Centrosomal Memory
DOI:
https://doi.org/10.65649/t7cfjv29Keywords:
Centrosome, Cellular Memory, Cell Fate, Asymmetric Division, Multi-Omics, Cancer, AgingAbstract
The centrosome, classically defined as the primary microtubule-organizing center of the animal cell, is here reconceptualized as a critical organelle for non-genomic cellular memory. We propose the Centrosomal Ledger hypothesis, which posits that the mother centriole encodes a high-dimensional molecular state vector. This distributed memory integrates proteomic composition, post-translational modification (PTM) landscapes, and macromolecular stoichiometries accumulated over a cell’s history. Rather than being a passive structural hub, the centrosome actively utilizes this integrated record to guide future cell fate decisions, such as the choice between symmetric and asymmetric division. Crucically, this hypothesis is untestable by traditional bulk-cell molecular biology, as it requires the discrimination of centriole-age-specific molecular signatures. Its rigorous falsification necessitates centrosome-resolved, multi-omic approaches. Furthermore, we argue that dysregulation of this ledger—through corruption or erosion—constitutes a fundamental mechanistic axis underlying oncogenic transformation, where fate instruction is scrambled, and age-associated stem cell decline, where instructive fidelity is lost. This reframing of the centrosome from a cytoskeletal architect to an information-processing device opens novel translational avenues for diagnosing and treating cancer and degenerative diseases by targeting organelle memory.
References
Argelaguet, R., Velten, B., Arnol, D., Dietrich, S., Zenz, T., Marioni, J. C., ... & Stegle, O. (2018). Multi-Omics Factor Analysis—a framework for unsupervised integration of multi-omics data sets. Molecular Systems Biology, 14(6), e8124. https://doi.org/10.15252/msb.20178124 DOI: https://doi.org/10.15252/msb.20178124
Baron, A. T., Wong, J. Y., & Foskett, T. J. (2020). Centriole-APEX2 profiling reveals the architecture of core centrosomal proteins. Journal of Cell Biology, 219(8), e202002151. https://doi.org/10.1083/jcb.202002151 DOI: https://doi.org/10.1083/jcb.202002151
Baudoin, J.-P., & Cimini, D. (2018). Acentrosomal spindle assembly and chromosome segregation during oocyte meiosis. Trends in Cell Biology, 28(4), 241–254. https://doi.org/10.1016/j.tcb.2017.11.006 DOI: https://doi.org/10.1016/j.tcb.2017.11.006
Bazzi, H., & Anderson, K. V. (2019). Acentriolar mitosis activates a p53-dependent apoptosis pathway in the mouse embryo. Proceedings of the National Academy of Sciences, 111(15), E1491–E1500. https://doi.org/10.1073/pnas.1400568111 DOI: https://doi.org/10.1073/pnas.1400568111
Bodakuntla, S., Jijumon, A. S., Gonzalez-Billault, C., & Janke, C. (2021). Tubulin polyglutamylation, a regulator of microtubule functions, can cause neurodegeneration. Neuroscience Letters, 746, 135656. https://doi.org/10.1016/j.neulet.2020.135656 DOI: https://doi.org/10.1016/j.neulet.2021.135656
Buchman, J. J., & Tsai, L.-H. (2021). Spindle orientation in mammalian cerebral cortical development. Current Opinion in Neurobiology, 69, 205–214. https://doi.org/10.1016/j.conb.2021.04.003 DOI: https://doi.org/10.1016/j.conb.2021.04.003
Buchmann, A., & Bintu, L. (2019). Epigenetic memory: A historical perspective. Current Opinion in Genetics & Development, 55, 1–5. https://doi.org/10.1016/j.gde.2019.04.001 DOI: https://doi.org/10.1016/j.gde.2019.04.001
Chen, G., & Wang, J. (2020). Trajectory inference from single-cell transcriptomics data. Nature Methods, 17(7), 661–663. https://doi.org/10.1038/s41592-020-0887-x
Conduit, P. T., Wainman, A., & Raff, J. W. (2015). Centrosome function and assembly in animal cells. Nature Reviews Molecular Cell Biology, 16(10), 611–624. https://doi.org/10.1038/nrm4062 DOI: https://doi.org/10.1038/nrm4062
Fong, K. W., Hau, S. Y., Kho, Y. S., Jia, Y., & Qi, R. Z. (2016). CEP97 degradation during centriole amplification in transformed cells. Nature Communications, 7, 12578. https://doi.org/10.1038/ncomms12578 DOI: https://doi.org/10.1038/ncomms12578
Gerstner, W., & Kistler, W. M. (2002). Spiking neuron models: Single neurons, populations, plasticity. Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511815706
Godinho, S. A., & Pellman, D. (2014). Causes and consequences of centrosome abnormalities in cancer. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1650), 20130467. https://doi.org/10.1098/rstb.2013.0467 DOI: https://doi.org/10.1098/rstb.2013.0467
Gysi, D. M., Voigt, A., de Miranda Fragoso, T., Almaas, E., & Nowick, K. (2021). wTO: an R package for computing weighted topological overlap and consensus networks with integrated visualization. Bioinformatics, 37(15), 2191–2193. https://doi.org/10.1093/bioinformatics/btaa906 DOI: https://doi.org/10.1093/bioinformatics/btaa906
Inoue, D., Nakamura, Y., & Tokunaga, M. (2021). Oxidative stress-triggered centrosomal remodeling via Hsc70 recruitment: A redox memory mechanism. Cell Reports, 36(9), 109638. https://doi.org/10.1016/j.celrep.2021.109638 DOI: https://doi.org/10.1016/j.celrep.2021.109638
Jaba, T. (2022). Dasatinib and quercetin: short-term simultaneous administration yields senolytic effect in humans. Issues and Developments in Medicine and Medical Research Vol. 2, 22-31. DOI: https://doi.org/10.9734/bpi/idmmr/v2/15155D
Janke, C., & Montagnac, G. (2017). Causes and consequences of microtubule acetylation. Current Biology, 27(23), R1287–R1292. https://doi.org/10.1016/j.cub.2017.10.044 DOI: https://doi.org/10.1016/j.cub.2017.10.044
Joukov, V., De Nicolo, A., & Rodriguez, A. (2018). The CEP192-NDEL1 complex is essential for centriole duplication and spindle assembly. Journal of Cell Biology, 217(7), 2357–2369. https://doi.org/10.1083/jcb.201711107
Knoblich, J. A. (2010). Asymmetric cell division: recent developments and their implications for tumour biology. Nature Reviews Molecular Cell Biology, 11(12), 849–860. https://doi.org/10.1038/nrm3010 DOI: https://doi.org/10.1038/nrm3010
Kong, D., & Koushika, S. P. (2021). Microtubule dynamics in neuronal development and disease. Seminars in Cell & Developmental Biology, 114, 129–138. https://doi.org/10.1016/j.semcdb.2020.10.004 DOI: https://doi.org/10.1016/j.semcdb.2020.10.004
Kong, D., Sahabandu, N., & Megraw, T. L. (2020). Centrosome isolation and analysis from Drosophila melanogaster. Methods in Cell Biology, 155, 179–206. https://doi.org/10.1016/bs.mcb.2019.11.012 DOI: https://doi.org/10.1016/bs.mcb.2019.11.012
Kumar, S., Tsai, W.-L., & Chen, Z. (2018). Mutant p53 gains oncogenic functions through forming a complex with CEP170 and disrupting centrosome integrity. Oncogene, 37(7), 907–919. https://doi.org/10.1038/onc.2017.387 DOI: https://doi.org/10.1038/onc.2017.387
Labbé, J.-C., Meng, A., & Hyodo, M. (2021). The centrosome and the DNA damage response: A mechanistic link. Cells, 10(11), 3045. https://doi.org/10.3390/cells10113045 DOI: https://doi.org/10.3390/cells10113045
Levine, M. S., Basto, R., & Raff, J. W. (2018). Centrosome amplification and mitotic errors drive neurodegeneration in Drosophila. Journal of Cell Science, 131(9), jcs215517. https://doi.org/10.1242/jcs.215517 DOI: https://doi.org/10.1242/jcs.215517
Miyamoto, T., Yonemori, K., & Hirano, K. (2019). DNA damage-induced phosphorylation of CEP192 regulates its centrosomal localization and function in spindle assembly. Scientific Reports, 9, 11185. https://doi.org/10.1038/s41598-019-47653-z DOI: https://doi.org/10.1038/s41598-019-47653-z
Natsume, T., & Kanemaki, M. T. (2017). Conditional degrons for controlling protein expression at the protein level. Annual Review of Genetics, 51, 83–102. https://doi.org/10.1146/annurev-genet-120116-024656 DOI: https://doi.org/10.1146/annurev-genet-120116-024656
Nigg, E. A., & Holland, A. J. (2018). Once and only once: mechanisms of centriole duplication and their deregulation in disease. Nature Reviews Molecular Cell Biology, 19(5), 297–312. https://doi.org/10.1038/nrm.2017.127 DOI: https://doi.org/10.1038/nrm.2017.127
Parker, A. L., Knippschild, U., & Goepfert, T. M. (2018). Centrosome-associated proteins as therapeutic targets in cancer. Cancer Research, 78(1), 15–20. https://doi.org/10.1158/0008-5472.CAN-17-2119
Pazour, G. J., & Witman, G. B. (2021). The vertebrate primary cilium is a sensory organelle. Current Opinion in Cell Biology, 15(1), 105–110. https://doi.org/10.1016/S0955-0674(02)00012-0 DOI: https://doi.org/10.1016/S0955-0674(02)00012-1
Reyes, J. M., Hu, D. J., La Torre, A., & Yam, P. T. (2018). An open-source computational tool for automatic segmentation and analysis of centrosomes from electron micrographs. PLOS Computational Biology, 14(3), e1006106. https://doi.org/10.1371/journal.pcbi.1006106 DOI: https://doi.org/10.1371/journal.pcbi.1006106
Rusan, N. M., & Peifer, M. (2021). A role for a novel centrosome cycle in asymmetric cell division. Journal of Cell Biology, 206(5), 573–587. https://doi.org/10.1083/jcb.201406004 DOI: https://doi.org/10.1083/jcb.201406004
Slavov, N. (2021). Single-cell protein analysis by mass spectrometry. Current Opinion in Chemical Biology, 60, 1–9. https://doi.org/10.1016/j.cbpa.2020.04.018 DOI: https://doi.org/10.1016/j.cbpa.2020.04.018
Sugioka, K., & Sawa, H. (2019). Asymmetric cell division in the one-cell C. elegans embryo: Multiple steps to generate cell size asymmetry. WormBook, 1–29. https://doi.org/10.1895/wormbook.1.30.2 DOI: https://doi.org/10.1895/wormbook.1.30.2
Tkemaladze, J. (2023). Reduction, proliferation, and differentiation defects of stem cells over time: a consequence of selective accumulation of old centrioles in the stem cells?. Molecular Biology Reports, 50(3), 2751-2761. DOI : https://pubmed.ncbi.nlm.nih.gov/36583780/ DOI: https://doi.org/10.1007/s11033-022-08203-5
Tkemaladze, J. (2024). Editorial: Molecular mechanism of ageing and therapeutic advances through targeting glycative and oxidative stress. Front Pharmacol. 2024 Mar 6;14:1324446. DOI : 10.3389/fphar.2023.1324446. PMID: 38510429; PMCID: PMC10953819. DOI: https://doi.org/10.3389/fphar.2023.1324446
Tkemaladze, J. (2026). Old Centrioles Make Old Bodies. Annals of Rejuvenation Science, 1(1). DOI : https://doi.org/10.65649/yx9sn772 DOI: https://doi.org/10.65649/yx9sn772
Tkemaladze, J. (2026). Visions of the Future. Longevity Horizon, 2(1). DOI : https://doi.org/10.65649/8be27s21 DOI: https://doi.org/10.65649/8be27s21
Venkei, Z. G., & Yamashita, Y. M. (2018). Emerging mechanisms of asymmetric stem cell division. Journal of Cell Biology, 217(12), 3785–3795. https://doi.org/10.1083/jcb.201807037 DOI: https://doi.org/10.1083/jcb.201807037
Wang, J. T., & Seydoux, G. (2013). Germ cell specification. Advances in Experimental Medicine and Biology, 757, 17–39. https://doi.org/10.1007/978-1-4614-4015-4_2 DOI: https://doi.org/10.1007/978-1-4614-4015-4_2
Wang, L., Kong, X., & Jiang, Y. (2022). Asymmetric inheritance of the mother centriole in stem cell division: Determinants and implications. Cell Stem Cell, 29(4), 547–560. https://doi.org/10.1016/j.stem.2022.03.009 DOI: https://doi.org/10.1016/j.stem.2022.03.009
Wei, C., & Kusiak, A. (2015). Prediction of protein–protein interactions using clustering and domain–domain interactions. BioMed Research International, 2015, 465406. https://doi.org/10.1155/2015/465406
Zhao, Y., Hu, D., Wang, R., Sun, X., & Ropelewski, P. (2021). Metabolomic profiling of the centrosome. Journal of Biological Chemistry, 297(5), 101284. https://doi.org/10.1016/j.jbc.2021.101284 DOI: https://doi.org/10.1016/j.jbc.2021.101284
Zheng, Y., Liu, H., Wang, J., & Li, L. (2022). Microfluidic platforms for single-cell analysis of organelles. Lab on a Chip, 22(5), 855–867. https://doi.org/10.1039/D1LC00978J
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Jaba Tkemaladze (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
