20944/preprints202508, 1312, v1.

Feldman, H., & Friston, K. J. (2010). Attention, uncertainty, and free-energy. Frontiers in Human Neuroscience, 4, 215. https://doi.org/10.3389/fnhum.2010.00215

Fiorillo, C. D., Tobler, P. N., & Schultz, W. (2003). Discrete coding of reward probability and uncertainty by dopamine neurons. Science, 299(5614), 1898–1902. https://doi.org/10.1126/science.1077349

Flajolet, P., Fusy, É., Gandouet, O., & Meunier, F. (2007). HyperLogLog: the analysis of a near-optimal cardinality estimation algorithm. In Analysis of Algorithms (pp. 127–146). https://doi.org/10.46298/dmtcs.3545

Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1456), 815–836. https://doi.org/10.1098/rstb.2005.1622

Friston, K. (2010). The free-energy principle: a unified brain theory? Nature Reviews Neuroscience, 11(2), 127–138. https://doi.org/10.1038/nrn2787

Fritz, J., Shamma, S., Elhilali, M., & Klein, D. (2003). Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex. Nature Neuroscience, 6(11), 1216–1223. https://doi.org/10.1038/nn1141

Fusi, S., Drew, P. J., & Abbott, L. F. (2005). Cascade models of synaptically stored memories. Neuron, 45(4), 599–611. https://doi.org/10.1016/j.neuron.2005.02.001

Gama, J. (2010). Knowledge discovery from data streams. CRC Press. https://doi.org/10.1201/EBK1439826119

Gama, J., Sebastião, R., & Rodrigues, P. P. (2013). On evaluating stream learning algorithms. Machine Learning, 90(3), 317–346. https://doi.org/10.1007/s10994-012-5320-9

Gazzaniga, M. S. (2000). Cerebral specialization and interhemispheric communication: Does the corpus callosum enable the human condition? Brain, 123(7), 1293–1326. https://doi.org/10.1093/brain/123.7.1293

Gershman, S. J., & Beck, J. M. (2016). Complex probabilistic inference: From cognition to neural computation. In Computational and Robotic Models of the Hierarchical Organization of Behavior (pp. 27–42). Springer. https://doi.org/10.1007/978-3-319-31081-2_3

Gilbert, C. D., Sigman, M., & Crist, R. E. (2001). The neural basis of perceptual learning. Neuron, 31(5), 681–697. https://doi.org/10.1016/S0896-6273(01)00424-X

Gold, J. I., & Shadlen, M. N. (2007). The neural basis of decision making. Annual Review of Neuroscience, 30, 535–574. https://doi.org/10.1146/annurev.neuro.29.051605.113038

Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., & Schmidhuber, J. (2017). LSTM: A search space odyssey. IEEE Transactions on Neural Networks and Learning Systems, 28(10), 2222–2232. https://doi.org/10.1109/TNNLS.2016.2582924

Griffiths, T. L., Kemp, C., & Tenenbaum, J. B. (2008). Bayesian models of cognition. In The Cambridge Handbook of Computational Psychology (pp. 59–100). Cambridge University Press.

Han, S., Liu, X., & Han, J. (2016). EIE: efficient inference engine on compressed deep neural network. ACM SIGARCH Computer Architecture News, 44(3), 243–254. https://doi.org/10.1145/3007787.3001163

Hardt, O., Nader, K., & Nadel, L. (2013). Decay happens: the role of active forgetting in memory. Trends in Cognitive Sciences, 17(3), 111–120. https://doi.org/10.1016/j.tics.2013.01.001

Herlihy, M., & Shavit, N. (2012). The art of multiprocessor programming. Morgan Kaufmann.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

Hua, J. Y., & Smith, S. J. (2004). Neural activity and the dynamics of central nervous system development. Nature Neuroscience, 7(4), 327–332. https://doi.org/10.1038/nn1218

Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. The Journal of Physiology, 160(1), 106–154. https://doi.org/10.1113/jphysiol.1962.sp006837

Iglesias, S., Mathys, C., Brodersen, K. H., Kasper, L., Piccirelli, M., den Ouden, H. E., & Stephan, K. E. (2013). Hierarchical prediction errors in midbrain and basal forebrain during sensory learning. Neuron, 80(2), 519–530. https://doi.org/10.1016/j.neuron.2013.09.009

Jaba, T. (2022). Dasatinib and quercetin: short-term simultaneous administration yields senolytic effect in humans. Issues and Developments in Medicine and Medical Research Vol. 2, 22-31.

Kiebel, S. J., Daunizeau, J., & Friston, K. J. (2008). A hierarchy of time-scales and the brain. PLoS Computational Biology, 4(11), e1000209. https://doi.org/10.1371/journal.pcbi.1000209

Kipshidze, M., & Tkemaladze, J. (2023). Comparative Analysis of drugs that improve the Quality of Life and Life Expectancy. Junior Researchers, 1(1), 184–193. doi : https://doi.org/10.52340/2023.01.01.19

Kipshidze, M., & Tkemaladze, J. (2023). The planaria Schmidtea mediterranea as a model system for the study of stem cell biology. Junior Researchers, 1(1), 194–218. doi : https://doi.org/10.52340/2023.01.01.20

Kipshidze, M., & Tkemaladze, J. (2024). Abastumani Resort: Balneological Heritage and Modern Potential. Junior Researchers, 2(2), 126–134. doi : https://doi.org/10.52340/jr.2024.02.02.12

Kipshidze, M., & Tkemaladze, J. (2024). Balneology in Georgia: traditions and modern situation. Junior Researchers, 2(2), 78–97. doi : https://doi.org/10.52340/jr.2024.02.02.09

Kipshidze, M., & Tkemaladze, J. (2024). Microelementoses-history and current status. Junior Researchers, 2(2), 108–125. doi : https://doi.org/10.52340/jr.2024.02.02.11

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A., ... & Haddell, R. (2017). Overcoming catastrophic forgetting in neural networks. Proceedings of the National Academy of Sciences, 114(13), 3521–3526. https://doi.org/10.1073/pnas.1611835114

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A., ... & Hadsell, R. (2017). Overcoming catastrophic forgetting in neural networks. Proceedings of the National Academy of Sciences, 114(13), 3521–3526. https://doi.org/10.1073/pnas.1611835114

Knill, D. C., & Pouget, A. (2004). The Bayesian brain: the role of uncertainty in neural coding and computation. Trends in Neurosciences, 27(12), 712–719. https://doi.org/10.1016/j.tins.2004.10.007

Körding, K. P., & Wolpert, D. M. (2004). Bayesian integration in sensorimotor learning. Nature, 427(6971), 244–247. https://doi.org/10.1038/nature02169

Kriegeskorte, N., & Kievit, R. A. (2013). Representational geometry: integrating cognition, computation, and the brain. Trends in Cognitive Sciences, 17(8), 401–412. https://doi.org/10.1016/j.tics.2013.06.007

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539

Lennie, P. (2003). The cost of cortical computation. Current Biology, 13(6), 493–497. https://doi.org/10.1016/S0960-9822(03)00135-0

Leutgeb, J. K., Leutgeb, S., Moser, M. B., & Moser, E. I. (2007). Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science, 315(5814), 961–966. https://doi.org/10.1126/science.1135801

Lezhava, T., Monaselidze, J., Jokhadze, T., Kakauridze, N., Khodeli, N., Rogava, M., Tkemaladze, J., ... & Gaiozishvili, M. (2011). Gerontology research in Georgia. Biogerontology, 12, 87-91. doi : 10.1007/s10522-010-9283-6. Epub 2010 May 18. PMID: 20480236; PMCID: PMC3063552

Lisman, J. E., & Grace, A. A. (2005). The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron, 46(5), 703–713. https://doi.org/10.1016/j.neuron.2005.05.002

Ma, W. J., Beck, J. M., Latham, P. E., & Pouget, A. (2006). Bayesian inference with probabilistic population codes. Nature Neuroscience, 9(11), 1432–1438. https://doi.org/10.1038/nn1790

MacKay, D. J. (2003). Information theory, inference, and learning algorithms. Cambridge University Press.

Mathys, C., Daunizeau, J., Friston, K. J., & Stephan, K. E. (2011). A Bayesian foundation for individual learning under uncertainty. Frontiers in Human Neuroscience, 5, 39. https://doi.org/10.3389/fnhum.2011.00039

Matsaberidze, M., Prangishvili, A., Gasitashvili, Z., Chichinadze, K., & Tkemaladze, J. (2017). TO TOPOLOGY OF ANTI-TERRORIST AND ANTI-CRIMINAL TECHNOLOGY FOR EDUCATIONAL PROGRAMS. International Journal of Terrorism & Political Hot Spots, 12.

Mauk, M. D., & Buonomano, D. V. (2004). The neural basis of temporal processing. Annual Review of Neuroscience, 27, 307–340. https://doi.org/10.1146/annurev.neuro.27.070203.144247

McCloskey, M., & Cohen, N. J. (1989). Catastrophic interference in connectionist networks: The sequential learning problem. In Psychology of Learning and Motivation (Vol. 24, pp. 109–165). Academic Press. https://doi.org/10.1016/S0079-7421(08)60536-8

McGaugh, J. L. (2000). Memory—a century of consolidation. Science, 287(5451), 248–251. https://doi.org/10.1126/science.287.5451.248

Orban, G., Fiser, J., Aslin, R. N., & Lengyel, M. (2016). Bayesian learning in visual perception. Neuron, 90(5), 1146–1158. https://doi.org/10.1016/j.neuron.2016.05.009

Pouget, A., Beck, J. M., Ma, W. J., & Latham, P. E. (2013). Probabilistic brains: knowns and unknowns. Nature Neuroscience, 16(9), 1170–1178. https://doi.org/10.1038/nn.3495

Prangishvili, A., Gasitashvili, Z., Matsaberidze, M., Chkhartishvili, L., Chichinadze, K., Tkemaladze, J., ... & Azmaiparashvili, Z. (2019). SYSTEM COMPONENTS OF HEALTH AND INNOVATION FOR THE ORGANIZATION OF NANO-BIOMEDIC ECOSYSTEM TECHNOLOGICAL PLATFORM. Current Politics and Economics of Russia, Eastern and Central Europe, 34(2/3), 299-305.

Prezioso, M., Merrikh-Bayat, F., Hoskins, B. D., Adam, G. C., Likharev, K. K., & Strukov, D. B. (2015). Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature, 521(7550), 61–64. https://doi.org/10.1038/nature14441

Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2), 257–286. https://doi.org/10.1109/5.18626

Rao, R. P., & Ballard, D. H. (1999). Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2(1), 79–87. https://doi.org/10.1038/4580

Rauschecker, J. P., & Scott, S. K. (2009). Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing. Nature Neuroscience, 12(6), 718–724. https://doi.org/10.1038/nn.2331

Sak, H., Senior, A., & Beaufays, F. (2014). Long short-term memory recurrent neural network architectures for large scale acoustic modeling. In Proceedings of the 15th Annual Conference of the International Speech Communication Association. https://doi.org/10.21437/Interspeech.2014-80

Sanborn, A. N., Griffiths, T. L., & Navarro, D. J. (2010). Rational approximations to rational models: alternative algorithms for category learning. Psychological Review, 117(4), 1144–1167. https://doi.org/10.1037/a0020511

Schultz, W. (2016). Dopamine reward prediction-error signalling: a two-component response. Nature Reviews Neuroscience, 17(3), 183–195. https://doi.org/10.1038/nrn.2015.26

Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275(5306), 1593–1599. https://doi.org/10.1126/science.275.5306.1593

Schwartz, E. L. (1977). Spatial mapping in the primate sensory projection: analytic structure and relevance to perception. Biological Cybernetics, 25(4), 181–194. https://doi.org/10.1007/BF01885636

Schweighofer, N., & Doya, K. (2003). Meta-learning in reinforcement learning. Neural Networks, 16(1), 5–9. https://doi.org/10.1016/S0893-6080(02)00228-9

Shadlen, M. N., & Newsome, W. T. (1998). The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. Journal of Neuroscience, 18(10), 3870–3896. https://doi.org/10.1523/JNEUROSCI.18-10-03870.1998

Smith, P. L. (2001). Stochastic dynamic models of response time and accuracy: A foundational primer. Journal of Mathematical Psychology, 44(3), 408–463. https://doi.org/10.1006/jmps.2000.1290

Springer, S. P., & Deutsch, G. (1998). Left brain, right brain: Perspectives from cognitive neuroscience (5th ed.). W.H. Freeman.

Stein, B. E., & Stanford, T. R. (2008). Multisensory integration: current issues from the perspective of the single neuron. Nature Reviews Neuroscience, 9(4), 255–266. https://doi.org/10.1038/nrn2331

Stocker, A. A., & Simoncelli, E. P. (2006). Noise characteristics and prior expectations in human visual speed perception. Nature Neuroscience, 9(4), 578–585. https://doi.org/10.1038/nn1669

Summerfield, C., & Egner, T. (2009). Expectation (and attention) in visual cognition. Trends in Cognitive Sciences, 13(9), 403–409. https://doi.org/10.1016/j.tics.2009.06.003

Tenenbaum, J. B., Kemp, C., Griffiths, T. L., & Goodman, N. D. (2011). How to grow a mind: Statistics, structure, and abstraction. Science, 331(6022), 1279–1285. https://doi.org/10.1126/science.1192788

Tkemaladze, J. (2025). Concept of Death Awareness as an Existential Alarm Clock in the Context of Hypothetical Biological Immortality. Preprints. https://doi.org/10.20944/preprints202510.1067.v1

Tkemaladze, J. (2025). The Tkemaladze Method: Mapping Cell Lineage with Mutant Mitochondrial Transfer. Preprints. https://doi.org/10.20944/preprints202509.2586.v1

Tkemaladze, J. (2023). Cross-senolytic effects of dasatinib and quercetin in humans. Georgian Scientists, 5(3), 138–152. doi : https://doi.org/10.52340/2023.05.03.15

Tkemaladze, J. (2023). Is the selective accumulation of oldest centrioles in stem cells the main cause of organism ageing?. Georgian Scientists, 5(3), 216–235. doi : https://doi.org/10.52340/2023.05.03.22

Tkemaladze, J. (2023). Long-Term Differences between Regenerations of Head and Tail Fragments in Schmidtea Mediterranea Ciw4. Available at SSRN 4257823.

Tkemaladze, J. (2023). Reduction, proliferation, and differentiation defects of stem cells over time: a consequence of selective accumulation of old centrioles in the stem cells?. Molecular Biology Reports, 50(3), 2751-2761. https://pubmed.ncbi.nlm.nih.gov/36583780/

Tkemaladze, J. (2023). Structure and possible functions of centriolar RNA with reference to the centriolar hypothesis of differentiation and replicative senescence. Junior Researchers, 1(1), 156–170. doi : https://doi.org/10.52340/2023.01.01.17

Tkemaladze, J. (2023). The centriolar hypothesis of differentiation and replicative senescence. Junior Researchers, 1(1), 123–141. doi : https://doi.org/10.52340/2023.01.01.15

Tkemaladze, J. (2024). Absence of centrioles and regenerative potential of planaria. Georgian Scientists, 6(4), 59–75. doi : https://doi.org/10.52340/gs.2024.06.04.08

Tkemaladze, J. (2024). Cell center and the problem of accumulation of oldest centrioles in stem cells. Georgian Scientists, 6(2), 304–322. doi : https://doi.org/10.52340/gs.2024.06.02.32

Tkemaladze, J. (2024). Editorial: Molecular mechanism of ageing and therapeutic advances through targeting glycative and oxidative stress. Front Pharmacol. 2024 Mar 6;14:1324446. doi : 10.3389/fphar.2023.1324446. PMID: 38510429; PMCID: PMC10953819.

Tkemaladze, J. (2024). Elimination of centrioles. Georgian Scientists, 6(4), 291–307. doi : https://doi.org/10.52340/gs.2024.06.04.25

Tkemaladze, J. (2024). Main causes of intelligence decrease and prospects for treatment. Georgian Scientists, 6(2), 425–432. doi : https://doi.org/10.52340/gs.2024.06.02.44

Tkemaladze, J. (2024). The rate of stem cell division decreases with age. Georgian Scientists, 6(4), 228–242. doi : https://doi.org/10.52340/gs.2024.06.04.21

Tkemaladze, J. (2025). A Universal Approach to Curing All Diseases: From Theoretical Foundations to the Prospects of Applying Modern Biotechnologies in Future Medicine. doi : http://dx.doi.org/10.13140/RG.2.2.24481.11366

Tkemaladze, J. (2025). Adaptive Systems and World Models. doi : http://dx.doi.org/10.13140/RG.2.2.13617.90720

Tkemaladze, J. (2025). Allotransplantation Between Adult Drosophila of Different Ages and Sexes. doi : http://dx.doi.org/10.13140/RG.2.2.27711.62884

Tkemaladze, J. (2025). Anti-Blastomic Substances in the Blood Plasma of Schizophrenia Patients. doi : http://dx.doi.org/10.13140/RG.2.2.12721.08807

Tkemaladze, J. (2025). Centriole Elimination as a Mechanism for Restoring Cellular Order. doi : http://dx.doi.org/10.13140/RG.2.2.12890.66248/1

Tkemaladze, J. (2025). Hypotheses on the Role of Centrioles in Aging Processes. doi : http://dx.doi.org/10.13140/RG.2.2.15014.02887/1

Tkemaladze, J. (2025). Limits of Cellular Division: The Hayflick Phenomenon. doi : http://dx.doi.org/10.13140/RG.2.2.25803.30249

Tkemaladze, J. (2025). Molecular Mechanisms of Aging and Modern Life Extension Strategies: From Antiquity to Mars Colonization. doi : http://dx.doi.org/10.13140/RG.2.2.13208.51204

Tkemaladze, J. (2025). Pathways of Somatic Cell Specialization in Multicellular Organisms. doi : http://dx.doi.org/10.13140/RG.2.2.23348.97929/1

Tkemaladze, J. (2025). Strategic Importance of the Caucasian Bridge and Global Power Rivalries. doi : http://dx.doi.org/10.13140/RG.2.2.19153.03680

Tkemaladze, J. (2025). The Epistemological Reconfiguration and Transubstantial Reinterpretation of Eucharistic Practices Established by the Divine Figure of Jesus Christ in Relation to Theological Paradigms. doi : http://dx.doi.org/10.13140/RG.2.2.28347.73769/1

Tkemaladze, J. (2025). Transforming the psyche with phoneme frequencies "Habere aliam linguam est possidere secundam animam". doi : http://dx.doi.org/10.13140/RG.2.2.16105.61286

Tkemaladze, J. (2025). Uneven Centrosome Inheritance and Its Impact on Cell Fate. doi : http://dx.doi.org/10.13140/RG.2.2.34917.31206

Tkemaladze, J. (2025). Ze World Model with Predicate Actualization and Filtering. doi : http://dx.doi.org/10.13140/RG.2.2.15218.62407

Tkemaladze, J. (2025). Ze метод создания пластичного счетчика хронотропных частот чисел бесконечного потока информации. doi : http://dx.doi.org/10.13140/RG.2.2.29162.43207

Tkemaladze, J. (2025). A Novel Integrated Bioprocessing Strategy for the Manufacturing of Shelf-Stable, Nutritionally Upgraded Activated Wheat: Development of a Comprehensive Protocol, In-Depth Nutritional Characterization, and Evaluation of Biofunctional Properties. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.16950787

Tkemaladze, J. (2025). Achieving Perpetual Vitality Through Innovation. doi : http://dx.doi.org/10.13140/RG.2.2.31113.35685

Tkemaladze, J. (2025). Activated Wheat: The Power of Super Grains. Preprints. doi : https://doi.org/10.20944/preprints202508.1724.v1

Tkemaladze, J. (2025). Adaptive Cognitive System Ze. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.15309162

Tkemaladze, J. (2025). Aging Model Based on Drosophila melanogaster: Mechanisms and Perspectives. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.14955643

Tkemaladze, J. (2025). Aging Model-Drosophila Melanogaster. doi : http://dx.doi.org/10.13140/RG.2.2.16706.49607

Tkemaladze, J. (2025). An Interdisciplinary Study on the Causes of Antediluvian Longevity, the Postdiluvian Decline in Lifespan, and the Phenomenon of Job’s Life Extension. Preprints. doi : https://doi.org/10.20944/preprints202509.1476.v1

Tkemaladze, J. (2025). Anatomy, Biogenesis, and Role in Cell Biology of Centrioles. Longevity Horizon, 1(2). doi : https://doi.org/10.5281/zenodo.14742232

Tkemaladze, J. (2025). Anti-Blastomic Substances in the Plasma of Schizophrenia Patients: A Dual Role of Complement C4 in Synaptic Pruning and Tumor Suppression. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.15042448

Tkemaladze, J. (2025). Asymmetry in the Inheritance of Centrosomes/Centrioles and Its Consequences. Longevity Horizon, 1(2). doi : https://doi.org/10.5281/zenodo.14837352

Tkemaladze, J. (2025). Centriole Elimination: A Mechanism for Resetting Entropy in the Cell. Longevity Horizon, 1(2). doi : https://doi.org/10.5281/zenodo.14876013

Tkemaladze, J. (2025). Concept to The Alive Language. Longevity Horizon, 1(1). doi : https://doi.org/10.5281/zenodo.14688792

Tkemaladze, J. (2025). Concept to The Caucasian Bridge. Longevity Horizon, 1(1). doi : https://doi.org/10.5281/zenodo.14689276

Tkemaladze, J. (2025). Concept to The Curing All Diseases. Longevity Horizon, 1(1). doi : https://doi.org/10.5281/zenodo.14676208

Tkemaladze, J. (2025). Concept to The Eternal Youth. Longevity Horizon, 1(1). doi : https://doi.org/10.5281/zenodo.14681902

Tkemaladze, J. (2025). Concept to The Food Security. Longevity Horizon, 1(1). doi : https://doi.org/10.5281/zenodo.14642407

Tkemaladze, J. (2025). Concept to the Living Space. Longevity Horizon, 1(1). doi : https://doi.org/10.5281/zenodo.14635991

Tkemaladze, J. (2025). Concept to The Restoring Dogmas. Longevity Horizon, 1(1). doi : https://doi.org/10.5281/zenodo.14708980

Tkemaladze, J. (2025). Differentiation of Somatic Cells in Multicellular Organisms. Longevity Horizon, 1(2). doi : https://doi.org/10.5281/10.5281/zenodo.14778927

Tkemaladze, J. (2025). Direct Reprogramming of Somatic Cells to Functional Gametes in Planarians via a Novel In Vitro Gametogenesis Protocol. Preprints. doi : https://doi.org/10.20944/preprints202509.1071.v1

Tkemaladze, J. (2025). Induction of germline-like cells (PGCLCs). Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.16414775

Tkemaladze, J. (2025). Long-Lived Non-Renewable Structures in the Human Body. doi : http://dx.doi.org/10.13140/RG.2.2.14826.43206

Tkemaladze, J. (2025). Mechanisms of Learning Through the Actualization of Discrepancies. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.15200612

Tkemaladze, J. (2025). Memorizing an Infinite Stream of Information in a Limited Memory Space: The Ze Method of a Plastic Counter of Chronotropic Number Frequencies. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.15170931

Tkemaladze, J. (2025). Molecular Insights and Radical Longevity from Ancient Elixirs to Mars Colonies. Longevity Horizon, 1(2). doi : https://doi.org/10.5281/zenodo.14895222

Tkemaladze, J. (2025). Ontogenetic Permanence of Non-Renewable Biomechanical Configurations in Homo Sapiens Anatomy. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.15086387

Tkemaladze, J. (2025). Protocol for Transplantation of Healthy Cells Between Adult Drosophila of Different Ages and Sexes. Longevity Horizon, 1(2). doi : https://doi.org/10.5281/zenodo.14889948

Tkemaladze, J. (2025). Replicative Hayflick Limit. Longevity Horizon, 1(2). doi : https://doi.org/10.5281/zenodo.14752664

Tkemaladze, J. (2025). Solutions to the Living Space Problem to Overcome the Fear of Resurrection from the Dead. doi : http://dx.doi.org/10.13140/RG.2.2.34655.57768

Tkemaladze, J. (2025). The Centriolar Theory of Differentiation Explains the Biological Meaning of the.

Tkemaladze, J. (2025). The Centriole Paradox in Planarian Biology: Why Acentriolar Stem Cells Divide and Centriolar Somatic Cells Do Not. doi : https://doi.org/10.20944/preprints202509.0382.v1

Tkemaladze, J. (2025). The Concept of Data-Driven Automated Governance. Georgian Scientists, 6(4), 399–410. doi : https://doi.org/10.52340/gs.2024.06.04.38

Tkemaladze, J. (2025). The Stage of Differentiation Into Mature Gametes During Gametogenesis in Vitro. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.16808827

Tkemaladze, J. (2025). The Tkemaladze Method maps cell lineage with mutant mitochondrial transfer. Longevity Horizon, 1(4). doi : https://doi.org/10.5281/zenodo.17236869

Tkemaladze, J. (2025). The Tkemaladze Method: A Modernized Caucasian Technology for the Production of Shelf-Stable Activated Wheat with Enhanced Nutritional Properties. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.16905079

Tkemaladze, J. (2025). Theory of Lifespan Decline. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.17142909

Tkemaladze, J. (2025). Through In Vitro Gametogenesis—Young Stem Cells. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.15847116

Tkemaladze, J. (2025). Unlocking the Voynich Cipher via the New Algorithmic Coding Hypothesis. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.17054312

Tkemaladze, J. (2025). Voynich Manuscript Decryption: A Novel Compression-Based Hypothesis and Computational Framework. doi : https://doi.org/10.20944/preprints202509.0403.v1

Tkemaladze, J. (2025). Why do planarian cells without centrioles divide and cells with centrioles do not divide?. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.17054142

Tkemaladze, J. (2025). Гаметогенез In Vitro: современное состояние, технологии и перспективы применения. Research Gate. doi : http://dx.doi.org/10.13140/RG.2.2.28647.36000

Tkemaladze, J. (2025a). Adaptive Cognitive System Ze. Longevity Horizon, 1(3). https://doi.org/10.5281/zenodo.15309162

Tkemaladze, J. (2025). Bayesian Principles in Ze Systems. Preprints. https://doi.org/10.20944/preprints202510.1287.v1

Tkemaladze, J. (2025b). Mechanisms of learning through the actualization of discrepancies. Longevity Horizon, 1(3). https://doi.org/10.5281/zenodo.15200612

Tkemaladze, J. (2025c). Memorizing an infinite stream of information in a limited memory space: The Ze method of a plastic counter of chronotropic number frequencies. Longevity Horizon, 1(3). https://doi.org/10.5281/zenodo.15170931

Tkemaladze, J. Systemic Resilience and Sustainable Nutritional Paradigms in Anthropogenic Ecosystems. doi : http://dx.doi.org/10.13140/RG.2.2.18943.32169/1

Tkemaladze, J. V., & Chichinadze, K. N. (2005). Centriolar mechanisms of differentiation and replicative aging of higher animal cells. Biochemistry (Moscow), 70, 1288-1303.

Tkemaladze, J., & Apkhazava, D. (2019). Dasatinib and quercetin: short-term simultaneous administration improves physical capacity in human. J Biomedical Sci, 8(3), 3.

Tkemaladze, J., & Chichinadze, K. (2005). Potential role of centrioles in determining the morphogenetic status of animal somatic cells. Cell biology international, 29(5), 370-374.

Tkemaladze, J., & Chichinadze, K. (2010). Centriole, differentiation, and senescence. Rejuvenation research, 13(2-3), 339-342.

Tkemaladze, J., & Gakely, G. (2025). A Novel Biotechnological Approach for the Production of Shelf-Stable, Nutritionally Enhanced Activated Wheat: Protocol Development, Nutritional Profiling, and Bioactivity Assessment. doi : https://doi.org/10.20944/preprints202508.1997.v1

Tkemaladze, J., & Gakely, G. (2025). Induction of de novo centriole biogenesis in planarian stem cells. Longevity Horizon, 1(4). doi : https://doi.org/10.5281/zenodo.17283229

Tkemaladze, J., & Samanishvili, T. (2024). Mineral ice cream improves recovery of muscle functions after exercise. Georgian Scientists, 6(2), 36–50. doi : https://doi.org/10.52340/gs.2024.06.02.04

Tkemaladze, J., Gakely, G., Gegelia, L., Papadopulo, I., Taktakidze, A., Metreveli, N., ... & Maglakelidze, U. (2025). Production of Functional Gametes from Somatic Cells of the Planarian Schmidtea Mediterranea Via in Vitro Gametogenesis. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.17131291

Tkemaladze, J., Tavartkiladze, A., & Chichinadze, K. (2012). Programming and Implementation of Age-Related Changes. In Senescence. IntechOpen.

Tkemaladze, Jaba and Kipshidze, Mariam, Regeneration Potential of the Schmidtea Mediterranea CIW4 Planarian. Available at SSRN: https://ssrn.com/abstract=4633202 or http://dx.doi.org/10.2139/ssrn.4633202

Turrigiano, G. G. (2008). The self-tuning neuron: synaptic scaling of excitatory synapses. Cell, 135(3), 422–435. https://doi.org/10.1016/j.cell.2008.10.008

Turrigiano, G. G., & Nelson, S. B. (2004). Homeostatic plasticity in the developing nervous system. Nature Reviews Neuroscience, 5(2), 97–107. https://doi.org/10.1038/nrn1327

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. In Advances in Neural Information Processing Systems (pp. 5998–6008).

Vul, E., Goodman, N., Griffiths, T. L., & Tenenbaum, J. B. (2014). One and done? Optimal decisions from very few samples. Cognitive Science, 38(4), 599–637. https://doi.org/10.1111/cogs.12101

Wilson, R. C., Bonawitz, E., Costa, V. D., & Ebitz, R. B. (2019). Balancing exploration and exploitation with information and randomization. Current Opinion in Behavioral Sciences, 26, 49–56. https://doi.org/10.1016/j.cobeha.2018.09.011

Wolpert, D. M., Diedrichsen, J., & Flanagan, J. R. (2011). Principles of sensorimotor learning. Nature Reviews Neuroscience, 12(12), 739–751. https://doi.org/10.1038/nrn3112

Прангишвили, А. И., Гаситашвили, З. А., Мацаберидзе, М. И., Чичинадзе, К. Н., Ткемаладзе, Д. В., & Азмайпарашвили, З. А. (2017). К топологии антитеррористических и антикриминальных технологии для образовательных программ. В научном издании представлены материалы Десятой международной научно-технической конфе-ренции «Управление развитием крупномасштабных систем (MLSD’2016)» по следующим направле-ниям:• Проблемы управления развитием крупномасштабных систем, включая ТНК, Госхолдин-ги и Гос-корпорации., 284.

Прангишвили, А. И., Гаситашвили, З. А., Мацаберидзе, М. И., Чхартишвили, Л. С., Чичинадзе, К. Н., & Ткемаладзе, Д. В. (2017). & Азмайпарашвили, ЗА (2017). Системные составляющие здравоохранения и инноваций для организации европейской нано-биомедицинской екосистемной технологической платформы. Управление развитием крупномасштабных систем MLSD, 365-368.

Ткемаладзе, Д. (2025). Асимметрия в наследовании центросом/центриолей и ее последствия. doi : http://dx.doi.org/110.13140/RG.2.2.34917.31206

Ткемаладзе, Д. (2025). Гаметогенез in vitro (IVG)-Этап дифференцировки в зрелые гаметы. doi : http://dx.doi.org/10.13140/RG.2.2.20429.96482

Ткемаладзе, Д. (2025). Дифференциация соматических клеток многоклеточных животных. doi : http://dx.doi.org/10.13140/RG.2.2.23348.97929/1

Ткемаладзе, Д. (2025). Индукция примордиальных клеток, подобных зародышевым клеткам (PGCLCs) современные достижения, механизмы и перспективы применения. doi : http://dx.doi.org/10.13140/RG.2.2.27152.32004

Ткемаладзе, Д. (2025). Репликативный Лимит Хейфлика. doi : http://dx.doi.org/10.13140/RG.2.2.25803.30249

Ткемаладзе, Д. (2025). Элиминация Центриолей: Механизм Обнуления Энтропии в Клетке. doi : http://dx. doi. org/10.13140/RG.2.2.12890.66248/1

Ткемаладзе, Д. В., & Чичинадзе, К. Н. (2005). Центриолярные механизмы дифференцировки и репликативного старения клеток высших животных. Биохимия, 70(11), 1566-1584.

Ткемаладзе, Д., Цомаиа, Г., & Жоржолиани, И. (2001). Создание искусственных самоадаптирующихся систем на основе Теории Прогноза. Искусственный интеллект. УДК 004.89. Искусственный интеллект. УДК 004.89.

Чичинадзе, К. Н., & Ткемаладзе, Д. В. (2008). Центросомная гипотеза клеточного старения и дифференциации. Успехи геронтологии, 21(3), 367-371.

Чичинадзе, К., Ткемаладзе, Д., & Лазарашвили, А. (2012). Новый класс рнк и центросомная гипотеза старения клеток. Успехи геронтологии, 25(1), 23-28