Through In Vitro Gametogenesis — Young Stem Cells
DOI:
https://doi.org/10.5281/zenodo.15873113Keywords:
Gametogenesis, In Vitro, Stem Cells, Centrioles, Reprogramming, Reproduction, RejuvenationAbstract
In vitro gametogenesis (IVG) represents a groundbreaking technology that opens new horizons in reproductive and regenerative medicine. Recent advancements enable the direct reprogramming of somatic cells into germline cells, bypassing the pluripotency stage, which reduces the risk of genetic abnormalities and accelerates the process. The key stages of IVG include the induction of primordial germ cell-like cells (PGCLCs), differentiation into mature gametes, and the formation of functional germ cells under controlled conditions. The primary signaling pathways involved in this process are BMP, WNT, and retinoic acid, which regulate initiation, proliferation, and meiotic entry. To accurately replicate the gonadal microenvironment, researchers employ 3D cultures, organoid systems, and microfluidic devices. Despite significant progress, the efficiency and quality of in vitro-derived gametes still fall short of their natural counterparts. Future developments in this technology hinge on optimizing differentiation protocols, leveraging single-cell technologies, integrating genome editing, and establishing international standards. Additionally, IVG holds promise for systemic rejuvenation by replacing aged stem cells with young ones derived from reprogrammed cells. Ethical and regulatory concerns remain pressing, particularly regarding artificial embryo creation and potential social inequalities. IVG has the potential to become a cornerstone technology in treating aging, extending healthy lifespan, addressing age-related diseases, and overcoming infertility.
References
Adashi, E. Y., Hayashi, K., & Cohen, I. G. (2023). Ethical and legal challenges in assisted same-sex conception through in vitro gametogenesis. Nature Medicine, 30(2), 322-323. https://doi.org/10.1038/s41591-023-02689-7
Anderson, C. T., & Stearns, T. (2009). Centriole age underlies asynchronous primary cilium growth in mammalian cells. Current Biology, 19(17), 1498-1502. https://doi.org/10.1016/j.cub.2009.07.034
Aphkhazava, D., Sulashvili, N., & Tkemaladze, J. (2025). Stem Cell Systems and Regeneration. Georgian Scientists, 7(1), 271–319. doi: https://doi.org/10.52340/gs.2025.07.01.26
Arquint, C., & Nigg, E. A. (2016). The PLK4-STIL-SAS-6 module at the core of centriole duplication. Biochemical Society Transactions, 44(5), 1253-1263. https://doi.org/10.1042/BST20160116
Baker, D., Hirst, A. J., Gokhale, P. J., et al. (2016). Detecting genetic mosaicism in cultures of human pluripotent stem cells. Stem Cell Reports, 7(5), 998-1012. https://doi.org/10.1016/j.stemcr.2016.10.003
Basto, R., Lau, J., Vinogradova, T., et al. (2008). Flies without centrioles. Cell, 133(5), 928-939. https://doi.org/10.1016/j.cell.2008.04.028
Batsios, P., et al. (2022). Centriolar SAS-7 acts upstream of SPD-2 to regulate centriole assembly. Journal of Cell Biology, 221(3), e202107094.
Bettencourt-Dias, M., & Glover, D. M. (2007). Centrosome biogenesis and function: centrosomics brings new understanding. Nature Reviews Molecular Cell Biology, 8(6), 451-463. https://doi.org/10.1038/nrm2180
Buganim, Y., Faddah, D. A., Cheng, A. W., et al. (2013). Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase. Cell, 150(6), 1209-1222. https://doi.org/10.1016/j.cell.2012.07.023
Carroll, M., & Mendelson, C. (2023). Stem cell-based approaches for aging intervention. Nature Aging, 3, 123-135.
Chichinadze, K. N., & Tkemaladze, D. V. (2008). Centrosomal hypothesis of cellular aging and differentiation. Advances in Gerontology= Uspekhi Gerontologii, 21(3), 367-371.
Chichinadze, K., Lazarashvili, A., & Tkemaladze, J. (2013). RNA in centrosomes: structure and possible functions. Protoplasma, 250(1), 397-405.
Chichinadze, K., Tkemaladze, D., & Lazarashvili, A. (2012). New class of RNA and centrosomal hypothesis of cell aging. Advances in Gerontology= Uspekhi Gerontologii, 25(1), 23-28.
Chichinadze, K., Tkemaladze, J., & Lazarashvili, A. (2012). A new class of RNAs and the centrosomal hypothesis of cell aging. Advances in Gerontology, 2(4), 287-291.
Chichinadze, K., Tkemaladze, J., & Lazarashvili, A. (2012). Discovery of centrosomal RNA and centrosomal hypothesis of cellular ageing and differentiation. Nucleosides, Nucleotides and Nucleic Acids, 31(3), 172-183.
Cho, I. K., & Easley, C. A. (2023). Recent Developments in In Vitro Spermatogenesis and Future Directions. Reproductive Medicine, 4(3), 215-232. https://doi.org/10.3390/reprodmed4030020
Choi, Y.J., et al. (2023). Centrosome amplification in muscle stem cells affects regenerative capacity. Cell Stem Cell, 30(2), 123-134.
Clark, A. T., Bodnar, M. S., Fox, M., et al. (2021). Spontaneous differentiation of germ cells from human embryonic stem cells in vitro. Human Molecular Genetics, 30(3-4), 220-236. https://doi.org/10.1093/hmg/ddab043
Cohen, I. G., & Adashi, E. Y. (2025). Ethical and legal implications of in vitro gametogenesis and germline editing-current status. Fertility and Sterility, 124(1), 30-36. https://doi.org/10.1016/j.fertnstert.2025.02.024
Conboy, I.M., et al. (2023). Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature, 433(7027), 760-764.
Dahl, J. A., Jung, I., Aanes, H., et al. (2016). Broad histone H3K4me3 domains in mouse oocytes modulate maternal-to-zygotic transition. Nature, 537(7621), 548-552. https://doi.org/10.1038/nature19360
De Vos, M., Grynberg, M., Ho, T. M., et al. (2021). Perspectives on the development and future of oocyte IVM in clinical practice. Journal of Assisted Reproduction and Genetics, 38(6), 1265-1280. https://doi.org/10.1007/s10815-021-02263-5
Fong, C. S., Kim, M., Yang, T. T., et al. (2016). Centrosome amplification disrupts renal development and causes cystogenesis. Journal of Cell Biology, 215(6), 767-785. https://doi.org/10.1083/jcb.201603022
Fu, J., et al. (2023). The centrosome orientation checkpoint is germline stem cell specific. Developmental Cell, 56(6), 761-774.
Hanna, J. H., Saha, K., & Jaenisch, R. (2009). Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. Cell, 143(4), 508-525. https://doi.org/10.1016/j.cell.2010.10.008
Hayashi, K., Ogushi, S., Kurimoto, K., et al. (2012). Offspring from oocytes derived from in vitro primordial germ cell-like cells in mice. Science, 338(6109), 971-975. https://doi.org/10.1126/science.1226889
Hayashi, K., Ohta, H., Kurimoto, K., et al. (2011). Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell, 146(4), 519-532. https://doi.org/10.1016/j.cell.2011.06.052
Hayashi, K., Ohta, H., Kurimoto, K., et al. (2021). Mammalian in vitro gametogenesis. Science, 374(6563), eaaz6830. https://doi.org/10.1126/science.aaz6830
Hikabe, O., Hamazaki, N., Nagamatsu, G., et al. (2016). Reconstitution in vitro of the entire cycle of the mouse female germ line. Nature, 539(7628), 299-303. https://doi.org/10.1038/nature20104
Hu, C.K., et al. (2023). Centrosome dysfunction in neural progenitor cells. Science Advances, 9(12), eabq1707.
Hyun, I., Wilkerson, A., & Johnston, J. (2016). Embryology policy: Revisit the 14-day rule. Nature, 533(7602), 169-171. https://doi.org/10.1038/533169a
Ishii, T., Pera, R. A., & Greely, H. T. (2015). Ethical and legal issues arising in research on inducing human germ cells from pluripotent stem cells. Cell Stem Cell, 13(2), 145-148. https://doi.org/10.1016/j.stem.2013.07.005
Ishikura, Y., Yabuta, Y., Ohta, H., et al. (2021). In vitro derivation and propagation of spermatogonial stem cell activity from mouse pluripotent stem cells. Cell Reports, 34(13), 108952. https://doi.org/10.1016/j.celrep.2021.108952
Jaba, T. (2022). Dasatinib and quercetin: short-term simultaneous administration yields senolytic effect in humans. Issues and Developments in Medicine and Medical Research Vol. 2, 22-31.
Kipshidze, M., & Tkemaladze, J. (2023). Comparative Analysis of drugs that improve the Quality of Life and Life Expectancy. Junior Researchers, 1(1), 184–193. doi: https://doi.org/10.52340/2023.01.01.19
Kipshidze, M., & Tkemaladze, J. (2023). The planaria Schmidtea mediterranea as a model system for the study of stem cell biology. Junior Researchers, 1(1), 194–218. doi: https://doi.org/10.52340/2023.01.01.20
Kipshidze, M., & Tkemaladze, J. (2024). Abastumani Resort: Balneological Heritage and Modern Potential. Junior Researchers, 2(2), 126–134. doi: https://doi.org/10.52340/jr.2024.02.02.12
Kipshidze, M., & Tkemaladze, J. (2024). Balneology in Georgia: traditions and modern situation. Junior Researchers, 2(2), 78–97. doi: https://doi.org/10.52340/jr.2024.02.02.09
Kipshidze, M., & Tkemaladze, J. (2024). Microelementoses - history and current status. Junior Researchers, 2(2), 108–125. doi: https://doi.org/10.52340/jr.2024.02.02.11
Kobayashi, T., Zhang, H., Tang, W. W., et al. (2017). Principles of early human development and germ cell program from conserved model systems. Nature, 546(7658), 416-420. https://doi.org/10.1038/nature22812
Lancaster, M.A., & Knoblich, J.A. (2022). Organogenesis in a dish: Modeling development and disease using organoid technologies. Science, 345(6194), 1247125.
Lechler, T., & Fuchs, E. (2022). Centrosome position and function in epithelial cells. Journal of Cell Biology, 170(5), 749-759.
Lezhava, T., Monaselidze, J., Jokhadze, T., Kakauridze, N., Khodeli, N., Rogava, M., Tkemaladze, J., ... & Gaiozishvili, M. (2011). Gerontology research in Georgia. Biogerontology, 12, 87-91. doi: 10.1007/s10522-010-9283-6. Epub 2010 May 18. PMID: 20480236; PMCID: PMC3063552
Loncarek, J., & Bettencourt-Dias, M. (2018). Building the right centriole for each cell type. Journal of Cell Biology, 217(3), 823-835. https://doi.org/10.1083/jcb.201704093
Loncarek, J., & Khodjakov, A. (2009). Ab ovo or de novo? Mechanisms of centriole duplication. Molecular Cells, 27(2), 135-142. https://doi.org/10.1007/s10059-009-0017-z
Loncarek, J., & Khodjakov, A. (2022). Centriole duplication: A lesson in self-control. Cell Cycle, 8(14), 2177-2182.
Mallapaty, S. (2024). Lab-grown embryo models: UK unveils first ever rules to guide research. Nature, 631(8020), 259-260. https://doi.org/10.1038/d41586-024-02089-y
Marteil, G., et al. (2022). Over-elongation of centrioles in cancer promotes centriole amplification. Nature Communications, 10, 1260.
Mathews, D. J., Donovan, P. J., Harris, J., et al. (2017). Pluripotent stem cell-derived gametes: truth and (potential) consequences. Cell Stem Cell, 5(1), 11-14. https://doi.org/10.1016/j.stem.2009.06.005
Matsaberidze, M., Prangishvili, A., Gasitashvili, Z., Chichinadze, K., & Tkemaladze, J. (2017). TO TOPOLOGY OF ANTI-TERRORIST AND ANTI-CRIMINAL TECHNOLOGY FOR EDUCATIONAL PROGRAMS. International Journal of Terrorism & Political Hot Spots, 12.
Murakami, K., Hamazaki, N., Hamada, N., et al. (2021). Generation of functional oocytes from male mice in vitro. Nature, 601(7893), 440-444. https://doi.org/10.1038/s41586-021-04267-8
Nigg, E. A., & Holland, A. J. (2018). Once and only once: mechanisms of centriole duplication and their deregulation in disease. Nature Reviews Molecular Cell Biology, 19(5), 297-312. https://doi.org/10.1038/nrm.2017.127
Notini, L., Gyngell, C., & Savulescu, J. (2020). Drawing the line on in vitro gametogenesis. Bioethics, 34(1), 123-134. https://doi.org/10.1111/bioe.12679
Osman-Gani, A. M., & Chan, T. H. (2025). Ethical, Legal and Social Issues in Utilizing In Vitro Gametogenesis (IVG) and Stem Cell-Based Embryo Models (SCBEMs) for Human Reproduction in Singapore. Health Care Analysis. https://doi.org/10.1007/s10728-025-00521-6
Pellman, D., et al. (2021). Centrosomes, chromosome instability (CIN) and aneuploidy. Current Opinion in Cell Biology, 44, 52-58.
Prangishvili, A., Gasitashvili, Z., Matsaberidze, M., Chkhartishvili, L., Chichinadze, K., Tkemaladze, J., ... & Azmaiparashvili, Z. (2019). SYSTEM COMPONENTS OF HEALTH AND INNOVATION FOR THE ORGANIZATION OF NANO-BIOMEDIC ECOSYSTEM TECHNOLOGICAL PLATFORM. Current Politics and Economics of Russia, Eastern and Central Europe, 34(2/3), 299-305.
Prosser, S.L., & Pelletier, L. (2023). Centriole assembly: The origin of nine symmetry. Current Opinion in Structural Biology, 66, 22-29.
Romualdez-Tan M. V. (2023). Modelling in vitro gametogenesis using induced pluripotent stem cells: a review. Cell regeneration (London, England), 12(1), 33. https://doi.org/10.1186/s13619-023-00176-5
Saitou, M., & Hayashi, K. (2022). Mammalian in vitro gametogenesis. Science, 376(6592), 328-333. https://doi.org/10.1126/science.abo1810
Saitou, M., & Hayashi, K. (2023). Mammalian in vitro gametogenesis. Science, 380(6642), 328-333.
Saitou, M., & Miyauchi, H. (2016). Gametogenesis from pluripotent stem cells. Cell Stem Cell, 18(6), 721-735. https://doi.org/10.1016/j.stem.2016.05.001
Saitou, M., & Yamaji, M. (2012). Primordial germ cells in mice. Cold Spring Harbor Perspectives in Biology, 4(11), a008375. https://doi.org/10.1101/cshperspect.a008375
Sugimoto, M., Kondo, M., Koga, Y., et al. (2015). Reproduction of the mouse germ cell specification pathway in culture by pluripotent stem cells. Development, 142(1), 115-123. https://doi.org/10.1242/dev.115659
Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663-676. https://doi.org/10.1016/j.cell.2006.07.024
Tkemaladze, J. (2023). Cross-senolytic effects of dasatinib and quercetin in humans. Georgian Scientists, 5(3), 138–152. doi: https://doi.org/10.52340/2023.05.03.15
Tkemaladze, J. (2023). Is the selective accumulation of oldest centrioles in stem cells the main cause of organism ageing?. Georgian Scientists, 5(3), 216–235. doi: https://doi.org/10.52340/2023.05.03.22
Tkemaladze, J. (2023). Long-Term Differences between Regenerations of Head and Tail Fragments in Schmidtea Mediterranea Ciw4. Available at SSRN 4257823.
Tkemaladze, J. (2023). Reduction, proliferation, and differentiation defects of stem cells over time: a consequence of selective accumulation of old centrioles in the stem cells?. Molecular Biology Reports, 50(3), 2751-2761.
Tkemaladze, J. (2023). Structure and possible functions of centriolar RNA with reference to the centriolar hypothesis of differentiation and replicative senescence. Junior Researchers, 1(1), 156–170. doi: https://doi.org/10.52340/2023.01.01.17
Tkemaladze, J. (2023). The centriolar hypothesis of differentiation and replicative senescence. Junior Researchers, 1(1), 123–141. doi: https://doi.org/10.52340/2023.01.01.15
Tkemaladze, J. (2024). Absence of centrioles and regenerative potential of planaria. Georgian Scientists, 6(4), 59–75. doi: https://doi.org/10.52340/gs.2024.06.04.08
Tkemaladze, J. (2024). Cell center and the problem of accumulation of oldest centrioles in stem cells. Georgian Scientists, 6(2), 304–322. doi: https://doi.org/10.52340/gs.2024.06.02.32
Tkemaladze, J. (2024). Editorial: Molecular mechanism of ageing and therapeutic advances through targeting glycative and oxidative stress. Front Pharmacol. 2024 Mar 6;14:1324446. doi: 10.3389/fphar.2023.1324446. PMID: 38510429; PMCID: PMC10953819.
Tkemaladze, J. (2024). Elimination of centrioles. Georgian Scientists, 6(4), 291–307. doi: https://doi.org/10.52340/gs.2024.06.04.25
Tkemaladze, J. (2024). Main causes of intelligence decrease and prospects for treatment. Georgian Scientists, 6(2), 425–432. doi: https://doi.org/10.52340/gs.2024.06.02.44
Tkemaladze, J. (2024). The rate of stem cell division decreases with age. Georgian Scientists, 6(4), 228–242. doi: https://doi.org/10.52340/gs.2024.06.04.21
Tkemaladze, J. (2025). A Universal Approach to Curing All Diseases: From Theoretical Foundations to the Prospects of Applying Modern Biotechnologies in Future Medicine. doi: http://dx.doi.org/10.13140/RG.2.2.24481.11366
Tkemaladze, J. (2025). Adaptive Systems and World Models. doi: http://dx.doi.org/10.13140/RG.2.2.13617.90720
Tkemaladze, J. (2025). Aging Model - Drosophila Melanogaster. doi: http://dx.doi.org/10.13140/RG.2.2.16706.49607
Tkemaladze, J. (2025). Allotransplantation Between Adult Drosophila of Different Ages and Sexes. doi: http://dx.doi.org/10.13140/RG.2.2.27711.62884
Tkemaladze, J. (2025). Anti-Blastomic Substances in the Blood Plasma of Schizophrenia Patients. doi: http://dx.doi.org/10.13140/RG.2.2.12721.08807
Tkemaladze, J. (2025). Centriole Elimination as a Mechanism for Restoring Cellular Order. doi: http://dx.doi.org/10.13140/RG.2.2.12890.66248/1
Tkemaladze, J. (2025). Hypotheses on the Role of Centrioles in Aging Processes. doi: http://dx.doi.org/10.13140/RG.2.2.15014.02887/1
Tkemaladze, J. (2025). Limits of Cellular Division: The Hayflick Phenomenon. doi: http://dx.doi.org/10.13140/RG.2.2.25803.30249
Tkemaladze, J. (2025). Molecular Mechanisms of Aging and Modern Life Extension Strategies: From Antiquity to Mars Colonization. doi: http://dx.doi.org/10.13140/RG.2.2.13208.51204
Tkemaladze, J. (2025). Pathways of Somatic Cell Specialization in Multicellular Organisms. doi: http://dx.doi.org/10.13140/RG.2.2.23348.97929/1
Tkemaladze, J. (2025). Strategic Importance of the Caucasian Bridge and Global Power Rivalries. doi: http://dx.doi.org/10.13140/RG.2.2.19153.03680
Tkemaladze, J. (2025). Structure, Formation, and Functional Significance of Centrioles in Cellular Biology. doi: http://dx.doi.org/10.13140/RG.2.2.27441.70245/1
Tkemaladze, J. (2025). The Epistemological Reconfiguration and Transubstantial Reinterpretation of Eucharistic Practices Established by the Divine Figure of Jesus Christ in Relation to Theological Paradigms. doi: http://dx.doi.org/10.13140/RG.2.2.28347.73769/1
Tkemaladze, J. (2025). Transforming the psyche with phoneme frequencies "Habere aliam linguam est possidere secundam animam". doi: http://dx.doi.org/10.13140/RG.2.2.16105.61286
Tkemaladze, J. (2025). Uneven Centrosome Inheritance and Its Impact on Cell Fate. doi: http://dx.doi.org/10.13140/RG.2.2.34917.31206
Tkemaladze, J. (2025). Ze World Model with Predicate Actualization and Filtering. doi: http://dx.doi.org/10.13140/RG.2.2.15218.62407
Tkemaladze, J. (2025). Ze метод создания пластичного счетчика хронотропных частот чисел бесконечного потока информации. doi: http://dx.doi.org/10.13140/RG.2.2.29162.43207
Tkemaladze, J. (2025). Adaptive Cognitive System Ze. Longevity Horizon, 1(3). doi: https://doi.org/10.5281/zenodo.15309162
Tkemaladze, J. (2025). Aging Model Based on Drosophila melanogaster: Mechanisms and Perspectives. Longevity Horizon, 1(3). doi: https://doi.org/10.5281/zenodo.14955643
Tkemaladze, J. (2025). Anatomy, Biogenesis, and Role in Cell Biology of Centrioles. Longevity Horizon, 1(2). doi: https://doi.org/10.5281/zenodo.14742232
Tkemaladze, J. (2025). Anti-Blastomic Substances in the Plasma of Schizophrenia Patients: A Dual Role of Complement C4 in Synaptic Pruning and Tumor Suppression. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.15042448
Tkemaladze, J. (2025). Asymmetry in the Inheritance of Centrosomes / Centrioles and Its Consequences. Longevity Horizon, 1(2). doi: https://doi.org/10.5281/zenodo.14837352
Tkemaladze, J. (2025). Centriole Elimination: A Mechanism for Resetting Entropy in the Cell. Longevity Horizon, 1(2). doi: https://doi.org/10.5281/zenodo.14876013
Tkemaladze, J. (2025). Concept to The Alive Language. Longevity Horizon, 1(1). doi: https://doi.org/10.5281/zenodo.14688792
Tkemaladze, J. (2025). Concept to The Caucasian Bridge. Longevity Horizon, 1(1). doi: https://doi.org/10.5281/zenodo.14689276
Tkemaladze, J. (2025). Concept to The Curing All Diseases. Longevity Horizon, 1(1). doi: https://doi.org/10.5281/zenodo.14676208
Tkemaladze, J. (2025). Concept to The Eternal Youth. Longevity Horizon, 1(1). doi: https://doi.org/10.5281/zenodo.14681902
Tkemaladze, J. (2025). Concept to The Food Security. Longevity Horizon, 1(1). doi: https://doi.org/10.5281/zenodo.14642407
Tkemaladze, J. (2025). Concept to the Living Space. Longevity Horizon, 1(1). doi: https://doi.org/10.5281/zenodo.14635991
Tkemaladze, J. (2025). Concept to The Restoring Dogmas. Longevity Horizon, 1(1). doi: https://doi.org/10.5281/zenodo.14708980
Tkemaladze, J. (2025). Differentiation of Somatic Cells in Multicellular Organisms. Longevity Horizon, 1(2). doi: https://doi.org/10.5281/10.5281/zenodo.14778927
Tkemaladze, J. (2025). Long-Lived Non-Renewable Structures in the Human Body. doi: http://dx.doi.org/10.13140/RG.2.2.14826.43206
Tkemaladze, J. (2025). Mechanisms of Learning Through the Actualization of Discrepancies. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.15200612
Tkemaladze, J. (2025). Memorizing an Infinite Stream of Information in a Limited Memory Space: The Ze Method of a Plastic Counter of Chronotropic Number Frequencies. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.15170931
Tkemaladze, J. (2025). Molecular Insights and Radical Longevity from Ancient Elixirs to Mars Colonies. Longevity Horizon, 1(2). doi: https://doi.org/10.5281/zenodo.14895222
Tkemaladze, J. (2025). Ontogenetic Permanence of Non-Renewable Biomechanical Configurations in Homo Sapiens Anatomy. Longevity Horizon, 1(3). doi : https://doi.org/10.5281/zenodo.15086387
Tkemaladze, J. (2025). Protocol for Transplantation of Healthy Cells Between Adult Drosophila of Different Ages and Sexes. Longevity Horizon, 1(2). doi: https://doi.org/10.5281/zenodo.14889948
Tkemaladze, J. (2025). Replicative Hayflick Limit. Longevity Horizon, 1(2). doi: https://doi.org/10.5281/zenodo.14752664
Tkemaladze, J. (2025). Solutions to the Living Space Problem to Overcome the Fear of Resurrection from the Dead. doi: http://dx.doi.org/10.13140/RG.2.2.34655.57768
Tkemaladze, J. (2025). Systemic Resilience and Sustainable Nutritional Paradigms in Anthropogenic Ecosystems. doi: http://dx.doi.org/10.13140/RG.2.2.18943.32169/1
Tkemaladze, J. (2025). The Centriolar Theory of Differentiation Explains the Biological Meaning of the Centriolar Theory of Organismal Aging. Longevity Horizon, 1(3). doi:https://doi.org/10.5281/zenodo.14897688
Tkemaladze, J. (2025). The Concept of Data-Driven Automated Governance. Georgian Scientists, 6(4), 399–410. doi: https://doi.org/10.52340/gs.2024.06.04.38
Tkemaladze, J. (2025). Гаметогенез In Vitro: современное состояние, технологии и перспективы применения. Research Gate. http://dx.doi.org/10.13140/RG.2.2.28647.36000
Tkemaladze, J. (2025).Achieving Perpetual Vitality Through Innovation. doi: http://dx.doi.org/10.13140/RG.2.2.31113.35685
Tkemaladze, J. V., & Chichinadze, K. N. (2005). Centriolar mechanisms of differentiation and replicative aging of higher animal cells. Biochemistry (Moscow), 70, 1288-1303.
Tkemaladze, J., & Apkhazava, D. (2019). Dasatinib and quercetin: short-term simultaneous administration improves physical capacity in human. J Biomedical Sci, 8(3), 3.
Tkemaladze, J., & Chichinadze, K. (2005). Potential role of centrioles in determining the morphogenetic status of animal somatic cells. Cell biology international, 29(5), 370-374.
Tkemaladze, J., & Chichinadze, K. (2010). Centriole, differentiation, and senescence. Rejuvenation research, 13(2-3), 339-342.
Tkemaladze, J., & Samanishvili, T. (2024). Mineral ice cream improves recovery of muscle functions after exercise. Georgian Scientists, 6(2), 36–50. doi: https://doi.org/10.52340/gs.2024.06.02.04
Tkemaladze, J., Tavartkiladze, A., & Chichinadze, K. (2012). Programming and Implementation of Age-Related Changes. In Senescence. IntechOpen.
Tkemaladze, Jaba and Kipshidze, Mariam, Regeneration Potential of the Schmidtea Mediterranea CIW4 Planarian. Available at SSRN: https://ssrn.com/abstract=4633202 or http://dx.doi.org/10.2139/ssrn.4633202
Vertii, A., et al. (2022). The centrosome undergoes Plk1-independent interphase maturation during mitosis. Nature Communications, 13, 545.
von Kopylow, K., Schulze, W., Salzbrunn, A., et al. (2020). Dynamics of spermatogonial stem cell markers in human testicular ex vivo cultures reveals novel aspects of germ cell tumorigenesis. Cell Death & Disease, 11(3), 1-15. https://doi.org/10.1038/s41419-020-2418-z
Wang, L., et al. (2023). Centrosome dysfunction in stem cell aging. Cell Reports, 34(13), 108952.
Wang, L., Zhang, J., Duan, J., et al. (2020). Programming and inheritance of parental DNA methylomes in mammals. Cell, 157(4), 979-991. https://doi.org/10.1016/j.cell.2014.04.017
Wesevich, V. G., Arkfeld, C., & Seifer, D. B. (2023). In Vitro Gametogenesis in Oncofertility: A Review of Its Potential Use and Present-Day Challenges in Moving toward Fertility Preservation and Restoration. Journal of clinical medicine, 12(9), 3305. https://doi.org/10.3390/jcm12093305
Wong, Y. L., Anzola, J. V., Davis, R. L., et al. (2015). Cell biology. Reversible centriole depletion with an inhibitor of Polo-like kinase 4. Science, 348(6239), 1155-1160. https://doi.org/10.1126/science.aaa5111
Yamashiro, C., Hirota, T., Kurimoto, K., et al. (2020). In vitro expansion of human primordial germ cell-like cells for reproductive medicine. Nature Protocols, 15(10), 3180-3205. https://doi.org/10.1038/s41596-020-0369-6
Yamashiro, C., Sasaki, K., Yabuta, Y., et al. (2018). Generation of human oogonia from induced pluripotent stem cells in vitro. Science, 362(6412), 356-360. https://doi.org/10.1126/science.aat1674
Yoshida, S., et al. (2023). The role of centrioles in spermatogenesis. Development, 150(4), dev201387.
Yoshimatsu, S., Kisu, I., Qian, E., & Noce, T. (2022). A New Horizon in Reproductive Research with Pluripotent Stem Cells: Successful In Vitro Gametogenesis in Rodents, Its Application to Large Animals, and Future In Vitro Reconstitution of Reproductive Organs Such as “Uteroid” and “Oviductoid”. Biology, 11(7), 987. https://doi.org/10.3390/biology11070987
Yoshino, T., Suzuki, T., Nagamatsu, G., et al. (2021). Generation of ovarian follicles from mouse pluripotent stem cells. Science, 373(6552), 1-10. https://doi.org/10.1126/science.abe0237
Прангишвили, А. И., Гаситашвили, З. А., Мацаберидзе, М. И., Чичинадзе, К. Н., Ткемаладзе, Д. В., & Азмайпарашвили, З. А. (2017). К топологии антитеррористических и антикриминальных технологии для образовательных программ. В научном издании представлены материалы Десятой международной научно-технической конфе-ренции «Управление развитием крупномасштабных систем (MLSD’2016)» по следующим направле-ниям:• Проблемы управления развитием крупномасштабных систем, включая ТНК, Госхолдин-ги и Гос-корпорации., 284.
Прангишвили, А. И., Гаситашвили, З. А., Мацаберидзе, М. И., Чхартишвили, Л. С., Чичинадзе, К. Н., & Ткемаладзе, Д. В. (2017). & Азмайпарашвили, ЗА (2017). Системные составляющие здравоохранения и инноваций для организации европейской нано-биомедицинской екосистемной технологической платформы. Управление развитием крупномасштабных систем MLSD, 365-368.
Ткемаладзе, Д. В., & Чичинадзе, К. Н. (2005). Центриолярные механизмы дифференцировки и репликативного старения клеток высших животных. Биохимия, 70(11), 1566-1584.
Ткемаладзе, Д., Цомаиа, Г., & Жоржолиани, И. (2001). Создание искусственных самоадаптирующихся систем на основе Теории Прогноза. Искусственный интеллект. УДК 004.89. Искусственный интеллект. УДК 004.89.
Чичинадзе, К. Н., & Ткемаладзе, Д. В. (2008). Центросомная гипотеза клеточного старения и дифференциации. Успехи геронтологии, 21(3), 367-371.
Чичинадзе, К., Ткемаладзе, Д., & Лазарашвили, А. (2012). Новый класс рнк и центросомная гипотеза старения клеток. Успехи геронтологии, 25(1), 23-28.
