Different Molecular Pathways of Cardiovascular Aging

Main Article Content

Mariam Beriashvili

Abstract

Aging is an inevitable process that affects every living organism. It is a bodys response to a variety of stressors and is connected to many chronic diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), cardiovascular disease…  The aim of this review was to further comprehend the mechanisms of aging process and its effect on cardiovascular system. For collecting sufficient data, different scientific databases were used. In the end, there is no exact conclusion of exactly what causes aging, instead we have different theories of its molecular origins such as: oxidative stress, general wear-and-tear and genetic instability, mitochondrial genome damage, telomere shortening, genetic aging programs… Aging process, especially oxidative stress plays a major role in the pathophysiology of cardiomyocyte senescence. Biological compounds like MicroRNAs, SIR1 gene, NF-κB and IL-4, P66Shc, AMP-activated kinase (AMPK) has also been shown to participate or conduct molecular pathways that take part in aging process as well.

Article Details

Section

Reviews and Perspectives

Author Biography

Mariam Beriashvili, Student at Tbilisi State Medical University

Mariam Beriashvili is affiliated with Tbilisi State Medical University (TSMU) in Tbilisi, Georgia. She has contributed to research in ,education, healthcare, biochemistry, and molecular biology.

How to Cite

Beriashvili, M. (2025). Different Molecular Pathways of Cardiovascular Aging. Longevity Horizon, 1(3). DOI:https://doi.org/10.5281/zenodo.15059301

References

1. Bink DI, Pauli J, Maegdefessel L, Boon RA. Endothelial microRNAs and long noncoding RNAs in cardiovascular ageing. Atherosclerosis. 2023 Jun;374:99-106. doi: 10.1016/j.atherosclerosis.2023.03.019. Epub 2023 Apr 5. PMID: 37059656.

2. Blagosklonny MV. No limit to maximal lifespan in humans: how to beat a 122-year-old record. Oncoscience. 2021 Dec 1;8:110-119. doi: 10.18632/oncoscience.547. PMID: 34869788; PMCID: PMC8636159.

3. Dellago H, Preschitz-Kammerhofer B, Terlecki-Zaniewicz L, Schreiner C, Fortschegger K, Chang MW, Hackl M, Monteforte R, Kühnel H, Schosserer M, Gruber F, Tschachler E, Scheideler M, Grillari-Voglauer R, Grillari J, Wieser M. High levels of oncomiR-21 contribute to the senescence-induced growth arrest in normal human cells and its knock-down increases the replicative lifespan. Aging Cell. 2013 Jun;12(3):446-58. doi: 10.1111/acel.12069. Epub 2013 Apr 19. PMID: 23496142; PMCID: PMC3864473.

4. Ellahi A, Rine J. Evolution and Functional Trajectory of Sir1 in Gene Silencing. Mol Cell Biol. 2016 Jan 25;36(7):1164-79. doi: 10.1128/MCB.01013-15. PMID: 26811328; PMCID: PMC4800792.

5. Francia P, delli Gatti C, Bachschmid M, Martin-Padura I, Savoia C, Migliaccio E, Pelicci PG, Schiavoni M, Lüscher TF, Volpe M, Cosentino F. Deletion of p66shc gene protects against age-related endothelial dysfunction. Circulation. 2004 Nov 2;110(18):2889-95. doi: 10.1161/01.CIR.0000147731.24444.4D. Epub 2004 Oct 25. PMID: 15505103.

6. Gilbert SF. Developmental Biology. 6th edition. Sunderland (MA): Sinauer Associates; 2000. Aging: The Biology of Senescence. Available from: https://www.ncbi.nlm.nih.gov/books/NBK10041/

7. Guo J, Huang X, Dou L, Yan M, Shen T, Tang W, Li J. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal Transduct Target Ther. 2022 Dec 16;7(1):391. doi: 10.1038/s41392-022-01251-0. PMID: 36522308; PMCID: PMC9755275.

8. Hirschhäuser C, Sydykov A, Wolf A, Esfandiary A, Bornbaum J, Kutsche HS, Boengler K, Sommer N, Schreckenberg R, Schlüter KD, Weissmann N, Schermuly R, Schulz R. Lack of Contribution of p66shc to Pressure Overload-Induced Right Heart Hypertrophy. Int J Mol Sci. 2020 Dec 8;21(24):9339. doi: 10.3390/ijms21249339. PMID: 33302436; PMCID: PMC7762598.

9. Kumar S. P66Shc and vascular endothelial function. Biosci Rep. 2019 Apr 30;39(4):BSR20182134. doi: 10.1042/BSR20182134. PMID: 30918103; PMCID: PMC6488855.

10. Lakatta, E.G.; Levy, D. Arterial and cardiac aging: Major shareholders in cardiovascular disease enterprises: Part II: The aging heart in health: Links to heart disease. Circulation 2003, 107, 346–354

11. Lee CK, Klopp RG, Weindruch R, Prolla TA. Gene expression profile of aging and its retardation by caloric restriction. Science. 1999 Aug 27;285(5432):1390-3. doi: 10.1126/science.285.5432.1390. PMID: 10464095.

12. Liu H, Wu HY, Wang WY, Zhao ZL, Liu XY, Wang LY. Regulation of miR-92a on vascular endothelial aging via mediating Nrf2-KEAP1-ARE signal pathway. Eur Rev Med Pharmacol Sci. 2017 Jun;21(11):2734-2742. PMID: 28678311.

13. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153:1194–1217. doi: 10.1016/j.cell.2013.05.039.

14. Martini H, Lefevre L, Sayir S, Itier R, Maggiorani D, Dutaur M, Marsal DJ, Roncalli J, Pizzinat N, Cussac D, Parini A, Mialet-Perez J, Douin-Echinard V. Selective Cardiomyocyte Oxidative Stress Leads to Bystander Senescence of Cardiac Stromal Cells. Int J Mol Sci. 2021 Feb 24;22(5):2245. doi: 10.3390/ijms22052245. PMID: 33668142; PMCID: PMC7956294.

15. McCay CM, Maynard LA, Sperling G, Barnes LL. The Journal of Nutrition. Volume 18 July--December, 1939. Pages 1--13. Retarded growth, life span, ultimate body size and age changes in the albino rat after feeding diets restricted in calories. Nutr Rev. 1975 Aug;33(8):241-3. doi: 10.1111/j.1753-4887.1975.tb05227.x. PMID: 1095975

16. Moore KJ, Rayner KJ. Local Anti-miR Delivery: The Latest in the Arsenal of Drug-Eluting Stents. Arterioscler Thromb Vasc Biol. 2015 Sep;35(9):1905-6. doi: 10.1161/ATVBAHA.115.306187. PMID: 26310808; PMCID: PMC4617631.

17. Pankratz F, Hohnloser C, Bemtgen X, Jaenich C, Kreuzaler S, Hoefer I, Pasterkamp G, Mastroianni J, Zeiser R, Smolka C, Schneider L, Martin J, Juschkat M, Helbing T, Moser M, Bode C, Grundmann S. MicroRNA-100 Suppresses Chronic Vascular Inflammation by Stimulation of Endothelial Autophagy. Circ Res. 2018 Feb 2;122(3):417-432. doi: 10.1161/CIRCRESAHA.117.311428. Epub 2017 Dec 5. PMID: 29208678.

18. Pillarisetti S. A review of Sirt1 and Sirt1 modulators in cardiovascular and metabolic diseases. Recent Pat Cardiovasc Drug Discov. 2008 Nov;3(3):156-64. doi: 10.2174/157489008786263989. PMID: 18991791.

19. Salminen A, Kaarniranta K. AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res Rev. 2012 Apr;11(2):230-41. doi: 10.1016/j.arr.2011.12.005. Epub 2011 Dec 15. PMID: 22186033.

20. Seeger T, Boon RA. MicroRNAs in cardiovascular ageing. J Physiol. 2016 Apr 15;594(8):2085-94. doi: 10.1113/JP270557. Epub 2015 Jul 5. PMID: 26040259; PMCID: PMC4933109.

21. Sousa C, Mendes AF. Monoterpenes as Sirtuin-1 Activators: Therapeutic Potential in Aging and Related Diseases. Biomolecules. 2022 Jun 30;12(7):921. doi: 10.3390/biom12070921. PMID: 35883477; PMCID: PMC9313249.

22. Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, Boehme AK, Buxton AE, Carson AP, Commodore-Mensah Y, Elkind MSV, Evenson KR, Eze-Nliam C, Ferguson JF, Generoso G, Ho JE, Kalani R, Khan SS, Kissela BM, Knutson KL, Levine DA, Lewis TT, Liu J, Loop MS, Ma J, Mussolino ME, Navaneethan SD, Perak AM, Poudel R, Rezk-Hanna M, Roth GA, Schroeder EB, Shah SH, Thacker EL, VanWagner LB, Virani SS, Voecks JH, Wang NY, Yaffe K, Martin SS. Heart Disease and Stroke Statistics-2022 Update: A Report From the American Heart Association. Circulation. 2022 Feb 22;145(8):e153-e639. doi: 10.1161/CIR.0000000000001052. Epub 2022 Jan 26. Erratum in: Circulation. 2022 Sep 6;146(10):e141. doi: 10.1161/CIR.0000000000001074. PMID: 35078371.

23. Wang LL, Liu Y, Chung JJ, Wang T, Gaffey AC, Lu M, Cavanaugh CA, Zhou S, Kanade R, Atluri P, Morrisey EE, Burdick JA. Local and sustained miRNA delivery from an injectable hydrogel promotes cardiomyocyte proliferation and functional regeneration after ischemic injury. Nat Biomed Eng. 2017;1:983-992. doi: 10.1038/s41551-017-0157-y. Epub 2017 Nov 27. PMID: 29354322; PMCID: PMC5773070.

24. Weissman D, Maack C. Redox signaling in heart failure and therapeutic implications. Free Radic. Biol. Med. 2021;171:345–364. doi: 10.1016/j.freeradbiomed.2021.05.013.

25. Zhuang L, Zong X, Yang Q, Fan Q, Tao R. Interleukin-34-NF-κB signaling aggravates myocardial ischemic/reperfusion injury by facilitating macrophage recruitment and polarization. EBioMedicine. 2023 Sep;95:104744. doi: 10.1016/j.ebiom.2023.104744. Epub 2023 Aug 8. PMID: 37556943; PMCID: PMC10433018.