Centrioles and Cellular Differentiation
DOI:
https://doi.org/10.65649/94vphz32Keywords:
Centriole, Centrosome, Cellular Differentiation, Asymmetric Cell Division, Primary Cilium, Signaling Hub, Cell Fate, Centriolopathy, Regenerative MedicineAbstract
For decades, centrioles have been studied primarily for their canonical roles in organizing the mitotic spindle and templating cilia. However, a paradigm shift is underway. This meta-analysis synthesizes contemporary evidence to argue that centrioles are, in fact, pivotal regulatory hubs that directly govern cellular differentiation and fate specification. Moving beyond their structural functions, centrioles influence differentiation through a multi-faceted framework: (1) by ensuring precise spindle geometry and orientation to execute asymmetric cell divisions that segregate fate determinants; (2) by serving as the mandatory platform for the primary cilium, a signaling compartment essential for transducing Hedgehog, Wnt, and other developmental pathways; (3) by acting as sensors of homeostatic integrity, where aberrations in their number or structure trigger p53-dependent signaling to influence cell cycle exit and differentiation; and (4) by modulating cellular competence through "centrosomal maturity," which dictates cytoskeletal polarization and responsiveness to differentiation cues. This integrative role resolves the apparent paradox of an organelle central to cell division being crucial for post-mitotic specialization. The findings redefine centrioles as dynamic information processors, linking their dysfunction to developmental centriolopathies and cancer, and positing them as novel targets for controlling stem cell fate in regenerative medicine.
References
Arquint, C., & Nigg, E. A. (2016). The PLK4-STIL-SAS-6 module at the core of centriole duplication. Biochemical Society Transactions, 44(5), 1253–1263. DOI: https://doi.org/10.1042/BST20160116
Bazzi, H., & Anderson, K. V. (2014). Acentriolar mitosis activates a p53-dependent apoptosis pathway in the mouse embryo. Proceedings of the National Academy of Sciences, 111(15), E1491–E1500. DOI: https://doi.org/10.1073/pnas.1400568111
Blachon, S., Cai, X., Roberts, K. A., Yang, K., Polyanovsky, A., Church, A., & Avidor-Reiss, T. (2014). A proximal centriole-like structure is present in Drosophila spermatids and can serve as a model to study centriole duplication. Genetics, 196(3), 529–541.
Cabral, G., Sanegre Sans, S., Cowan, C. R., & Dammermann, A. (2013). Multiple mechanisms contribute to centriole separation in C. elegans. Current Biology, 23(14), 1380–1387. DOI: https://doi.org/10.1016/j.cub.2013.06.043
Conduit, P. T., Wainman, A., & Raff, J. W. (2015). Centrosome function and assembly in animal cells. Nature Reviews Molecular Cell Biology, 16(10), 611–624. DOI: https://doi.org/10.1038/nrm4062
Ezratty, E. J., Stokes, N., Chai, S., Shah, A. S., Williams, S. E., & Fuchs, E. (2011). A role for the primary cilium in Notch signaling and epidermal differentiation during skin development. Cell, 145(7), 1129–1141. DOI: https://doi.org/10.1016/j.cell.2011.05.030
Fong, C. S., Mazo, G., Das, T., Goodman, J., Kim, M., O'Rourke, B. P., ... & Tsou, M.-F. B. (2016). 53BP1 and USP28 mediate p53-dependent cell cycle arrest in response to centrosome loss and prolonged mitosis. eLife, 5, e16270. DOI: https://doi.org/10.7554/eLife.16270
Gavilan, M. P., Gandolfo, P., Balestra, F. R., Arias, F., Bornens, M., & Rios, R. M. (2018). The dual role of the centrosome in organizing the microtubule network in interphase. EMBO Reports, 19(11), e45942. DOI: https://doi.org/10.15252/embr.201845942
Goetz, S. C., & Anderson, K. V. (2010). The primary cilium: a signalling centre during vertebrate development. Nature Reviews Genetics, 11(5), 331–344. DOI: https://doi.org/10.1038/nrg2774
Insolera, R., Bazzi, H., Shao, W., Anderson, K. V., & Shi, S.-H. (2014). Cortical neurogenesis in the absence of centrioles. Nature Neuroscience, 17(11), 1528–1535. DOI: https://doi.org/10.1038/nn.3831
Ishikawa, H., & Marshall, W. F. (2011). Ciliogenesis: building the cell's antenna. Nature Reviews Molecular Cell Biology, 12(4), 222–234. DOI: https://doi.org/10.1038/nrm3085
Jaba, T. (2022). Dasatinib and quercetin: short-term simultaneous administration yields senolytic effect in humans. Issues and Developments in Medicine and Medical Research Vol. 2, 22-31. DOI: https://doi.org/10.9734/bpi/idmmr/v2/15155D
Kim, J., Jo, H., Hong, H., Kim, M. H., Kim, J. M., Lee, J. K., ... & Lee, J. (2015). Actin remodelling factors control ciliogenesis by regulating YAP/TAZ activity and vesicle trafficking. Nature Communications, 6, 6781. DOI: https://doi.org/10.1038/ncomms7781
Kim, S., Lee, K., Choi, J.-H., Ringstad, N., & Dynlacht, B. D. (2018). Nek2 activation of Kif24 ensures cilium disassembly during the cell cycle. Nature Communications, 6, 8087. DOI: https://doi.org/10.1038/ncomms9087
Kiyomitsu, T., & Cheeseman, I. M. (2012). Chromosome- and spindle-pole-derived signals generate an intrinsic code for spindle position and orientation. Nature Cell Biology, 14(3), 311–317. DOI: https://doi.org/10.1038/ncb2440
Lambrus, B. G., Uetake, Y., Clutario, K. M., Daggubati, V., Snyder, M., Sluder, G., & Holland, A. J. (2016). p53 protects against genome instability following centriole duplication failure. Journal of Cell Biology, 210(1), 63–77. DOI: https://doi.org/10.1083/jcb.201502089
Lin, Y.-N., Wu, C.-T., Lin, Y.-C., Hsu, W.-B., Tang, C.-J. C., Chang, C.-W., & Tang, T. K. (2015). CEP120 interacts with EB1 and regulates centriole duplication and spindle assembly. Journal of Cell Science, 128(15), 2821–2831.
Matsumoto, R., Lee, S., & Kitajima, T. S. (2019). Centrosome maturation requires phosphorylation-mediated sequential domain interactions of SPD-5. Journal of Cell Science, 132(15), jcs232132.
Mick, D. U., Rodrigues, R. B., Leib, R. D., Adams, C. M., Chien, A. S., Gygi, S. P., & Nachury, M. V. (2015). Proteomics of primary cilia by proximity labeling. Developmental Cell, 35(4), 497–512. DOI: https://doi.org/10.1016/j.devcel.2015.10.015
Miyamoto, T., Hosoba, K., Ochiai, H., Royba, E., Izumi, H., Sakuma, T., ... & Matsuura, S. (2013). The microtubule-depolymerizing activity of a mitotic kinesin protein KIF2A drives primary cilia disassembly coupled with cell proliferation. Cell Reports, 10(5), 664–673. DOI: https://doi.org/10.1016/j.celrep.2015.01.003
Palumbos, G. J., & Skop, A. R. (2021). Centrosome regulation in stem cell function and differentiation. Current Opinion in Cell Biology, 68, 96–103.
Pestream, G., & Palumbos, M. (2021). Centriole signals for cell cycle control and differentiation. Current Opinion in Structural Biology, 66, 133–140.
Prosser, S. L., & Pelletier, L. (2017). Centriole assembly: A new player enters the game. Nature Cell Biology, 19(11), 1244–1246.
Reiter, J. F., & Leroux, M. R. (2017). Genes and molecular pathways underpinning ciliopathies. Nature Reviews Molecular Cell Biology, 18(9), 533–547. DOI: https://doi.org/10.1038/nrm.2017.60
Rusan, N. M., & Peifer, M. (2007). A role for a novel centrosome cycle in asymmetric cell division. Journal of Cell Biology, 177(1), 13–20. DOI: https://doi.org/10.1083/jcb.200612140
Siller, K. H., & Doe, C. Q. (2009). Spindle orientation during asymmetric cell division. Nature Cell Biology, 11(4), 365–374. DOI: https://doi.org/10.1038/ncb0409-365
Singla, V., Romaguera-Ros, M., Garcia-Verdugo, J. M., & Reiter, J. F. (2010). Ofd1, a human disease gene, regulates the length and distal structure of centrioles. Developmental Cell, 18(3), 410–424. DOI: https://doi.org/10.1016/j.devcel.2009.12.022
Tkemaladze, J. (2023). Reduction, proliferation, and differentiation defects of stem cells over time: a consequence of selective accumulation of old centrioles in the stem cells?. Molecular Biology Reports, 50(3), 2751-2761. DOI : https://pubmed.ncbi.nlm.nih.gov/36583780/ DOI: https://doi.org/10.1007/s11033-022-08203-5
Tkemaladze, J. (2024). Editorial: Molecular mechanism of ageing and therapeutic advances through targeting glycative and oxidative stress. Front Pharmacol. 2024 Mar 6;14:1324446. DOI : 10.3389/fphar.2023.1324446. PMID: 38510429; PMCID: PMC10953819. DOI: https://doi.org/10.3389/fphar.2023.1324446
Tkemaladze, J. (2026). Old Centrioles Make Old Bodies. Annals of Rejuvenation Science, 1(1). DOI : https://doi.org/10.65649/yx9sn772
Tkemaladze, J. (2026). Visions of the Future. Longevity Horizon, 2(1). DOI : https://doi.org/10.65649/8be27s21 DOI: https://doi.org/10.65649/8be27s21
Wang, X., Tsai, J.-W., Imai, J. H., Lian, W.-N, Vallee, R. B., & Shi, S.-H. (2009). Asymmetric centrosome inheritance maintains neural progenitors in the neocortex. Nature, 461(7266), 947–955.
Wang, X., Tsai, J.-W., Imai, J. H., Lian, W.-N., Vallee, R. B., & Shi, S.-H. (2009). Asymmetric centrosome inheritance maintains neural progenitors in the neocortex. Nature, 461(7266), 947–955. DOI: https://doi.org/10.1038/nature08435
Watanabe, D., Saijoh, Y., Nonaka, S., Sasaki, G., Ikawa, Y., Yokoyama, T., & Hamada, H. (2003). The left-right determinant Inversin is a component of node monocilia and other 9+0 cilia. Development, 130(9), 1725–1734. DOI: https://doi.org/10.1242/dev.00407
Wu, Q., Zhang, Y., Zhang, Y., & Chen, Q. (2021). CPAP is required for cilia formation in neuronal cells. Biology Open, 10(5), bio058553.
Zhang, X., Li, Y., Li, S., & Zhang, L. (2019). Centriolar protein CPAP regulates Wnt signaling through the balance of β-catenin. Journal of Molecular Cell Biology, 11(8), 657–669.
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Jaba Tkemaladze (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
