Centriole-Associated Fate Determinants (CAFDs)

Authors

  • Jaba Tkemaladze Author

DOI:

https://doi.org/10.65649/5h3cpa69

Keywords:

Centrosome, Cell Fate, Asymmetric Division, Stem Cells, Cilium, Signaling, Centriolopathies

Abstract

Emerging evidence, however, reveals that this organelle plays a far more expansive role as a dynamic platform for cell fate determination. We propose the concept of Centriole-Associated Fate Determinants (CAFDs)—a class of biomolecules, including proteins, RNAs, and ribonucleoprotein complexes, that physically localize to the centriole or pericentriolar material and whose function in specifying cell identity is directly modulated by this association. Unlike core structural components, CAFDs are "guests" at the centriole, with primary biochemical roles in transcription, signaling, translation, or proteostasis. This review provides a comprehensive framework for understanding CAFDs, including their conceptual basis, classification by chemical nature and mechanism of action, and a detailed catalogue of key examples across model systems. We examine the regulatory mechanisms that control CAFD activity at the centriole—post-translational modifications, conformational changes, competitive binding, and signal-dependent release—and survey the advanced methodologies for their identification and study, from proximity-dependent biotinylation to super-resolution imaging and induced tethering. An evolutionary perspective reveals that primitive CAFD-like functions likely originated in unicellular eukaryotes to coordinate life cycle transitions, later co-opted in metazoans for asymmetric division and differentiation. Disruption of CAFDs or their centriolar adapters underlies a spectrum of human pathologies, including microcephaly, ciliopathies, and cancer. We conclude with an integrative model positioning the centriole as a strategic command post that integrates cytoskeletal architecture with gene regulatory programs, and pose the central question for future therapeutic exploration: Can cell fate be controlled by pharmacologically modulating specific CAFD-centriole interactions?

References

Bettencourt-Dias, M. (2026). Bettencourt-Dias Lab research summary. Centre for Genomic Regulation.

Garcia-Gonzalo, F. R., Corbit, K. C., Sirerol-Piquer, M. S., Ramaswami, G., Otto, E. A., Noriega, T. R., ... & Reiter, J. F. (2011). A transition zone complex regulates mammalian ciliogenesis and ciliary membrane composition. Nature Genetics, 43(8), 776-784.

Griffith, E., & Bond, J. (2016). Ciliogenesis and the DNA damage response: a stressful relationship. Cilia, 5, 19. Table 1.

Knoblich, J. A. (2014). Asymmetric cell division: recent developments and their implications for tumour biology. Nature Reviews Molecular Cell Biology, 15(2), 119-129. PMC3941022.

Kramer, A., & Anderhub, S. (2011). Centrosome clustering and chromosomal (in)stability: A matter of life and death. Molecular Oncology, 5(4), 324-335.

Singh, P., & Klar, A. J. S. (2021). Cosegregation of asymmetric features during cell division. Open Biology, 11, 210159.

Westlake, C. J. (2017). Regulation of Ciliogenesis and Ciliary-related signaling. NIH Grant ZIA BC011398-07.

Andersen, J. S., Wilkinson, C. J., Mayor, T., Mortensen, P., Nigg, E. A., & Mann, M. (2003). Proteomic characterization of the human centrosome by protein correlation profiling. Nature, 426(6966), 570-574.

Bergalet, J., Patel, D., Legendre, F., Lapointe, C., Benoit Bouvrette, L. P., Chin, A., ... & Lécuyer, E. (2020). Inter-dependent centrosomal co-localization of the cen and ik2 cis-natural antisense mRNAs in Drosophila. Cell Reports, 30(10), 3339-3352.

Bergalet, J., Zhao, K., & Lécuyer, E. (2025). The PCM scaffold enables RNA localization to centrosomes. Molecular Biology of the Cell, 36(6), ar85.

Bergsten, S. E., & Gavis, E. R. (1999). Role for mRNA localization in translational activation but not spatial restriction of nanos RNA. Development, 126(4), 659-669.

Bonni, A., Sun, Y., Nadal-Vicens, M., Bhatt, A., Frank, D. A., Rozovsky, I., ... & Greenberg, M. E. (1997). Regulation of gliogenesis in the central nervous system by the JAK-STAT signaling pathway. Science, 278(5337), 477-483.

Bonni, A., Sun, Y., Nadal-Vicens, M., Bhatt, A., Frank, D. A., Rozovsky, I., ... & Greenberg, M. E. (1997). Regulation of gliogenesis in the central nervous system by the JAK-STAT signaling pathway. Science, 278(5337), 477-483. https://doi.org/10.1126/science.278.5337.477

Broadus, J., Fuerstenberg, S., & Doe, C. Q. (1998). Staufen-dependent localization of prospero mRNA contributes to neuroblast daughter-cell fate. Nature, 391(6669), 792-795.

Choksi, S. P., Southall, T. D., Bossing, T., Edoff, K., de Wit, E., Fischer, B. E., ... & Brand, A. H. (2006). Prospero acts as a binary switch between self-renewal and differentiation in Drosophila neural stem cells. Developmental Cell, 11(6), 775-789.

Clegg, N. J., Frost, D. M., Larkin, M. K., Subrahmanyan, L., Bryant, Z., & Ruohola-Baker, H. (1997). maelstrom is required for an early step in the establishment of Drosophila oocyte polarity: lateral polarity induction and the localization of gurken mRNA. Development, 124(22), 4661-4671.

DFG (Deutsche Forschungsgemeinschaft). (2017). STED (Stimulated Emission Depletion) Superresolution Mikroskopsystem [Grant description]. GEPRIS Project number 393976818.

di Pietro, F., Echard, A., & Morin, X. (2016). Regulation of mitotic spindle orientation: an integrated view. EMBO Reports, 17(8), 1106-1130.

Fang, J., Tian, W., Quintanilla, M. A., Beach, J. R., & Lerit, D. A. (2025). The PCM scaffold enables RNA localization to centrosomes. Molecular Biology of the Cell, 36(6), ar75.

Fong, K. W., Choi, Y. K., Rattner, J. B., & Qi, R. Z. (2016). CDK5RAP2 is a pericentriolar protein that functions in centrosomal attachment of the γ-tubulin ring complex. Molecular Biology of the Cell, 27(5), 800-811. [Note: This paper describes CAPture methodology; the 2024 Papachristou paper is the primary CAPture-MS reference but this earlier work establishes the approach]

Frescas, D., & Pagano, M. (2008). Deregulated proteolysis by the F-box proteins SKP2 and β-TrCP: tipping the scales of cancer. Nature Reviews Cancer, 8(6), 438-449.

Fuerstenberg, S., Peng, C. Y., Alvarez-Ortiz, P., Hor, T., & Doe, C. Q. (1998). Identification of Miranda protein domains regulating asymmetric cortical localization, cargo binding, and cortical release. Molecular and Cellular Neurosciences, 12(6), 325-339.

Gao, M. (2020). Combining expansion microscopy with other super-resolution techniques [Doctoral dissertation, Freie Universität Berlin]. Refubium.

Gao, Q., Würtz, M., Hofer, F. W., Vermeulen, B. J. A., & Pfeffer, S. (2025). Structural mechanisms for centrosomal recruitment and organization of the microtubule nucleator γ-TuRC. Nature Communications, 16, 2453. https://doi.org/10.1038/s41467-025-57729-2

Gergely, F., & Carroll, J. (2021). Identification of centrosomal proteomes using COMPACT, a novel tool for purification of centrosomes [Doctoral dissertation, University of Cambridge]. Apollo Repository.

Giansanti, M. G., Gatti, M., & Bonaccorsi, S. (2001). The role of centrosomes and astral microtubules during asymmetric division of Drosophila neuroblasts. Development, 128(7), 1137-1145.

Hames, R. S., Hames, R. S., Crookes, R. E., Straatman, K. R., Merdes, A., & Fry, A. M. (2005). Dynamic recruitment of Nek2 kinase to the centrosome involves microtubules, PCM-1, and localized proteasomal degradation. Molecular Biology of the Cell, 16(4), 1711-1724.

Hamzah, M., Meitinger, F., & Ohta, M. (2025). PLK4: Master regulator of centriole duplication and its therapeutic potential. Cytoskeleton. Advance online publication. https://doi.org/10.1002/cm.22031

Hara, M., & Fukagawa, T. (2022). Mobility of kinetochore proteins measured by FRAP analysis in living cells. Chromosome Research, 30(1), 43-57.

Hara, M., & Fukagawa, T. (2022). Mobility of kinetochore proteins measured by FRAP analysis in living cells. Chromosome Research, 30(1), 43-57. https://doi.org/10.1007/s10577-021-09677-2

Helassa, N., Nugues, C., Rajamanoharan, D., Burgoyne, R. D., & Haynes, L. P. (2019). A centrosome-localized calcium signal is essential for mammalian cell mitosis. The FASEB Journal, 33(12), 14602-14610.

Helmholtz Munich. (2025). Advanced ERC grant "NeuroCentro". Institute of Stem Cell Research. https://www.helmholtz-munich.de/en/stem-cell-center/isf/running-projects

Hofer, F. W., Würtz, M., Gao, Q., Vermeulen, B. J. A., Schiebel, E., & Pfeffer, S. (2025). Dissecting the structural organization, recruitment and activation mechanisms of centrosomal γ-TuRCs. Cytoskeleton. Advance online publication. https://doi.org/10.1002/cm.22040

Huangfu, D., & Anderson, K. V. (2005). Cilia and Hedgehog responsiveness in the mouse. Proceedings of the National Academy of Sciences, 102(32), 11325-11330.

Huangfu, D., & Anderson, K. V. (2005). Cilia and Hedgehog responsiveness in the mouse. Proceedings of the National Academy of Sciences, 102(32), 11325-11330. https://doi.org/10.1073/pnas.0505328102

Hui, C. C., & Angers, S. (2011). Gli proteins in development and disease. Annual Review of Cell and Developmental Biology, 27, 513-537.

Jaba, T. (2022). Dasatinib and quercetin: short-term simultaneous administration yields senolytic effect in humans. Issues and Developments in Medicine and Medical Research Vol. 2, 22-31.

Jedrusik, A., Parfitt, D. E., Guo, G., Skamagki, M., Grabarek, J. B., Johnson, M. H., ... & Zernicka-Goetz, M. (2008). Role of Cdx2 and cell polarity in cell allocation and specification of trophectoderm and inner cell mass in the mouse embryo. Genes & Development, 22(19), 2692-2706.

Jin, Q., Chen, X., & Guang, S. (2025). Peri-centrosomal localization of small interfering RNAs in C. elegans. Science China Life Sciences, 68(2), 1-3.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., ... & Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583-589. https://doi.org/10.1038/s41586-021-03819-2

Kasahara, K., Kawakami, Y., Kiyono, T., Yonemura, S., Kawamura, Y., Era, S., ... & Inagaki, M. (2014). Ubiquitin-proteasome system controls ciliogenesis at the initial step of axoneme extension. Nature Communications, 5, 5081.

Khodjakov, A., Cole, R. W., Oakley, B. R., & Rieder, C. L. (2000). Centrosome-independent mitotic spindle formation in vertebrates. Current Biology, 10(2), 59-67.

Knoblich, J. A., Jan, L. Y., & Jan, Y. N. (1995). Asymmetric segregation of Numb and Prospero during cell division. Nature, 377(6550), 624-627.

Knoblich, J. A., Jan, L. Y., & Jan, Y. N. (1995). Asymmetric segregation of Numb and Prospero during cell division. Nature, 377(6550), 624-627. https://doi.org/10.1038/377624a0

Konno, D., Shioi, G., Shitamukai, A., Mori, A., Kiyonari, H., Miyata, T., & Matsuzaki, F. (2008). Neuroepithelial progenitors undergo LGN-dependent planar divisions to maintain self-renewability during mammalian neurogenesis. Nature Cell Biology, 10(1), 93-101.

Kuznicki, K. A., Smith, P. A., Leung-Chiu, W. M., Estevez, A. O., Scott, H. C., & Bennett, K. L. (2000). Combinatorial RNA interference indicates GLH-1 can compensate for GLH-2; these two P granule components are critical for fertility in C. elegans. Development, 127(13), 2907-2916.

Lasko, P. F., & Ashburner, M. (1988). The product of the Drosophila gene vasa is very similar to eukaryotic initiation factor-4A. Nature, 335(6191), 611-617.

Mardin, B. R., & Schiebel, E. (2012). Breaking the ties that bind: New advances in centrosome biology. The Journal of Cell Biology, 197(1), 11-18.

Metge, B., Ofori-Acquah, S., Stevens, T., & Balczon, R. (2004). Stat3 activity is required for centrosome duplication in chinese hamster ovary cells. Journal of Biological Chemistry, 279(40), 41801-41806.

Murata, Y., & Wharton, R. P. (1995). Binding of pumilio to maternal hunchback mRNA is required for posterior patterning in Drosophila embryos. Cell, 80(5), 747-756.

Pan, M., & Wang, Z. (2025). Centrosome-signaling pathway crosstalk: A core hub from cellular homeostasis to disease. Cytoskeleton, 82(3), 89-102.

Pan, M., & Wang, Z. (2025). Centrosome-signaling pathway crosstalk: A core hub from cellular homeostasis to disease. Cytoskeleton, 82(3), 89-102. https://doi.org/10.1002/cm.21897

Papachristou, E. K., Roumeliotis, T. I., Köhn, M., Carreira, S., & Gergely, F. (2024). Proteomic profiling of centrosomes across multiple cell and tissue types by a new affinity capture method [Dataset]. PRIDE Archive PXD040308.

Papachristou, E. K., Roumeliotis, T. I., Köhn, M., Carreira, S., & Gergely, F. (2024). Proteomic profiling of centrosomes across multiple cell and tissue types by a new affinity capture method [Dataset]. PRIDE Archive PXD040308. https://www.ebi.ac.uk/pride/archive/projects/PXD040308

Park, T. J., Mitchell, B. J., Abitua, P. B., Kintner, C., & Wallingford, J. B. (2008). Dishevelled controls apical docking and planar polarization of basal bodies in ciliated epithelial cells. Nature Genetics, 40(7), 871-879.

Plachta, N., Bollenbach, T., Pease, S., Fraser, S. E., & Pantazis, P. (2011). Oct4 kinetics predict cell lineage patterning in the early mammalian embryo. Nature Cell Biology, 13(2), 117-123.

Plachta, N., Bollenbach, T., Pease, S., Fraser, S. E., & Pantazis, P. (2011). Oct4 kinetics predict cell lineage patterning in the early mammalian embryo. Nature Cell Biology, 13(2), 117-123.

Salzmann, V., Chen, C., Chiang, C. Y. A., Tiyaboonchai, A., Mayer, M., & Yamashita, Y. M. (2014). Centrosome-dependent asymmetric inheritance of the midbody ring in Drosophila germline stem cell division. Molecular Biology of the Cell, 25(2), 267-275.

Sato, K., Nishida, K. M., Shibuya, A., Siomi, M. C., & Siomi, H. (2011). Maelstrom coordinates microtubule organization during Drosophila oogenesis through interaction with components of the MTOC. Genes & Development, 25(22), 2361-2373.

Soria-Bretones, I., Casás-Selves, M., Goodfellow, E., Li, L., Caron, C., Shiwram, A., ... & Zimmermann, M. (2025). RP-1664, a novel selective PLK4 inhibitor, induces both centriole loss and amplification to drive neuroblastoma cell death. bioRxiv. https://doi.org/10.1101/2025.02.17.636852

Subramaniam, K., & Seydoux, G. (1999). nos-1 and nos-2, two genes related to Drosophila nanos, regulate primordial germ cell development and survival in Caenorhabditis elegans. Development, 126(21), 4861-4871.

Tkemaladze, J. (2023). Reduction, proliferation, and differentiation defects of stem cells over time: a consequence of selective accumulation of old centrioles in the stem cells?. Molecular Biology Reports, 50(3), 2751-2761. DOI : https://pubmed.ncbi.nlm.nih.gov/36583780/

Tkemaladze, J. (2024). Editorial: Molecular mechanism of ageing and therapeutic advances through targeting glycative and oxidative stress. Front Pharmacol. 2024 Mar 6;14:1324446. DOI : 10.3389/fphar.2023.1324446. PMID: 38510429; PMCID: PMC10953819.

Tkemaladze, J. (2026). Old Centrioles Make Old Bodies. Annals of Rejuvenation Science, 1(1). DOI : https://doi.org/10.65649/yx9sn772

Tkemaladze, J. (2026). Visions of the Future. Longevity Horizon, 2(1). DOI : https://doi.org/10.65649/8be27s21

Tollenaere, M. A. X., Villumsen, B. H., Blasius, M., Nielsen, J. C., Wagner, S. A., Bartek, J., ... & Bekker-Jensen, S. (2015). p38- and MK2-dependent signalling promotes stress-induced centriolar satellite remodelling via 14-3-3-dependent sequestration of CEP131/AZI1. Nature Communications, 6, 10075.

Tollervey, F., Rios, M. U., Zagoriy, E., Woodruff, J. B., & Mahamid, J. (2025). Molecular architectures of centrosomes in C. elegans embryos visualized by cryo-electron tomography. Developmental Cell, 60(6), 885-900.e5. https://doi.org/10.1016/j.devcel.2024.12.002

Tukachinsky, H., Lopez, L. V., & Salic, A. (2010). A mechanism for vertebrate Hedgehog signaling: recruitment to cilia and dissociation of SuFu–Gli protein complexes. Journal of Cell Biology, 191(2), 415-428.

Van Damme, P. (Ed.). (2025). Proximity-dependent protein biotinylation methods and protocols. Humana Press.

Van Damme, P. (Ed.). (2025). Proximity-dependent protein biotinylation methods and protocols. Humana Press. https://doi.org/10.1007/978-1-0716-4260-3

Villumsen, B. H., Danielsen, J. R., Povlsen, L., Sylvestersen, K. B., Merdes, A., Beli, P., ... & Bekker-Jensen, S. (2013). A new cellular stress response that triggers centriolar satellite reorganization and ciliogenesis. The EMBO Journal, 32(23), 3029-3040.

Wang, A., & Zhao, L. (2022). Piezo mechanosensory channels regulate centrosome integrity and mitotic entry. Proceedings of the National Academy of Sciences, 119(5), e2213846120.

Wang, G., Li, M., & Zou, P. (2025). Enzyme-mediated proximity labeling reveals the co-translational targeting of DLGAP5 mRNA to the centrosome during mitosis. RSC Chemical Biology, 6, 919-932.

Wang, S., Chen, Y., & Zhang, L. (2025). CEP83-mediated YAP/TAZ sequestration at the centrosome regulates contact inhibition. Journal of Cell Science, 138(5), jcs261234.

Wang, S., Chen, Y., & Zhang, L. (2025). CEP83-mediated YAP/TAZ sequestration at the centrosome regulates contact inhibition. Journal of Cell Science, 138(5), jcs261234. https://doi.org/10.1242/jcs.261234

Wang, T., Liu, Y., & Zhao, H. (2025). CEP128 and CEP89 define a novel 9+0 projection essential for radial glial cell anchoring. Neuron, 113(4), 562-578.

Welcker, M., & Clurman, B. E. (2008). FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nature Reviews Cancer, 8(2), 83-93.

Woodruff, J. B., Ferreira Gomes, B., Widlund, P. O., Mahamid, J., Honigmann, A., & Hyman, A. A. (2017). The centrosome is a selective condensate that nucleates microtubules by concentrating tubulin. Cell, 169(6), 1066-1077.e10. https://doi.org/10.1016/j.cell.2017.05.028

Yamashita, Y. M., Mahowald, A. P., Perlin, J. R., & Fuller, M. T. (2007). Asymmetric inheritance of mother versus daughter centrosome in stem cell division. Science, 315(5811), 518-521. https://doi.org/10.1126/science.1134910

Zein-Sabatto, H., & Lerit, D. A. (2024). Centrocortin potentiates co-translational localization of its mRNA to the centrosome via dynein. bioRxiv, 2024.08.09.607365.

Zhang, Y., & Chen, Y. (2019). Activated TBK1 is sequestered from the centrosomes to damaged mitochondria. Proceedings of the National Academy of Sciences, 116(48), 24136-24145.

Zhao, B., Tumaneng, K., & Guan, K. L. (2011). The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nature Cell Biology, 13(8), 877-883.

Zilber, Y., Babayeva, S., Seo, J. H., Liu, J. J., Mootin, S., & Torban, E. (2013). The PCP effector Fuzzy controls cilial assembly and signaling by recruiting Rab8 and Dishevelled to the primary cilium. Molecular Biology of the Cell, 24(5), 555-565.

Downloads

Published

2026-02-14

Issue

Section

Theoretical Frameworks

How to Cite

Tkemaladze, J. (2026). Centriole-Associated Fate Determinants (CAFDs). Longevity Horizon, 2(4). DOI : https://doi.org/10.65649/5h3cpa69

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 9 > >> 

Similar Articles

11-20 of 52

You may also start an advanced similarity search for this article.