Ze Systems Generate Entropy to Forge Truth

Authors

  • Jaba Tkemaladze Author

DOI:

https://doi.org/10.65649/vgrw2c93

Keywords:

Active Measurement, Epistemological Provocation, Entropy, Latent Reality, Predictive Conflict, Ze System

Abstract

Initially, the Ze system resides in a high-entropy "wave" state of multiple potential futures, described by a probability distribution P(X) with high Shannon entropy H(X) = - Σ P(x_i) log₂ P(x_i). The cheating model's goal is to collapse this distribution into a low-entropy spike, a definite outcome aligned with its prediction. The Ze System framework proposes a radical epistemological shift from passive observation to active provocation as the basis for scientific discovery. It posits that a substantial portion of reality exists in a latent, wave-like state of unmanifested potentialities. Traditional methods are insufficient for probing this domain, as they merely record already-localized facts. The Ze paradigm introduces a methodology centered on predictive pressure, where scientific inquiry is redefined as the engineering of controlled dilemmas. By deploying competing predictive models and applying precise interventions (Ze probes), these systems force latent structures into a crisis of choice, compelling them to localize into observable phenomena. This process is fundamentally entropic: it expends energy, increases disorder, and irrevocably annihilates alternative potentials to forge a singular, co-created fact. Consequently, truth is not discovered but extracted, emerging from the structured, interpretable failure of expectations rather than their confirmation. The Ze System thus redefines the scientist's role from a detached observer to an accountable architect of reality, establishing entropy not as waste but as the essential currency paid for knowledge. This manifesto outlines the ontological, methodological, and ethical foundations of this second-order science, inviting a deliberate experimentation with the very architecture of knowledge production.

References

Aharonov, Y., Albert, D. Z., & Vaidman, L. (1988). How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Physical Review Letters, 60(14), 1351–1354.

Aharonov, Y., Albert, D. Z., & Vaidman, L. (1988). How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Physical Review Letters, 60(14), 1351–1354. https://doi.org/10.1103/PhysRevLett.60.1351 DOI: https://doi.org/10.1103/PhysRevLett.60.1351

Barad, K. (2007). Meeting the universe halfway: Quantum physics and the entanglement of matter and meaning. Duke University Press. DOI: https://doi.org/10.2307/j.ctv12101zq

Beck, J. S. (2011). Cognitive behavior therapy: Basics and beyond (2nd ed.). Guilford Press.

Brillouin, L. (1962). Science and information theory (2nd ed.). Academic Press.

Doudna, J. A., & Charpentier, E. (2014). The new frontier of genome engineering with CRISPR-Cas9. Science, 346(6213), 1258096. DOI: https://doi.org/10.1126/science.1258096

Druker, B. J. (2008). Translation of the Philadelphia chromosome into therapy for CML. Blood, 112(13), 4808–4817.

Druker, B. J. (2008). Translation of the Philadelphia chromosome into therapy for CML. Blood, 112(13), 4808–4817. https://doi.org/10.1182/blood-2008-07-077958 DOI: https://doi.org/10.1182/blood-2008-07-077958

Einstein, A., Podolsky, B., & Rosen, N. (1935). Can quantum-mechanical description of physical reality be considered complete? Physical Review, 47(10), 777–780. https://doi.org/10.1103/PhysRev.47.777 DOI: https://doi.org/10.1103/PhysRev.47.777

Engel, G. S., Calhoun, T. R., Read, E. L., Ahn, T.-K., Mančal, T., Cheng, Y.-C., ... & Fleming, G. R. (2007). Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature, 446(7137), 782–786. DOI: https://doi.org/10.1038/nature05678

Friston, K. (2010). The free-energy principle: a unified brain theory? Nature Reviews Neuroscience, 11(2), 127–138. DOI: https://doi.org/10.1038/nrn2787

Friston, K. (2013). Life as we know it. Journal of The Royal Society Interface, 10(86), 20130475. DOI: https://doi.org/10.1098/rsif.2013.0475

Grangier, P., Roger, G., & Aspect, A. (1986). Experimental evidence for a photon anticorrelation effect on a beam splitter: A new light on single-photon interferences. Europhysics Letters, 1(4), 173–179.

Grangier, P., Roger, G., & Aspect, A. (1986). Experimental evidence for a photon anticorrelation effect on a beam splitter: A new light on single-photon interferences. Europhysics Letters, 1(4), 173–179. https://doi.org/10.1209/0295-5075/1/4/004 DOI: https://doi.org/10.1209/0295-5075/1/4/004

Greenhalgh, T. (1999). Narrative based medicine in an evidence based world. BMJ, 318(7179), 323–325. DOI: https://doi.org/10.1136/bmj.318.7179.323

Hall, K. T., Loscalzo, J., & Kaptchuk, T. J. (2015). Genetics and the placebo effect: the placebo. Trends in Molecular Medicine, 21(5), 285–294.

Hall, K. T., Loscalzo, J., & Kaptchuk, T. J. (2015). Genetics and the placebo effect: the placebo. Trends in Molecular Medicine, 21(5), 285–294. https://doi.org/10.1016/j.molmed.2015.02.009 DOI: https://doi.org/10.1016/j.molmed.2015.02.009

Hallett, M. (2007). Transcranial magnetic stimulation: a primer. Neuron, 55(2), 187–199. DOI: https://doi.org/10.1016/j.neuron.2007.06.026

Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674. https://doi.org/10.1016/j.cell.2011.02.013 DOI: https://doi.org/10.1016/j.cell.2011.02.013

Heisenberg, W. (1927). Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschrift für Physik, 43(3-4), 172–198. DOI: https://doi.org/10.1007/BF01397280

Itti, L., & Baldi, P. (2009). Bayesian surprise attracts human attention. Vision Research, 49(10), 1295–1306. DOI: https://doi.org/10.1016/j.visres.2008.09.007

Jaba, T. (2022). Dasatinib and quercetin: short-term simultaneous administration yields senolytic effect in humans. Issues and Developments in Medicine and Medical Research Vol. 2, 22-31. DOI: https://doi.org/10.9734/bpi/idmmr/v2/15155D

Jaynes, E. T. (1957). Information theory and statistical mechanics. Physical Review, 106(4), 620–630. DOI: https://doi.org/10.1103/PhysRev.106.620

Jonsen, A. R. (1998). The birth of bioethics. Oxford University Press. DOI: https://doi.org/10.1093/oso/9780195103250.001.0001

Josselyn, S. A., & Tonegawa, S. (2020). Memory engrams: Recalling the past and imagining the future. Science, 367(6473), eaaw4325. https://doi.org/10.1126/science.aaw4325 DOI: https://doi.org/10.1126/science.aaw4325

Jucker, M., & Walker, L. C. (2013). Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature, 501(7465), 45–51.

Jucker, M., & Walker, L. C. (2013). Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature, 501(7465), 45–51. https://doi.org/10.1038/nature12481 DOI: https://doi.org/10.1038/nature12481

Klein, G. (2007). Performing a project premortem. Harvard Business Review, 85(9), 18–19.

Landauer, R. (1961). Irreversibility and heat generation in the computing process. IBM Journal of Research and Development, 5(3), 183–191.

Landauer, R. (1961). Irreversibility and heat generation in the computing process. IBM Journal of Research and Development, 5(3), 183–191. https://doi.org/10.1147/rd.53.0183 DOI: https://doi.org/10.1147/rd.53.0183

Logothetis, N. K. (2008). What we can do and what we cannot do with fMRI. Nature, 453(7197), 869–878. DOI: https://doi.org/10.1038/nature06976

Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2021). A survey on bias and fairness in machine learning. ACM Computing Surveys, 54(6), 1–35. DOI: https://doi.org/10.1145/3457607

Mendjan, S., & Mikkola, H. K. (2014). The cell in the era of omics: from pluripotency to differentiation. Current Opinion in Cell Biology, 31, 1–8.

Nosek, B. A., & Errington, T. M. (2020). What is replication? PLoS Biology, 18(3), e3000691. DOI: https://doi.org/10.1371/journal.pbio.3000691

Okun, M. S. (2012). Deep-brain stimulation for Parkinson’s disease. New England Journal of Medicine, 367(16), 1529–1538. DOI: https://doi.org/10.1056/NEJMct1208070

Pascual-Leone, A., Amedi, A., Fregni, F., & Merabet, L. B. (2005). The plastic human brain cortex. Annual Review of Neuroscience, 28, 377–401. DOI: https://doi.org/10.1146/annurev.neuro.27.070203.144216

Popper, K. R. (1959). The logic of scientific discovery. Hutchinson & Co. DOI: https://doi.org/10.1063/1.3060577

Prigogine, I., & Stengers, I. (1984). Order out of chaos: Man’s new dialogue with nature. Bantam Books.

Schrödinger, E. (1926). An undulatory theory of the mechanics of atoms and molecules. Physical Review, 28(6), 1049–1070. https://doi.org/10.1103/PhysRev.28.1049 DOI: https://doi.org/10.1103/PhysRev.28.1049

Soon, C. S., Brass, M., Heinze, H. J., & Haynes, J. D. (2008). Unconscious determinants of free decisions in the human brain. Nature Neuroscience, 11(5), 543–545. DOI: https://doi.org/10.1038/nn.2112

Soto, C. (2003). Unfolding the role of protein misfolding in neurodegenerative diseases. Nature Reviews Neuroscience, 4(1), 49–60. DOI: https://doi.org/10.1038/nrn1007

Tekmaladze, J. (2026). Ze System Manifesto. Longevity Horizon, 2(1).

Tekmaladze, J. (2026). Ze System Manifesto. Longevity Horizon, 2(1). https://doi.org/10.65649/3hm9b025 DOI: https://doi.org/10.65649/3hm9b025

Tkemaladze, J. (2023). Reduction, proliferation, and differentiation defects of stem cells over time: a consequence of selective accumulation of old centrioles in the stem cells?. Molecular Biology Reports, 50(3), 2751-2761. DOI : https://pubmed.ncbi.nlm.nih.gov/36583780/ DOI: https://doi.org/10.1007/s11033-022-08203-5

Tkemaladze, J. (2024). Editorial: Molecular mechanism of ageing and therapeutic advances through targeting glycative and oxidative stress. Front Pharmacol. 2024 Mar 6;14:1324446. DOI : 10.3389/fphar.2023.1324446. PMID: 38510429; PMCID: PMC10953819. DOI: https://doi.org/10.3389/fphar.2023.1324446

Tkemaladze, J. (2026). Old Centrioles Make Old Bodies. Annals of Rejuvenation Science, 1(1). DOI : https://doi.org/10.65649/yx9sn772

Tkemaladze, J. (2026). Visions of the Future. Longevity Horizon, 2(1). DOI : https://doi.org/10.65649/8be27s21 DOI: https://doi.org/10.65649/8be27s21

Victora, G. D., & Nussenzweig, M. C. (2012). Germinal centers. Annual Review of Immunology, 30, 429–457. DOI: https://doi.org/10.1146/annurev-immunol-020711-075032

Zurek, W. H. (2003). Decoherence, einselection, and the quantum origins of the classical. Reviews of Modern Physics, 75(3), 715–775.

Zurek, W. H. (2003). Decoherence, einselection, and the quantum origins of the classical. Reviews of Modern Physics, 75(3), 715–775. https://doi.org/10.1103/RevModPhys.75.715 DOI: https://doi.org/10.1103/RevModPhys.75.715

Zurek, W. H. (2009). Quantum Darwinism. Nature Physics, 5(3), 181–188. DOI: https://doi.org/10.1038/nphys1202

Downloads

Published

2026-01-20

Issue

Section

Theoretical Frameworks

How to Cite

Tkemaladze, J. (2026). Ze Systems Generate Entropy to Forge Truth. Longevity Horizon, 2(2). DOI : https://doi.org/10.65649/vgrw2c93

Most read articles by the same author(s)

1 2 3 4 5 6 7 > >> 

Similar Articles

71-73 of 73

You may also start an advanced similarity search for this article.