Interference is Controlled by Prediction
DOI:
https://doi.org/10.65649/pt1hx971Keywords:
Interference, Complementarity, Delayed-Choice Experiments, Which-Path Information, PredictabilityAbstract
Interference phenomena are commonly understood as consequences of path indistinguishability and coherence constrained by the availability of which-path information. While delayed-choice and quantum eraser experiments have demonstrated that interference can be restored or suppressed depending on measurement context, such effects are typically implemented through discrete, externally imposed experimental configurations. In this work, propose a delayed-choice interferometric scheme in which interference visibility is regulated adaptively via predictive estimates of informational accessibility. The proposed architecture introduces an operational measure of predictability derived from ensemble-level intensity statistics, which is used to control downstream interferometric elements after the system has traversed the interferometer. This design preserves the delayed-choice character of the experiment while avoiding any modification of standard quantum mechanical formalism or assumptions of retrocausality. Predictability is treated as an informational control parameter rather than as an intrinsic property of the system’s past evolution. The scheme builds upon established complementarity relations and information-theoretic approaches to coherence and decoherence, extending them toward adaptive, feedback-based control of interference. The proposal is experimentally accessible using classical or semi-classical optical components and does not rely on single-particle detection. By reframing interference as a dynamically regulated informational regime, the work provides a bridge between foundational concepts of quantum measurement and practical architectures for coherence control.
References
Aharonov, Y., Albert, D. Z., & Vaidman, L. (1988). How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Physical Review Letters, 60(14), 1351–1354. https://doi.org/10.1103/PhysRevLett.60.1351
Aspect, A., Grangier, P., & Roger, G. (1982). Experimental realization of Einstein-Podolsky-Rosen-Bohm gedankenexperiment: A new violation of Bell's inequalities. Physical Review Letters, 49(2), 91–94. https://doi.org/10.1103/PhysRevLett.49.91
Ballentine, L. E. (1970). The statistical interpretation of quantum mechanics. Reviews of Modern Physics, 42(4), 358–381. https://doi.org/10.1103/RevModPhys.42.358
Baumgratz, T., Cramer, M., & Plenio, M. B. (2014). Quantifying coherence. Physical Review Letters, 113(14), 140401. https://doi.org/10.1103/PhysRevLett.113.140401
Bohr, N. (1928). The quantum postulate and the recent development of atomic theory. Nature, 121(3050), 580–590.
Bridgman, P. W. (1927). The logic of modern physics. Macmillan.
Brukner, Č. (2014). Quantum causality. Nature Physics, 10(4), 259–263. https://doi.org/10.1038/nphys2930
Brukner, Č., & Zeilinger, A. (2009). Information invariance and quantum probabilities. Foundations of Physics, 39(7), 677–689. https://doi.org/10.1007/s10701-009-9316-7
Chiribella, G., D’Ariano, G. M., & Perinotti, P. (2008). Quantum circuit architecture. Physical Review Letters, 101(6), 060401. https://doi.org/10.1103/PhysRevLett.101.060401
Chiribella, G., D’Ariano, G. M., & Perinotti, P. (2011). Informational derivation of quantum theory. Physical Review A, 84(1), 012311. https://doi.org/10.1103/PhysRevA.84.012311
Coles, P. J., Berta, M., Tomamichel, M., & Wehner, S. (2017). Entropic uncertainty relations and their applications. Reviews of Modern Physics, 89(1), 015002. https://doi.org/10.1103/RevModPhys.89.015002
Davies, E. B., & Lewis, J. T. (1970). An operational approach to quantum probability. Communications in Mathematical Physics, 17(3), 239–260. https://doi.org/10.1007/BF01647093
Degen, C. L., Reinhard, F., & Cappellaro, P. (2017). Quantum sensing. Reviews of Modern Physics, 89(3), 035002. https://doi.org/10.1103/RevModPhys.89.035002
Dong, D., & Petersen, I.R. (2009). Quantum control theory and applications: A survey. ArXiv, abs/0910.2350.
Dürr, S., Nonn, T., & Rempe, G. (1998). Origin of quantum-mechanical complementarity probed by a ‘which-way’ experiment in an atom interferometer. Nature, 395(6697), 33–37. https://doi.org/10.1038/25653
Eibenberger, S., Gerlich, S., Arndt, M., Mayor, M., & Tüxen, J. (2013). Matter-wave interference of particles selected from a molecular library with masses exceeding 10 000 amu. Physical Chemistry Chemical Physics, 15(35), 14696–14700. https://doi.org/10.1039/c3cp51500a
Englert, B.-G. (1996). Fringe visibility and which-way information: An inequality. Physical Review Letters, 77(11), 2154–2157. https://doi.org/10.1103/PhysRevLett.77.2154
Englert, B., Kaszlikowski, D., Kwek, L.C., & Chee, W.H. (2007). WAVE-PARTICLE DUALITY IN MULTI-PATH INTERFEROMETERS: GENERAL CONCEPTS AND THREE-PATH INTERFEROMETERS. International Journal of Quantum Information, 06, 129-157.
Feynman, R. P., Leighton, R. B., & Sands, M. (1965). The Feynman lectures on physics, Vol. 3. Addison-Wesley.
Gell-Mann, M., & Hartle, J. B. (1990). Quantum mechanics in the light of quantum cosmology. In Complexity, entropy, and the physics of information (pp. 425-458). CRC Press.
Giovannetti, V., Lloyd, S., & Maccone, L. (2006). Quantum metrology. Physical Review Letters, 96(1), 010401. https://doi.org/10.1103/PhysRevLett.96.010401
Grangier, P., Roger, G., & Aspect, A. (1986). Experimental evidence for a photon anticorrelation effect on a beam splitter: A new light on single-photon interferences. Europhysics Letters, 1(4), 173–179. https://doi.org/10.1209/0295-5075/1/4/004
Greenberger, D. M., & Yasin, A. (1988). Simultaneous wave and particle knowledge in a neutron interferometer. Physics Letters A, 128(8), 391–394. https://doi.org/10.1016/0375-9601(88)90114-4
Hardy, L. (2001). Quantum theory from five reasonable axioms. arXiv preprint quant-ph/0101012.
Harris, N., Bunandar, D., Pant, M., Steinbrecher, G., Mower, J., Prabhu, M., Baehr-Jones, T., Hochberg, M. & Englund, D. (2016). Large-scale quantum photonic circuits in silicon. Nanophotonics, 5(3), 456-468. https://doi.org/10.1515/nanoph-2015-0146
Jaba, T. (2022). Dasatinib and quercetin: short-term simultaneous administration yields senolytic effect in humans. Issues and Developments in Medicine and Medical Research Vol. 2, 22-31.
Jacques, V., Wu, E., Grosshans, F., Treussart, F., Grangier, P., Aspect, A., & Roch, J.-F. (2007). Experimental realization of Wheeler's delayed-choice gedanken experiment. Science, 315(5814), 966–968. https://doi.org/10.1126/science.1136303
Jacques, V., Wu, E., Grosshans, F., Treussart, F., Grangier, P., Aspect, A., & Roch, J.-F. (2008). Delayed-choice test of quantum complementarity with interfering single photons. Physical Review A, 77(4), 042325.
Kim, Y.-H., Yu, R., Kulik, S. P., Shih, Y., & Scully, M. O. (2000). Delayed "choice" quantum eraser. Physical Review Letters, 84(1), 1–5. https://doi.org/10.1103/PhysRevLett.84.1
Lloyd, S. (2000). Ultimate physical limits to computation. Nature, 406(6799), 1047–1054. https://doi.org/10.1038/35023282
Lloyd, S. (2008). Enhanced sensitivity of photodetection via quantum illumination. Science, 321(5895), 1463–1465. https://doi.org/10.1126/science.1160627
Lostaglio, M., Jennings, D., & Rudolph, T. (2015). Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nature Communications, 6, 6383. https://doi.org/10.1038/ncomms7383
Ma, X.-S., Kofler, J., & Zeilinger, A. (2016). Delayed-choice gedanken experiments and their realizations. Reviews of Modern Physics, 88(1), 015005. https://doi.org/10.1103/RevModPhys.88.015005
Mandel, L. (1999). Quantum effects in one-photon and two-photon interference. Reviews of Modern Physics, 71(2), S274–S282. https://doi.org/10.1103/RevModPhys.71.S274
Mandel, L., & Wolf, E. (1995). Optical coherence and quantum optics. Cambridge University Press.
Nielsen, M. A., & Chuang, I. L. (2010). Quantum computation and quantum information: 10th anniversary edition. Cambridge University Press.
Pernice, W. H., Schuck, C., Minaeva, O., Li, M., Goltsman, G. N., Sergienko, A. V., & Tang, H. X. (2012). High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nature Communications, 3, 1325. https://doi.org/10.1038/ncomms2307
Pittman, T. B., Shih, Y. H., Strekalov, D. V., & Sergienko, A. V. (1995). Optical imaging by means of two-photon quantum entanglement. Physical Review A, 52(5), R3429–R3432. https://doi.org/10.1103/PhysRevA.52.R3429
Rovelli, C. (1996). Relational quantum mechanics. International Journal of Theoretical Physics, 35(8), 1637–1678. https://doi.org/10.1007/BF02302261
Salart, D., Baas, A., Branciard, C., Gisin, N., & Zbinden, H. (2008). Testing the speed of 'spooky action at a distance'. Nature, 454(7206), 861–864. https://doi.org/10.1038/nature07121
Schlosshauer, M. (2005). Decoherence, the measurement problem, and interpretations of quantum mechanics. Reviews of Modern Physics, 76(4), 1267–1305. https://doi.org/10.1103/RevModPhys.76.1267
Scully, M. O., & Drühl, K. (1982). Quantum eraser: A proposed photon correlation experiment concerning observation and "delayed choice" in quantum mechanics. Physical Review A, 25(4), 2208–2213. https://doi.org/10.1103/PhysRevA.25.2208
Scully, M. O., Englert, B.-G., & Walther, H. (1991). Quantum optical tests of complementarity. Nature, 351(6322), 111–116. https://doi.org/10.1038/351111a0
Tkemaladze, J. (2026). Ze System Manifesto. Longevity Horizon, 2(1). DOI : https://doi.org/10.65649/3hm9b025
Tkemaladze, J. (2023). Reduction, proliferation, and differentiation defects of stem cells over time: a consequence of selective accumulation of old centrioles in the stem cells?. Molecular Biology Reports, 50(3), 2751-2761. DOI : https://pubmed.ncbi.nlm.nih.gov/36583780/
Tkemaladze, J. (2026). Old Centrioles Make Old Bodies. Annals of Rejuvenation Science, 1(1). DOI : https://doi.org/10.65649/yx9sn772
Tkemaladze, J. (2026). Visions of the Future. Longevity Horizon, 2(1). DOI : https://doi.org/10.65649/8be27s21
Tkemaladze, J. (2024). Editorial: Molecular mechanism of ageing and therapeutic advances through targeting glycative and oxidative stress. Front Pharmacol. 2024 Mar 6;14:1324446. DOI : 10.3389/fphar.2023.1324446. PMID: 38510429; PMCID: PMC10953819.
von Neumann, J. (1932). Mathematical foundations of quantum mechanics. Princeton University Press.
Walborn, S. P., Terra Cunha, M. O., Pádua, S., & Monken, C. H. (2002). Double-slit quantum eraser. Physical Review A, 65(3), 033818. https://doi.org/10.1103/PhysRevA.65.033818
Wheeler, J. A. (1978). The "past" and the "delayed-choice" double-slit experiment. In A.R. Marlow (Ed.), Mathematical foundations of quantum theory (pp. 9–48). Academic Press.
Williams, N. S., & Jordan, A. N. (2008). Weak values and the Leggett-Garg inequality in solid-state qubits. Physical Review Letters, 100(2), 026804. https://doi.org/10.1103/PhysRevLett.100.026804
Wiseman, H. M., & Milburn, G. J. (2009). Quantum measurement and control. Cambridge University Press.
Zeilinger, A. (1999). A foundational principle for quantum mechanics. Foundations of Physics, 29(4), 631–643. https://doi.org/10.1023/A:1018820410908
Zurek, W. H. (2003). Decoherence, einselection, and the quantum origins of the classical. Reviews of Modern Physics, 75(3), 715–775. https://doi.org/10.1103/RevModPhys.75.715
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Jaba Tkemaladze (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
