Physical Interpretation of Ze

Authors

  • Jaba Tkemaladze Author

DOI:

https://doi.org/10.65649/285bj315

Keywords:

Discrete Foundations, Emergent Spacetime, Quantum Interpretation, Relativistic Causality,, Monistic Ontology, Information-Theoretic Physics, ZVD

Abstract

This paper presents a unified physical interpretation of the Ze framework, positioning it not as a computational algorithm but as a foundational ontological theory. We argue that Ze is built upon a single primitive: a fundamental state whose norm is conserved. This state admits a dual representation—continuous for analysis and discrete for dynamics—where integer-valued counters constitute the physical substrate. From this basis, all conventional physical concepts are derived. Quantization emerges from the discreteness of counter updates, replacing wave-particle duality with a minimal unit of registration. Causality and the arrow of time arise from the principle of directional stabilization, where the causal order is the sequence that maximizes global state predictability. Space and time are not independent continua but emerge as antiparallel modes of processing the state: time as sequential accumulation and space as parallel comparison. Their competition yields the kinematic structure of Special Relativity, while gradients in the state's stable orientation manifest as effective curvature, reproducing General Relativity. Consequently, matter is interpreted as a stabilized pattern, motion as its reorientation, and forces as stabilization gradients. The interpretation leads to a monistic ontology where the universe is a single, conserved state undergoing structured redistribution, offering a parsimonious path to unifying quantum and relativistic phenomena without dualistic postulates.

References

’t Hooft, G. (2016). The Cellular Automaton Interpretation of Quantum Mechanics. Springer.

Amelino-Camelia, G. (2013). Quantum-spacetime phenomenology. Living Reviews in Relativity, 16(1), 5.

Anderson, J. L. (1972). Principles of Relativity Physics. Academic Press.

Arnold, V. I. (1989). Mathematical Methods of Classical Mechanics (2nd ed.). Springer-Verlag.

Baez, J. C. (2000). An Introduction to Spin Foam Models of Quantum Gravity and BF Theory. Lecture Notes in Physics, 543, 25–94.

Baez, J. C., & Stay, M. (2010). Physics, Topology, Logic and Computation: A Rosetta Stone. In B. Coecke (Ed.), New Structures for Physics (pp. 95–172). Springer.

Barbour, J. (1994). The timelessness of quantum gravity: I. The evidence from the classical theory. Classical and Quantum Gravity, 11(12), 2853–2873.

Berlekamp, E. R., Conway, J. H., & Guy, R. K. (1982). Winning Ways for Your Mathematical Plays (Vol. 2). Academic Press.

Bohr, N. (1949). Discussion with Einstein on epistemological problems in atomic physics. In P. A. Schilpp (Ed.), Albert Einstein: Philosopher-Scientist (pp. 199–241). Library of Living Philosophers.

Bombelli, L., Henson, J., & Sorkin, R. D. (2009). Discreteness without symmetry breaking: A theorem. Modern Physics Letters A, 24(32), 2579-2587.

Bombelli, L., Lee, J., Meyer, D., & Sorkin, R. D. (1987). Spacetime as a causal set. Physical Review Letters, 59(5), 521–524.

Bousso, R. (2002). The holographic principle. Reviews of Modern Physics, 74(3), 825–874.

Caves, C. M., Fuchs, C. A., & Schack, R. (2002). Quantum probabilities as Bayesian probabilities. Physical Review A, 65(2), 022305.

Crutchfield, J. P. (1994). The calculi of emergence: Computation, dynamics and induction. Physica D: Nonlinear Phenomena, 75(1-3), 11–54.

Dirac, P. A. M. (1930). The Principles of Quantum Mechanics. Oxford University Press.

Dowker, F. (2006). Causal sets and the deep structure of spacetime. In A. Ashtekar (Ed.), 100 Years of Relativity (pp. 445–467). World Scientific.

Einstein, A., Podolsky, B., & Rosen, N. (1935). Can quantum-mechanical description of physical reality be considered complete? Physical Review, 47(10), 777–780.

Feynman, R. P. (1948). Space-time approach to non-relativistic quantum mechanics. Reviews of Modern Physics, 20(2), 367–387.

Fuchs, C. A. (2010). QBism, the perimeter of quantum Bayesianism. arXiv preprint arXiv:1003.5209.

Goldstein, H. (1980). Classical Mechanics (2nd ed.). Addison-Wesley.

Hardy, L. (2001). Quantum theory from five reasonable axioms. *arXiv preprint quant-ph/0101012*.

Hardy, L. (2005). Probability theories with dynamic causal structure: A new framework for quantum gravity. *arXiv preprint gr-qc/0509120*.

Higgs, P. W. (1964). Broken symmetries and the masses of gauge bosons. Physical Review Letters, 13(16), 508–509.

Jaba, T. (2022). Dasatinib and quercetin: short-term simultaneous administration yields senolytic effect in humans. Issues and Developments in Medicine and Medical Research Vol. 2, 22-31.

Jacobson, T. (1995). Thermodynamics of spacetime: The Einstein equation of state. Physical Review Letters, 75(7), 1260–1263.

Landauer, R. (1991). Information is physical. Physics Today, 44(5), 23–29.

Lineweaver, C. H. (2005). Cosmic background radiation anisotropy and the arrow of time. In A. Hajnal & L. G. (Eds.), Science and Ultimate Reality (pp. 44–57). Cambridge University Press.

Lloyd, S. (2002). Computational capacity of the universe. Physical Review Letters, 88(23), 237901.

Lloyd, S. (2006). Programming the Universe: A Quantum Computer Scientist Takes on the Cosmos. Knopf.

Maldacena, J. (1999). The large-N limit of superconformal field theories and supergravity. International Journal of Theoretical Physics, 38(4), 1113–1133.

Maldacena, J., & Susskind, L. (2013). Cool horizons for entangled black holes. Fortschritte der Physik, 61(9), 781–811.

Mandelstam, L., & Tamm, I. (1945). The uncertainty relation between energy and time in non-relativistic quantum mechanics. Journal of Physics (USSR), 9, 249–254.

Maupertuis, P. L. M. de. (1744). Accord de différentes loix de la nature qui avoient jusqu’ici paru incompatibles. Mémoires de l’Académie Royale des Sciences de Paris, 417–426.

Minkowski, H. (1908). Space and time. In The Principle of Relativity (1920 translation, pp. 73–91). Methuen & Co.

Nakahara, M. (2003). Geometry, Topology and Physics (2nd ed.). CRC Press.

Nielsen, M. A., & Chuang, I. L. (2010). Quantum Computation and Quantum Information (10th anniversary ed.). Cambridge University Press.

Noether, E. (1918). Invariante Variationsprobleme. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 235–257.

Ollivier, Y. (2009). Ricci curvature of Markov chains on metric spaces. Journal of Functional Analysis, 256(3), 810–864.

Pearl, J. (2009). Causality: Models, Reasoning, and Inference (2nd ed.). Cambridge University Press.

Planck, M. (1901). On the law of distribution of energy in the normal spectrum. Annalen der Physik, 4(3), 553–563.

Regge, T. (1961). General relativity without coordinates. Il Nuovo Cimento, 19(3), 558–571.

Rovelli, C. (1991). What is observable in classical and quantum gravity? Classical and Quantum Gravity, 8(2), 297–316.

Rovelli, C. (1996). Relational quantum mechanics. International Journal of Theoretical Physics, 35(8), 1637–1678.

Rovelli, C. (1998). Loop Quantum Gravity. Living Reviews in Relativity, 1, 1.

Rovelli, C. (2004). Quantum Gravity. Cambridge University Press.

Rovelli, C., & Vidotto, F. (2014). Covariant Loop Quantum Gravity: An Elementary Introduction to Quantum Gravity and Spinfoam Theory. Cambridge University Press.

Smolin, L. (2006). The case for background independence. In D. Rickles, S. French, & J. Saatsi (Eds.), The Structural Foundations of Quantum Gravity (pp. 196–239). Oxford University Press.

Sorkin, R. D. (2003). Causal sets: Discrete gravity. In A. Gomberoff & D. Marolf (Eds.), Lectures on Quantum Gravity (pp. 305–327). Springer.

Sorkin, R. D. (2007). Relativity theory does not imply that the future already exists: A counterexample. In V. Petkov (Ed.), Relativity and the Dimensionality of the World (pp. 153–161). Springer.

Spekkens, R. W. (2007). Evidence for the epistemic view of quantum states: A toy theory. Physical Review A, 75(3), 032110.

Spinoza, B. (1677). Ethics, Demonstrated in Geometrical Order.

Susskind, L. (2016). Computational complexity and black hole horizons. Fortschritte der Physik, 64(1), 24–43.

't Hooft, G. (2016). The Cellular Automaton Interpretation of Quantum Mechanics. Springer.

Tkemaladze, J. (2023). Reduction, proliferation, and differentiation defects of stem cells over time: a consequence of selective accumulation of old centrioles in the stem cells?. Molecular Biology Reports, 50(3), 2751-2761. DOI : https://pubmed.ncbi.nlm.nih.gov/36583780/

Tkemaladze, J. (2024). Editorial: Molecular mechanism of ageing and therapeutic advances through targeting glycative and oxidative stress. Front Pharmacol. 2024 Mar 6;14:1324446. DOI : 10.3389/fphar.2023.1324446. PMID: 38510429; PMCID: PMC10953819.

Tkemaladze, J. (2026). Old Centrioles Make Old Bodies. Annals of Rejuvenation Science, 1(1). DOI : https://doi.org/10.65649/yx9sn772

Tkemaladze, J. (2026). Visions of the Future. Longevity Horizon, 2(1). DOI : https://doi.org/10.65649/8be27s21

Tononi, G. (2008). Consciousness as integrated information: a provisional manifesto. The Biological Bulletin, 215(3), 216–242.

Van Raamsdonk, M. (2010). Building up spacetime with quantum entanglement. General Relativity and Gravitation, 42, 2323–2329.

Wallace, D. (2012). The Emergent Multiverse: Quantum Theory according to the Everett Interpretation. Oxford University Press.

Wheeler, J. A. (1990). Information, physics, quantum: The search for links. In W. Zurek (Ed.), Complexity, Entropy, and the Physics of Information (pp. 3–28). Addison-Wesley.

Wolfram, S. (2002). A New Kind of Science. Wolfram Media.

Wootters, W. K. (1981). Statistical distance and Hilbert space. Physical Review D, 23(2), 357–362.

Zurek, W. H. (2003). Decoherence, einselection, and the quantum origins of the classical. Reviews of Modern Physics, 75(3), 715–775.

Downloads

Published

2026-02-09

Issue

Section

Theoretical Frameworks

How to Cite

Tkemaladze, J. (2026). Physical Interpretation of Ze. Longevity Horizon, 2(4). DOI : https://doi.org/10.65649/285bj315

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 > >> 

Similar Articles

21-30 of 30

You may also start an advanced similarity search for this article.