Bayesian Order in Ze
DOI:
https://doi.org/10.5281/zenodo.17359987Keywords:
Bayesian Inference, Stream Processing, Chronotropic Frequencies, Artificial Life, Predictive Coding, Memory Efficiency, Adaptive Systems, Bio-Inspired Computing, Probability UpdatingAbstract
This article presents the Ze artificial life system, a novel bio-inspired architecture for predictive processing in infinite data streams under severe memory constraints. The system implements Bayesian probability updating through a mechanism of dynamic chronotropic frequency analysis, demonstrating remarkable computational efficiency and biological plausibility. Unlike traditional approaches such as LSTM networks and Markov models, Ze processes information through parallel beginning and inverse processors, enabling complementary pattern discovery while maintaining sublinear memory complexity. The core algorithm exhibits distinctive probability dynamics characterized by an initial match probability of 0.5 with exponential decay to 0.00001 as counter diversity increases, achieving 78-92% prediction accuracy for stable data flows. Experimental results using synthetic datasets (1,048,576 binary sequences) confirm 37-42% operational savings compared to conventional methods, rapid adaptation to changing stream characteristics within 2-3 seconds, and robust noise tolerance up to 15% input distortion. The Go implementation processes 1.2 million operations per second with 850 nanosecond latency while maintaining memory usage of 12.8 bytes per counter. The system's architecture shows strong neurobiological correlations with predictive coding principles and synaptic plasticity mechanisms, providing both a practical solution for resource-constrained environments and a computational model of Bayesian inference in neural systems. Future development pathways include extension to non-binary data streams, integration with hierarchical Bayesian models, and hardware acceleration through memristor-based implementations.
References
Abraham, W. C., & Robins, A. (2005). Memory retention—the synaptic stability versus plasticity dilemma. Trends in Neurosciences, 28(2), 73–78. https://doi.org/10.1016/j.tins.2004.12.003
Agarwal, P. K., Cormode, G., Huang, Z., Phillips, J. M., Wei, Z., & Yi, K. (2014). Mergeable summaries. ACM Transactions on Database Systems, 39(4), 1–35. https://doi.org/10.1145/2660767
Alon, N., Matias, Y., & Szegedy, M. (1996). The space complexity of approximating the frequency moments. Journal of Computer and System Sciences, 58(1), 137–147. https://doi.org/10.1006/jcss.1996.0062
Anderson, J. R., & Schooler, L. J. (1991). Reflections of the environment in memory. Psychological Science, 2(6), 396–408. https://doi.org/10.1111/j.1467-9280.1991.tb00174.x
Aphkhazava, D., Sulashvili, N., & Tkemaladze, J. (2025). Stem Cell Systems and Regeneration. Georgian Scientists, 7(1), 271–319. doi : https://doi.org/10.52340/gs.2025.07.01.26
Aphkhazava, D., Sulashvili, N., Maglakelidze, G., & Tkemaladze, J. (2025). Ageless Creatures: Molecular Insights into Organisms That Defy Aging. Georgian Scientists, 7(3), 346–396. doi : https://doi.org/10.52340/gs.2025.07.03.24
Bao, S., Chan, V. T., & Merzenich, M. M. (2001). Cortical remodelling induced by activity of ventral tegmental dopamine neurons. Nature, 412(6842), 79–83. https://doi.org/10.1038/35083586
Bar, M. (2004). Visual objects in context. Nature Reviews Neuroscience, 5(8), 617–629. https://doi.org/10.1038/nrn1476
Barlow, H. B. (1961). Possible principles underlying the transformation of sensory messages. In Sensory Communication (pp. 217–234). MIT Press.
Begleiter, R., El-Yaniv, R., & Yona, G. (2004). On prediction using variable order Markov models. Journal of Artificial Intelligence Research, 22, 385–421. https://doi.org/10.1613/jair.1491
Behrens, T. E., Woolrich, M. W., Walton, M. E., & Rushworth, M. F. (2007). Learning the value of information in an uncertain world. Nature Neuroscience, 10(9), 1214–1221. https://doi.org/10.1038/nn1954
Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157–166. https://doi.org/10.1109/72.279181
Bi, G. Q., & Poo, M. M. (1998). Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. Journal of Neuroscience, 18(24), 10464–10472. https://doi.org/10.1523/JNEUROSCI.18-24-10464.1998
Bialek, W., Rieke, F., de Ruyter van Steveninck, R. R., & Warland, D. (1991). Reading a neural code. Science, 252(5014), 1854–1857. https://doi.org/10.1126/science.2063199
Bifet, A. (2010). Adaptive learning and mining for data streams and frequent patterns. ACM SIGKDD Explorations Newsletter, 11(2), 55–56. https://doi.org/10.1145/1809400.1809414
Bifet, A., & Gavaldá, R. (2009). Adaptive learning from evolving data streams. In Advances in Intelligent Data Analysis VIII (pp. 249–260). Springer. https://doi.org/10.1007/978-3-642-03915-7_22
Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19(12), 2767–2796. https://doi.org/10.1093/cercor/bhp055
Brown, S. D., Steyvers, M., & Wagenmakers, E. J. (2009). Observing evidence accumulation during decision making in continuous time. Journal of Mathematical Psychology, 53(4), 252–262. https://doi.org/10.1016/j.jmp.2009.04.003
Buhlmann, P., & Wyner, A. J. (1999). Variable length Markov chains. The Annals of Statistics, 27(2), 480–513. https://doi.org/10.1214/aos/1018031204
Busemeyer, J. R., & Bruza, P. D. (2012). Quantum models of cognition and decision. Cambridge University Press.
Buzsáki, G. (2006). Rhythms of the brain. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195301069.001.0001
Buzsáki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science, 304(5679), 1926–1929. https://doi.org/10.1126/science.1099745
Cai, F., Correll, J. M., Lee, S. H., Lim, Y., Bothra, V., Zhang, Z., ... & Lu, W. D. (2019). A fully integrated reprogrammable memristor–CMOS system for efficient multiply–accumulate operations. Nature Electronics, 2(7), 290–299. https://doi.org/10.1038/s41928-019-0270-x
Carandini, M., & Heeger, D. J. (2012). Normalization as a canonical neural computation. Nature Reviews Neuroscience, 13(1), 51–62. https://doi.org/10.1038/nrn3136
Chen, S. F., & Goodman, J. (1999). An empirical study of smoothing techniques for language modeling. Computer Speech & Language, 13(4), 359–394. https://doi.org/10.1006/csla.1999.0128
Chichinadze, K. N., & Tkemaladze, D. V. (2008). Centrosomal hypothesis of cellular aging and differentiation. Advances in Gerontology= Uspekhi Gerontologii, 21(3), 367-371.
Chichinadze, K., Lazarashvili, A., & Tkemaladze, J. (2013). RNA in centrosomes: structure and possible functions. Protoplasma, 250(1), 397-405.
Chichinadze, K., Tkemaladze, D., & Lazarashvili, A. (2012). New class of RNA and centrosomal hypothesis of cell aging. Advances in Gerontology= Uspekhi Gerontologii, 25(1), 23-28.
Chichinadze, K., Tkemaladze, J., & Lazarashvili, A. (2012). A new class of RNAs and the centrosomal hypothesis of cell aging. Advances in Gerontology, 2(4), 287-291.
Chichinadze, K., Tkemaladze, J., & Lazarashvili, A. (2012). Discovery of centrosomal RNA and centrosomal hypothesis of cellular ageing and differentiation. Nucleosides, Nucleotides and Nucleic Acids, 31(3), 172-183.
Ching, W. K., Huang, X., Ng, M. K., & Siu, T. K. (2013). Markov chains: models, algorithms and applications. International Series in Operations Research & Management Science, 189.
Clements, A. (2013). The Go programming language. Communications of the ACM, 56(5), 42–49. https://doi.org/10.1145/2447976.2447991
Cohen, E., & Strauss, M. J. (2006). Maintaining time-decaying stream aggregates. Journal of Algorithms, 59(1), 19–36. https://doi.org/10.1016/j.jalgor.2005.01.006
Cohen, J. D., McClure, S. M., & Yu, A. J. (2007). Should I stay or should I go? How the human brain manages the trade-off between exploitation and exploration. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1481), 933–942. https://doi.org/10.1098/rstb.2007.2098
Collins, A. M., & Loftus, E. F. (1975). A spreading-activation theory of semantic processing. Psychological Review, 82(6), 407–428. https://doi.org/10.1037/0033-295X.82.6.407
Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to algorithms (3rd ed.). MIT Press.
Cormode, G., & Muthukrishnan, S. (2005). An improved data stream summary: the count-min sketch and its applications. Journal of Algorithms, 55(1), 58–75. https://doi.org/10.1016/j.jalgor.2003.12.001
Cover, T. M., & Thomas, J. A. (2006). Elements of information theory (2nd ed.). Wiley-Interscience.
Datar, M., Gionis, A., Indyk, P., & Motwani, R. (2002). Maintaining stream statistics over sliding windows. SIAM Journal on Computing, 31(6), 1794–1813. https://doi.org/10.1137/S0097539701398363
Daw, N. D., O'Doherty, J. P., Dayan, P., Seymour, B., & Dolan, R. J. (2006). Cortical substrates for exploratory decisions in humans. Nature, 441(7095), 876–879. https://doi.org/10.1038/nature04766
Dean, J. (2012). Large-scale deep learning for building intelligent computer systems. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1–1). ACM.
Deneve, S. (2008). Bayesian spiking neurons I: Inference. Neural Computation, 20(1), 91–117. https://doi.org/10.1162/neco.2008.20.1.91
Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18(1), 193–222. https://doi.org/10.1146/annurev.ne.18.030195.001205
Donovan, A. A., & Kernighan, B. W. (2015). The Go programming language. Addison-Wesley Professional.
Doya, K. (2008). Modulators of decision making. Nature Neuroscience, 11(4), 410–416. https://doi.org/10.1038/nn2077
Elfettahi, A. E., & Tkemaladze, J.(2025). The Neuro-Hepatic-Affective Model (NHAM): A Systems Framework for Liver–Brain Modulation of Emotion in Precision Psychiatry. Preprints. doi : https://doi. org/10.20944/preprints202508, 1312, v1.
Feldman, H., & Friston, K. J. (2010). Attention, uncertainty, and free-energy. Frontiers in Human Neuroscience, 4, 215. https://doi.org/10.3389/fnhum.2010.00215
Fiorillo, C. D., Tobler, P. N., & Schultz, W. (2003). Discrete coding of reward probability and uncertainty by dopamine neurons. Science, 299(5614), 1898–1902. https://doi.org/10.1126/science.1077349
Flajolet, P., Fusy, É., Gandouet, O., & Meunier, F. (2007). HyperLogLog: the analysis of a near-optimal cardinality estimation algorithm. In Analysis of Algorithms (pp. 127–146). https://doi.org/10.46298/dmtcs.3545
Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1456), 815–836. https://doi.org/10.1098/rstb.2005.1622
Friston, K. (2010). The free-energy principle: a unified brain theory? Nature Reviews Neuroscience, 11(2), 127–138. https://doi.org/10.1038/nrn2787
Fritz, J., Shamma, S., Elhilali, M., & Klein, D. (2003). Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex. Nature Neuroscience, 6(11), 1216–1223. https://doi.org/10.1038/nn1141
Fusi, S., Drew, P. J., & Abbott, L. F. (2005). Cascade models of synaptically stored memories. Neuron, 45(4), 599–611. https://doi.org/10.1016/j.neuron.2005.02.001
Gama, J. (2010). Knowledge discovery from data streams. CRC Press. https://doi.org/10.1201/EBK1439826119
Gama, J., Sebastião, R., & Rodrigues, P. P. (2013). On evaluating stream learning algorithms. Machine Learning, 90(3), 317–346. https://doi.org/10.1007/s10994-012-5320-9
Gazzaniga, M. S. (2000). Cerebral specialization and interhemispheric communication: Does the corpus callosum enable the human condition? Brain, 123(7), 1293–1326. https://doi.org/10.1093/brain/123.7.1293
Gershman, S. J., & Beck, J. M. (2016). Complex probabilistic inference: From cognition to neural computation. In Computational and Robotic Models of the Hierarchical Organization of Behavior (pp. 27–42). Springer. https://doi.org/10.1007/978-3-319-31081-2_3
Gilbert, C. D., Sigman, M., & Crist, R. E. (2001). The neural basis of perceptual learning. Neuron, 31(5), 681–697. https://doi.org/10.1016/S0896-6273(01)00424-X
Gold, J. I., & Shadlen, M. N. (2007). The neural basis of decision making. Annual Review of Neuroscience, 30, 535–574. https://doi.org/10.1146/annurev.neuro.29.051605.113038
Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., & Schmidhuber, J. (2017). LSTM: A search space odyssey. IEEE Transactions on Neural Networks and Learning Systems, 28(10), 2222–2232. https://doi.org/10.1109/TNNLS.2016.2582924
Griffiths, T. L., Kemp, C., & Tenenbaum, J. B. (2008). Bayesian models of cognition. In The Cambridge Handbook of Computational Psychology (pp. 59–100). Cambridge University Press.
Han, S., Liu, X., & Han, J. (2016). EIE: efficient inference engine on compressed deep neural network. ACM SIGARCH Computer Architecture News, 44(3), 243–254. https://doi.org/10.1145/3007787.3001163
Hardt, O., Nader, K., & Nadel, L. (2013). Decay happens: the role of active forgetting in memory. Trends in Cognitive Sciences, 17(3), 111–120. https://doi.org/10.1016/j.tics.2013.01.001
Herlihy, M., & Shavit, N. (2012). The art of multiprocessor programming. Morgan Kaufmann.
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
Hua, J. Y., & Smith, S. J. (2004). Neural activity and the dynamics of central nervous system development. Nature Neuroscience, 7(4), 327–332. https://doi.org/10.1038/nn1218
Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. The Journal of Physiology, 160(1), 106–154. https://doi.org/10.1113/jphysiol.1962.sp006837
Iglesias, S., Mathys, C., Brodersen, K. H., Kasper, L., Piccirelli, M., den Ouden, H. E., & Stephan, K. E. (2013). Hierarchical prediction errors in midbrain and basal forebrain during sensory learning. Neuron, 80(2), 519–530. https://doi.org/10.1016/j.neuron.2013.09.009
Jaba, T. (2022). Dasatinib and quercetin: short-term simultaneous administration yields senolytic effect in humans. Issues and Developments in Medicine and Medical Research Vol. 2, 22-31.
Kiebel, S. J., Daunizeau, J., & Friston, K. J. (2008). A hierarchy of time-scales and the brain. PLoS Computational Biology, 4(11), e1000209. https://doi.org/10.1371/journal.pcbi.1000209
Kipshidze, M., & Tkemaladze, J. (2023). Comparative Analysis of drugs that improve the Quality of Life and Life Expectancy. Junior Researchers, 1(1), 184–193. doi : https://doi.org/10.52340/2023.01.01.19
Kipshidze, M., & Tkemaladze, J. (2023). The planaria Schmidtea mediterranea as a model system for the study of stem cell biology. Junior Researchers, 1(1), 194–218. doi : https://doi.org/10.52340/2023.01.01.20
Kipshidze, M., & Tkemaladze, J. (2024). Abastumani Resort: Balneological Heritage and Modern Potential. Junior Researchers, 2(2), 126–134. doi : https://doi.org/10.52340/jr.2024.02.02.12
Kipshidze, M., & Tkemaladze, J. (2024). Balneology in Georgia: traditions and modern situation. Junior Researchers, 2(2), 78–97. doi : https://doi.org/10.52340/jr.2024.02.02.09
Kipshidze, M., & Tkemaladze, J. (2024). Microelementoses-history and current status. Junior Researchers, 2(2), 108–125. doi : https://doi.org/10.52340/jr.2024.02.02.11
Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A., ... & Haddell, R. (2017). Overcoming catastrophic forgetting in neural networks. Proceedings of the National Academy of Sciences, 114(13), 3521–3526. https://doi.org/10.1073/pnas.1611835114
Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A., ... & Hadsell, R. (2017). Overcoming catastrophic forgetting in neural networks. Proceedings of the National Academy of Sciences, 114(13), 3521–3526. https://doi.org/10.1073/pnas.1611835114
Knill, D. C., & Pouget, A. (2004). The Bayesian brain: the role of uncertainty in neural coding and computation. Trends in Neurosciences, 27(12), 712–719. https://doi.org/10.1016/j.tins.2004.10.007
Körding, K. P., & Wolpert, D. M. (2004). Bayesian integration in sensorimotor learning. Nature, 427(6971), 244–247. https://doi.org/10.1038/nature02169
Kriegeskorte, N., & Kievit, R. A. (2013). Representational geometry: integrating cognition, computation, and the brain. Trends in Cognitive Sciences, 17(8), 401–412. https://doi.org/10.1016/j.tics.2013.06.007
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539
Lennie, P. (2003). The cost of cortical computation. Current Biology, 13(6), 493–497. https://doi.org/10.1016/S0960-9822(03)00135-0
Leutgeb, J. K., Leutgeb, S., Moser, M. B., & Moser, E. I. (2007). Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science, 315(5814), 961–966. https://doi.org/10.1126/science.1135801
Lezhava, T., Monaselidze, J., Jokhadze, T., Kakauridze, N., Khodeli, N., Rogava, M., Tkemaladze, J., ... & Gaiozishvili, M. (2011). Gerontology research in Georgia. Biogerontology, 12, 87-91. doi : 10.1007/s10522-010-9283-6. Epub 2010 May 18. PMID: 20480236; PMCID: PMC3063552
Lisman, J. E., & Grace, A. A. (2005). The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron, 46(5), 703–713. https://doi.org/10.1016/j.neuron.2005.05.002
Ma, W. J., Beck, J. M., Latham, P. E., & Pouget, A. (2006). Bayesian inference with probabilistic population codes. Nature Neuroscience, 9(11), 1432–1438. https://doi.org/10.1038/nn1790
MacKay, D. J. (2003). Information theory, inference, and learning algorithms. Cambridge University Press.
Mathys, C., Daunizeau, J., Friston, K. J., & Stephan, K. E. (2011). A Bayesian foundation for individual learning under uncertainty. Frontiers in Human Neuroscience, 5, 39. https://doi.org/10.3389/fnhum.2011.00039
Matsaberidze, M., Prangishvili, A., Gasitashvili, Z., Chichinadze, K., & Tkemaladze, J. (2017). TO TOPOLOGY OF ANTI-TERRORIST AND ANTI-CRIMINAL TECHNOLOGY FOR EDUCATIONAL PROGRAMS. International Journal of Terrorism & Political Hot Spots, 12.
Mauk, M. D., & Buonomano, D. V. (2004). The neural basis of temporal processing. Annual Review of Neuroscience, 27, 307–340. https://doi.org/10.1146/annurev.neuro.27.070203.144247
McCloskey, M., & Cohen, N. J. (1989). Catastrophic interference in connectionist networks: The sequential learning problem. In Psychology of Learning and Motivation (Vol. 24, pp. 109–165). Academic Press. https://doi.org/10.1016/S0079-7421(08)60536-8
McGaugh, J. L. (2000). Memory—a century of consolidation. Science, 287(5451), 248–251. https://doi.org/10.1126/science.287.5451.248
Orban, G., Fiser, J., Aslin, R. N., & Lengyel, M. (2016). Bayesian learning in visual perception. Neuron, 90(5), 1146–1158. https://doi.org/10.1016/j.neuron.2016.05.009
Pouget, A., Beck, J. M., Ma, W. J., & Latham, P. E. (2013). Probabilistic brains: knowns and unknowns. Nature Neuroscience, 16(9), 1170–1178. https://doi.org/10.1038/nn.3495
Prangishvili, A., Gasitashvili, Z., Matsaberidze, M., Chkhartishvili, L., Chichinadze, K., Tkemaladze, J., ... & Azmaiparashvili, Z. (2019). SYSTEM COMPONENTS OF HEALTH AND INNOVATION FOR THE ORGANIZATION OF NANO-BIOMEDIC ECOSYSTEM TECHNOLOGICAL PLATFORM. Current Politics and Economics of Russia, Eastern and Central Europe, 34(2/3), 299-305.
Prezioso, M., Merrikh-Bayat, F., Hoskins, B. D., Adam, G. C., Likharev, K. K., & Strukov, D. B. (2015). Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature, 521(7550), 61–64. https://doi.org/10.1038/nature14441
Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2), 257–286. https://doi.org/10.1109/5.18626
Rao, R. P., & Ballard, D. H. (1999). Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2(1), 79–87. https://doi.org/10.1038/4580
Rauschecker, J. P., & Scott, S. K. (2009). Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing. Nature Neuroscience, 12(6), 718–724. https://doi.org/10.1038/nn.2331
Sak, H., Senior, A., & Beaufays, F. (2014). Long short-term memory recurrent neural network architectures for large scale acoustic modeling. In Proceedings of the 15th Annual Conference of the International Speech Communication Association. https://doi.org/10.21437/Interspeech.2014-80
Sanborn, A. N., Griffiths, T. L., & Navarro, D. J. (2010). Rational approximations to rational models: alternative algorithms for category learning. Psychological Review, 117(4), 1144–1167. https://doi.org/10.1037/a0020511
Schultz, W. (2016). Dopamine reward prediction-error signalling: a two-component response. Nature Reviews Neuroscience, 17(3), 183–195. https://doi.org/10.1038/nrn.2015.26
Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275(5306), 1593–1599. https://doi.org/10.1126/science.275.5306.1593
Schwartz, E. L. (1977). Spatial mapping in the primate sensory projection: analytic structure and relevance to perception. Biological Cybernetics, 25(4), 181–194. https://doi.org/10.1007/BF01885636
Schweighofer, N., & Doya, K. (2003). Meta-learning in reinforcement learning. Neural Networks, 16(1), 5–9. https://doi.org/10.1016/S0893-6080(02)00228-9
Shadlen, M. N., & Newsome, W. T. (1998). The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. Journal of Neuroscience, 18(10), 3870–3896. https://doi.org/10.1523/JNEUROSCI.18-10-03870.1998
Smith, P. L. (2001). Stochastic dynamic models of response time and accuracy: A foundational primer. Journal of Mathematical Psychology, 44(3), 408–463. https://doi.org/10.1006/jmps.2000.1290
Springer, S. P., & Deutsch, G. (1998). Left brain, right brain: Perspectives from cognitive neuroscience (5th ed.). W.H. Freeman.
Stein, B. E., & Stanford, T. R. (2008). Multisensory integration: current issues from the perspective of the single neuron. Nature Reviews Neuroscience, 9(4), 255–266. https://doi.org/10.1038/nrn2331
Stocker, A. A., & Simoncelli, E. P. (2006). Noise characteristics and prior expectations in human visual speed perception. Nature Neuroscience, 9(4), 578–585. https://doi.org/10.1038/nn1669
Summerfield, C., & Egner, T. (2009). Expectation (and attention) in visual cognition. Trends in Cognitive Sciences, 13(9), 403–409. https://doi.org/10.1016/j.tics.2009.06.003
Tenenbaum, J. B., Kemp, C., Griffiths, T. L., & Goodman, N. D. (2011). How to grow a mind: Statistics, structure, and abstraction. Science, 331(6022), 1279–1285. https://doi.org/10.1126/science.1192788
Tkemaladze, J. (2025). Concept of Death Awareness as an Existential Alarm Clock in the Context of Hypothetical Biological Immortality. Preprints. https://doi.org/10.20944/preprints202510.1067.v1
Tkemaladze, J. (2025). The Tkemaladze Method: Mapping Cell Lineage with Mutant Mitochondrial Transfer. Preprints. https://doi.org/10.20944/preprints202509.2586.v1
Tkemaladze, J. (2023). Cross-senolytic effects of dasatinib and quercetin in humans. Georgian Scientists, 5(3), 138–152. doi : https://doi.org/10.52340/2023.05.03.15
Tkemaladze, J. (2023). Is the selective accumulation of oldest centrioles in stem cells the main cause of organism ageing?. Georgian Scientists, 5(3), 216–235. doi : https://doi.org/10.52340/2023.05.03.22
Tkemaladze, J. (2023). Long-Term Differences between Regenerations of Head and Tail Fragments in Schmidtea Mediterranea Ciw4. Available at SSRN 4257823.
Tkemaladze, J. (2023). Reduction, proliferation, and differentiation defects of stem cells over time: a consequence of selective accumulation of old centrioles in the stem cells?. Molecular Biology Reports, 50(3), 2751-2761. https://pubmed.ncbi.nlm.nih.gov/36583780/
Tkemaladze, J. (2023). Structure and possible functions of centriolar RNA with reference to the centriolar hypothesis of differentiation and replicative senescence. Junior Researchers, 1(1), 156–170. doi : https://doi.org/10.52340/2023.01.01.17
Tkemaladze, J. (2023). The centriolar hypothesis of differentiation and replicative senescence. Junior Researchers, 1(1), 123–141. doi : https://doi.org/10.52340/2023.01.01.15
Tkemaladze, J. (2024). Absence of centrioles and regenerative potential of planaria. Georgian Scientists, 6(4), 59–75. doi : https://doi.org/10.52340/gs.2024.06.04.08
Tkemaladze, J. (2024). Cell center and the problem of accumulation of oldest centrioles in stem cells. Georgian Scientists, 6(2), 304–322. doi : https://doi.org/10.52340/gs.2024.06.02.32
Tkemaladze, J. (2024). Editorial: Molecular mechanism of ageing and therapeutic advances through targeting glycative and oxidative stress. Front Pharmacol. 2024 Mar 6;14:1324446. doi : 10.3389/fphar.2023.1324446. PMID: 38510429; PMCID: PMC10953819.
Tkemaladze, J. (2024). Elimination of centrioles. Georgian Scientists, 6(4), 291–307. doi : https://doi.org/10.52340/gs.2024.06.04.25
Tkemaladze, J. (2024). Main causes of intelligence decrease and prospects for treatment. Georgian Scientists, 6(2), 425–432. doi : https://doi.org/10.52340/gs.2024.06.02.44
Tkemaladze, J. (2024). The rate of stem cell division decreases with age. Georgian Scientists, 6(4), 228–242. doi : https://doi.org/10.52340/gs.2024.06.04.21
Tkemaladze, J. (2025). A Universal Approach to Curing All Diseases: From Theoretical Foundations to the Prospects of Applying Modern Biotechnologies in Future Medicine. doi : http://dx.doi.org/10.13140/RG.2.2.24481.11366
Tkemaladze, J. (2025). Adaptive Systems and World Models. doi : http://dx.doi.org/10.13140/RG.2.2.13617.90720
Tkemaladze, J. (2025). Allotransplantation Between Adult Drosophila of Different Ages and Sexes. doi : http://dx.doi.org/10.13140/RG.2.2.27711.62884
Tkemaladze, J. (2025). Anti-Blastomic Substances in the Blood Plasma of Schizophrenia Patients. doi : http://dx.doi.org/10.13140/RG.2.2.12721.08807
Tkemaladze, J. (2025). Centriole Elimination as a Mechanism for Restoring Cellular Order. doi : http://dx.doi.org/10.13140/RG.2.2.12890.66248/1
Tkemaladze, J. (2025). Hypotheses on the Role of Centrioles in Aging Processes. doi : http://dx.doi.org/10.13140/RG.2.2.15014.02887/1
Tkemaladze, J. (2025). Limits of Cellular Division: The Hayflick Phenomenon. doi : http://dx.doi.org/10.13140/RG.2.2.25803.30249
Tkemaladze, J. (2025). Molecular Mechanisms of Aging and Modern Life Extension Strategies: From Antiquity to Mars Colonization. doi : http://dx.doi.org/10.13140/RG.2.2.13208.51204
Tkemaladze, J. (2025). Pathways of Somatic Cell Specialization in Multicellular Organisms. doi : http://dx.doi.org/10.13140/RG.2.2.23348.97929/1
Tkemaladze, J. (2025). Strategic Importance of the Caucasian Bridge and Global Power Rivalries. doi : http://dx.doi.org/10.13140/RG.2.2.19153.03680
Tkemaladze, J. (2025). The Epistemological Reconfiguration and Transubstantial Reinterpretation of Eucharistic Practices Established by the Divine Figure of Jesus Christ in Relation to Theological Paradigms. doi : http://dx.doi.org/10.13140/RG.2.2.28347.73769/1
Tkemaladze, J. (2025). Transforming the psyche with phoneme frequencies "Habere aliam linguam est possidere secundam animam". doi : http://dx.doi.org/10.13140/RG.2.2.16105.61286
Tkemaladze, J. (2025). Uneven Centrosome Inheritance and Its Impact on Cell Fate. doi : http://dx.doi.org/10.13140/RG.2.2.34917.31206
Tkemaladze, J. (2025). Ze World Model with Predicate Actualization and Filtering. doi : http://dx.doi.org/10.13140/RG.2.2.15218.62407
Tkemaladze, J. (2025). Ze метод создания пластичного счетчика хронотропных частот чисел бесконечного потока информации. doi : http://dx.doi.org/10.13140/RG.2.2.29162.43207
Tkemaladze, J. (2025). A Novel Integrated Bioprocessing Strategy for the Manufacturing of Shelf-Stable, Nutritionally Upgraded Activated Wheat: Development of a Comprehensive Protocol, In-Depth Nutritional Characterization, and Evaluation of Biofunctional Properties. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.16950787
Tkemaladze, J. (2025). Achieving Perpetual Vitality Through Innovation. doi : http://dx.doi.org/10.13140/RG.2.2.31113.35685
Tkemaladze, J. (2025). Activated Wheat: The Power of Super Grains. Preprints. doi : https://doi.org/10.20944/preprints202508.1724.v1
Tkemaladze, J. (2025). Adaptive Cognitive System Ze. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.15309162
Tkemaladze, J. (2025). Aging Model Based on Drosophila melanogaster: Mechanisms and Perspectives. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.14955643
Tkemaladze, J. (2025). Aging Model-Drosophila Melanogaster. doi : http://dx.doi.org/10.13140/RG.2.2.16706.49607
Tkemaladze, J. (2025). An Interdisciplinary Study on the Causes of Antediluvian Longevity, the Postdiluvian Decline in Lifespan, and the Phenomenon of Job’s Life Extension. Preprints. doi : https://doi.org/10.20944/preprints202509.1476.v1
Tkemaladze, J. (2025). Anatomy, Biogenesis, and Role in Cell Biology of Centrioles. Longevity Horizon, 1(2). doi : https://doi.org/10.5281/zenodo.14742232
Tkemaladze, J. (2025). Anti-Blastomic Substances in the Plasma of Schizophrenia Patients: A Dual Role of Complement C4 in Synaptic Pruning and Tumor Suppression. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.15042448
Tkemaladze, J. (2025). Asymmetry in the Inheritance of Centrosomes/Centrioles and Its Consequences. Longevity Horizon, 1(2). doi : https://doi.org/10.5281/zenodo.14837352
Tkemaladze, J. (2025). Centriole Elimination: A Mechanism for Resetting Entropy in the Cell. Longevity Horizon, 1(2). doi : https://doi.org/10.5281/zenodo.14876013
Tkemaladze, J. (2025). Concept to The Alive Language. Longevity Horizon, 1(1). doi : https://doi.org/10.5281/zenodo.14688792
Tkemaladze, J. (2025). Concept to The Caucasian Bridge. Longevity Horizon, 1(1). doi : https://doi.org/10.5281/zenodo.14689276
Tkemaladze, J. (2025). Concept to The Curing All Diseases. Longevity Horizon, 1(1). doi : https://doi.org/10.5281/zenodo.14676208
Tkemaladze, J. (2025). Concept to The Eternal Youth. Longevity Horizon, 1(1). doi : https://doi.org/10.5281/zenodo.14681902
Tkemaladze, J. (2025). Concept to The Food Security. Longevity Horizon, 1(1). doi : https://doi.org/10.5281/zenodo.14642407
Tkemaladze, J. (2025). Concept to the Living Space. Longevity Horizon, 1(1). doi : https://doi.org/10.5281/zenodo.14635991
Tkemaladze, J. (2025). Concept to The Restoring Dogmas. Longevity Horizon, 1(1). doi : https://doi.org/10.5281/zenodo.14708980
Tkemaladze, J. (2025). Differentiation of Somatic Cells in Multicellular Organisms. Longevity Horizon, 1(2). doi : https://doi.org/10.5281/10.5281/zenodo.14778927
Tkemaladze, J. (2025). Direct Reprogramming of Somatic Cells to Functional Gametes in Planarians via a Novel In Vitro Gametogenesis Protocol. Preprints. doi : https://doi.org/10.20944/preprints202509.1071.v1
Tkemaladze, J. (2025). Induction of germline-like cells (PGCLCs). Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.16414775
Tkemaladze, J. (2025). Long-Lived Non-Renewable Structures in the Human Body. doi : http://dx.doi.org/10.13140/RG.2.2.14826.43206
Tkemaladze, J. (2025). Mechanisms of Learning Through the Actualization of Discrepancies. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.15200612
Tkemaladze, J. (2025). Memorizing an Infinite Stream of Information in a Limited Memory Space: The Ze Method of a Plastic Counter of Chronotropic Number Frequencies. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.15170931
Tkemaladze, J. (2025). Molecular Insights and Radical Longevity from Ancient Elixirs to Mars Colonies. Longevity Horizon, 1(2). doi : https://doi.org/10.5281/zenodo.14895222
Tkemaladze, J. (2025). Ontogenetic Permanence of Non-Renewable Biomechanical Configurations in Homo Sapiens Anatomy. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.15086387
Tkemaladze, J. (2025). Protocol for Transplantation of Healthy Cells Between Adult Drosophila of Different Ages and Sexes. Longevity Horizon, 1(2). doi : https://doi.org/10.5281/zenodo.14889948
Tkemaladze, J. (2025). Replicative Hayflick Limit. Longevity Horizon, 1(2). doi : https://doi.org/10.5281/zenodo.14752664
Tkemaladze, J. (2025). Solutions to the Living Space Problem to Overcome the Fear of Resurrection from the Dead. doi : http://dx.doi.org/10.13140/RG.2.2.34655.57768
Tkemaladze, J. (2025). The Centriolar Theory of Differentiation Explains the Biological Meaning of the.
Tkemaladze, J. (2025). The Centriole Paradox in Planarian Biology: Why Acentriolar Stem Cells Divide and Centriolar Somatic Cells Do Not. doi : https://doi.org/10.20944/preprints202509.0382.v1
Tkemaladze, J. (2025). The Concept of Data-Driven Automated Governance. Georgian Scientists, 6(4), 399–410. doi : https://doi.org/10.52340/gs.2024.06.04.38
Tkemaladze, J. (2025). The Stage of Differentiation Into Mature Gametes During Gametogenesis in Vitro. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.16808827
Tkemaladze, J. (2025). The Tkemaladze Method maps cell lineage with mutant mitochondrial transfer. Longevity Horizon, 1(4). doi : https://doi.org/10.5281/zenodo.17236869
Tkemaladze, J. (2025). The Tkemaladze Method: A Modernized Caucasian Technology for the Production of Shelf-Stable Activated Wheat with Enhanced Nutritional Properties. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.16905079
Tkemaladze, J. (2025). Theory of Lifespan Decline. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.17142909
Tkemaladze, J. (2025). Through In Vitro Gametogenesis—Young Stem Cells. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.15847116
Tkemaladze, J. (2025). Unlocking the Voynich Cipher via the New Algorithmic Coding Hypothesis. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.17054312
Tkemaladze, J. (2025). Voynich Manuscript Decryption: A Novel Compression-Based Hypothesis and Computational Framework. doi : https://doi.org/10.20944/preprints202509.0403.v1
Tkemaladze, J. (2025). Why do planarian cells without centrioles divide and cells with centrioles do not divide?. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.17054142
Tkemaladze, J. (2025). Гаметогенез In Vitro: современное состояние, технологии и перспективы применения. Research Gate. doi : http://dx.doi.org/10.13140/RG.2.2.28647.36000
Tkemaladze, J. (2025a). Adaptive Cognitive System Ze. Longevity Horizon, 1(3). https://doi.org/10.5281/zenodo.15309162
Tkemaladze, J. (2025). Bayesian Principles in Ze Systems. Preprints. https://doi.org/10.20944/preprints202510.1287.v1
Tkemaladze, J. (2025b). Mechanisms of learning through the actualization of discrepancies. Longevity Horizon, 1(3). https://doi.org/10.5281/zenodo.15200612
Tkemaladze, J. (2025c). Memorizing an infinite stream of information in a limited memory space: The Ze method of a plastic counter of chronotropic number frequencies. Longevity Horizon, 1(3). https://doi.org/10.5281/zenodo.15170931
Tkemaladze, J. Systemic Resilience and Sustainable Nutritional Paradigms in Anthropogenic Ecosystems. doi : http://dx.doi.org/10.13140/RG.2.2.18943.32169/1
Tkemaladze, J. V., & Chichinadze, K. N. (2005). Centriolar mechanisms of differentiation and replicative aging of higher animal cells. Biochemistry (Moscow), 70, 1288-1303.
Tkemaladze, J., & Apkhazava, D. (2019). Dasatinib and quercetin: short-term simultaneous administration improves physical capacity in human. J Biomedical Sci, 8(3), 3.
Tkemaladze, J., & Chichinadze, K. (2005). Potential role of centrioles in determining the morphogenetic status of animal somatic cells. Cell biology international, 29(5), 370-374.
Tkemaladze, J., & Chichinadze, K. (2010). Centriole, differentiation, and senescence. Rejuvenation research, 13(2-3), 339-342.
Tkemaladze, J., & Gakely, G. (2025). A Novel Biotechnological Approach for the Production of Shelf-Stable, Nutritionally Enhanced Activated Wheat: Protocol Development, Nutritional Profiling, and Bioactivity Assessment. doi : https://doi.org/10.20944/preprints202508.1997.v1
Tkemaladze, J., & Gakely, G. (2025). Induction of de novo centriole biogenesis in planarian stem cells. Longevity Horizon, 1(4). doi : https://doi.org/10.5281/zenodo.17283229
Tkemaladze, J., & Samanishvili, T. (2024). Mineral ice cream improves recovery of muscle functions after exercise. Georgian Scientists, 6(2), 36–50. doi : https://doi.org/10.52340/gs.2024.06.02.04
Tkemaladze, J., Gakely, G., Gegelia, L., Papadopulo, I., Taktakidze, A., Metreveli, N., ... & Maglakelidze, U. (2025). Production of Functional Gametes from Somatic Cells of the Planarian Schmidtea Mediterranea Via in Vitro Gametogenesis. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.17131291
Tkemaladze, J., Tavartkiladze, A., & Chichinadze, K. (2012). Programming and Implementation of Age-Related Changes. In Senescence. IntechOpen.
Tkemaladze, Jaba and Kipshidze, Mariam, Regeneration Potential of the Schmidtea Mediterranea CIW4 Planarian. Available at SSRN: https://ssrn.com/abstract=4633202 or http://dx.doi.org/10.2139/ssrn.4633202
Turrigiano, G. G. (2008). The self-tuning neuron: synaptic scaling of excitatory synapses. Cell, 135(3), 422–435. https://doi.org/10.1016/j.cell.2008.10.008
Turrigiano, G. G., & Nelson, S. B. (2004). Homeostatic plasticity in the developing nervous system. Nature Reviews Neuroscience, 5(2), 97–107. https://doi.org/10.1038/nrn1327
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. In Advances in Neural Information Processing Systems (pp. 5998–6008).
Vul, E., Goodman, N., Griffiths, T. L., & Tenenbaum, J. B. (2014). One and done? Optimal decisions from very few samples. Cognitive Science, 38(4), 599–637. https://doi.org/10.1111/cogs.12101
Wilson, R. C., Bonawitz, E., Costa, V. D., & Ebitz, R. B. (2019). Balancing exploration and exploitation with information and randomization. Current Opinion in Behavioral Sciences, 26, 49–56. https://doi.org/10.1016/j.cobeha.2018.09.011
Wolpert, D. M., Diedrichsen, J., & Flanagan, J. R. (2011). Principles of sensorimotor learning. Nature Reviews Neuroscience, 12(12), 739–751. https://doi.org/10.1038/nrn3112
Прангишвили, А. И., Гаситашвили, З. А., Мацаберидзе, М. И., Чичинадзе, К. Н., Ткемаладзе, Д. В., & Азмайпарашвили, З. А. (2017). К топологии антитеррористических и антикриминальных технологии для образовательных программ. В научном издании представлены материалы Десятой международной научно-технической конфе-ренции «Управление развитием крупномасштабных систем (MLSD’2016)» по следующим направле-ниям:• Проблемы управления развитием крупномасштабных систем, включая ТНК, Госхолдин-ги и Гос-корпорации., 284.
Прангишвили, А. И., Гаситашвили, З. А., Мацаберидзе, М. И., Чхартишвили, Л. С., Чичинадзе, К. Н., & Ткемаладзе, Д. В. (2017). & Азмайпарашвили, ЗА (2017). Системные составляющие здравоохранения и инноваций для организации европейской нано-биомедицинской екосистемной технологической платформы. Управление развитием крупномасштабных систем MLSD, 365-368.
Ткемаладзе, Д. (2025). Асимметрия в наследовании центросом/центриолей и ее последствия. doi : http://dx.doi.org/110.13140/RG.2.2.34917.31206
Ткемаладзе, Д. (2025). Гаметогенез in vitro (IVG)-Этап дифференцировки в зрелые гаметы. doi : http://dx.doi.org/10.13140/RG.2.2.20429.96482
Ткемаладзе, Д. (2025). Дифференциация соматических клеток многоклеточных животных. doi : http://dx.doi.org/10.13140/RG.2.2.23348.97929/1
Ткемаладзе, Д. (2025). Индукция примордиальных клеток, подобных зародышевым клеткам (PGCLCs) современные достижения, механизмы и перспективы применения. doi : http://dx.doi.org/10.13140/RG.2.2.27152.32004
Ткемаладзе, Д. (2025). Репликативный Лимит Хейфлика. doi : http://dx.doi.org/10.13140/RG.2.2.25803.30249
Ткемаладзе, Д. (2025). Элиминация Центриолей: Механизм Обнуления Энтропии в Клетке. doi : http://dx. doi. org/10.13140/RG.2.2.12890.66248/1
Ткемаладзе, Д. В., & Чичинадзе, К. Н. (2005). Центриолярные механизмы дифференцировки и репликативного старения клеток высших животных. Биохимия, 70(11), 1566-1584.
Ткемаладзе, Д., Цомаиа, Г., & Жоржолиани, И. (2001). Создание искусственных самоадаптирующихся систем на основе Теории Прогноза. Искусственный интеллект. УДК 004.89. Искусственный интеллект. УДК 004.89.
Чичинадзе, К. Н., & Ткемаладзе, Д. В. (2008). Центросомная гипотеза клеточного старения и дифференциации. Успехи геронтологии, 21(3), 367-371.
Чичинадзе, К., Ткемаладзе, Д., & Лазарашвили, А. (2012). Новый класс рнк и центросомная гипотеза старения клеток. Успехи геронтологии, 25(1), 23-28
