A Vectorial Axiomatization of Space – Time Unity

Authors

  • Jaba Tkemaladze Author

DOI:

https://doi.org/10.65649/t6yawf32

Keywords:

Foundational Physics, Space-Time Unity, Vectorial Axiomatics, Quantum Gravity, Emergent Geometry, Unitary Evolution, Causal Structure

Abstract

This article presents a novel foundational framework for physics, grounded in a minimalist vectorial ontology. I propose that the unified fabric of reality is described by a fundamental abstract state space F, whose elements are normed vectors Ψ. From this single premise, a complete axiomatization of space-time and quantum phenomena is derived. The core innovation is the definition of space and time not as independent continua, but as complementary projections of the state vector: Ψ = (S, T). A set of nine axioms is introduced, imposing constraints on these components: their magnitudes are equal (|S| = c|T|), their directions are antiparallel (S = -T), and their evolution is a norm-preserving unitary redistribution. From these purely algebraic and geometric relations, I demonstrate the emergence of Minkowskian space-time with its Lorentzian metric, the invariant speed of light c, and a causal structure defined by the connectivity of F. The framework naturally incorporates quantum mechanics by identifying unitary evolution on F as the fundamental dynamical principle, with measurement and classicality arising via environmental decoherence and the dynamical selection of pointer states (Axiom IX). This work offers a path toward resolving the quantum gravity problem by suggesting that both geometry and quantum states are manifestations of a deeper vectorial substrate, thereby unifying relativity and quantum theory within a single, observer-independent mathematical structure.

References

Ambjørn, J., Jurkiewicz, J., & Loll, R. (2004). Emergence of a 4D world from causal quantum gravity. Physical Review Letters, 93(13), 131301.

Amelino-Camelia, G. (2013). Quantum-spacetime phenomenology. Living Reviews in Relativity, 16(1), 5.

Anandan, J., & Aharonov, Y. (1990). Geometry of quantum evolution. Physical Review Letters, 65(14), 1697-1700.

Arnold, V. I. (1989). Mathematical Methods of Classical Mechanics (2nd ed.). Springer-Verlag.

Barrow, J. D. (2002). The Constants of Nature: From Alpha to Omega. Jonathan Cape.

Barrow, J. D., & Shaw, D. J. (2011). The value of the cosmological constant. General Relativity and Gravitation, 43(10), 2555-2560.

Barrow, J. D., & Tipler, F. J. (1986). The Anthropic Cosmological Principle. Oxford University Press.

Bedingham, D. J. (2011). Relativistic state reduction dynamics. Foundations of Physics, 41(4), 686–704.

Bekenstein, J. D. (1973). Black holes and entropy. Physical Review D, 7(8), 2333–2346.

Bohm, D. (1952). A suggested interpretation of the quantum theory in terms of "hidden" variables. I & II. Physical Review, 85(2), 166-193.

Bombelli, L., Lee, J., Meyer, D., & Sorkin, R. D. (1987). Spacetime as a causal set. Physical Review Letters, 59(5), 521-524.

Carroll, S. M. (2010). From Eternity to Here: The Quest for the Ultimate Theory of Time. Dutton.

Carroll, S. M., & Chen, J. (2004). Spontaneous inflation and the origin of the arrow of time. arXiv preprint hep-th/0410270.

Connes, A. (1994). Noncommutative Geometry. Academic Press.

Cunningham, E. (1914). The principle of relativity in electrodynamics and an extension thereof. Proceedings of the London Mathematical Society, s2-8(1), 77-98.

de Broglie, L. (1924). Recherches sur la théorie des quanta [Ph.D. thesis, Université de Paris]. Masson et Cie.

Deriglazov, A. A. (2017). Classical Mechanics: Hamiltonian and Lagrangian Formalism (2nd ed.). Springer.

Deutsch, D. (1999). Quantum theory of probability and decisions. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 455(1988), 3129–3137.

Dirac, P. A. M. (1930). The Principles of Quantum Mechanics. Oxford University Press.

Dowker, F., & Halliwell, J. J. (1992). Quantum mechanics of history: The decoherence functional in quantum mechanics. Physical Review D, 46(4), 1580–1609.

Dyson, L., Kleban, M., & Susskind, L. (2002). Disturbing implications of a cosmological constant. Journal of High Energy Physics, 2002(10), 011.

Einstein, A. (1905). On the electrodynamics of moving bodies. Annalen der Physik, 17(10), 891-921.

Einstein, A. (1905). On the electrodynamics of moving bodies. Annalen der Physik, 17(10), 891–921.

Einstein, A. (1915). The field equations of gravitation. Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin, 844-847.

Ellis, G. F. R., & Uzan, J.-P. (2005). c is the speed of light, isn't it? American Journal of Physics, 73(3), 240–247.

Feynman, R. P., & Hibbs, A. R. (1965). Quantum Mechanics and Path Integrals. McGraw-Hill.

Feynman, R. P., Hibbs, A. R., & Styer, D. F. (2005). Quantum Mechanics and Path Integrals. Dover Publications.

Friedman, J., Morris, M. S., & Novikov, I. D. (1990). Cauchy problem in spacetimes with closed timelike curves. Physical Review D, 42(6), 1915-1930.

Gell-Mann, M., & Hartle, J. B. (1990). Quantum mechanics in the light of quantum cosmology. In Complexity, Entropy, and the Physics of Information (pp. 425–458). Addison-Wesley.

Ghirardi, G. C., Rimini, A., & Weber, T. (1980). A general argument against superluminal transmission through the quantum mechanical measurement process. Lettere al Nuovo Cimento, 27(10), 293-298.

Haag, R. (1992). Local Quantum Physics: Fields, Particles, Algebras. Springer-Verlag.

Hardy, L. (2001). Quantum theory from five reasonable axioms. arXiv preprint quant-ph/0101012.

Hardy, L. (2009). Foliable operational structures for general probabilistic theories. In H. Halvorson (Ed.), Deep Beauty: Understanding the Quantum World through Mathematical Innovation (pp. 409-442). Cambridge University Press.

Hawking, S. W. (1992). Chronology protection conjecture. Physical Review D, 46(2), 603-611.

Hestenes, D. (1966). Space-Time Algebra. Gordon and Breach.

Hestenes, D. (1990). The zitterbewegung interpretation of quantum mechanics. Foundations of Physics, 20(10), 1213-1232.

Hestenes, D. (1990). The zitterbewegung interpretation of quantum mechanics. Foundations of Physics, 20(10), 1213–1232.

Isham, C. J. (1993). Canonical quantum gravity and the problem of time. In Integrable Systems, Quantum Groups, and Quantum Field Theories (pp. 157-287). Springer.

Jaba, T. (2022). Dasatinib and quercetin: short-term simultaneous administration yields senolytic effect in humans. Issues and Developments in Medicine and Medical Research Vol. 2, 22-31.

Jacobson, T. (1995). Thermodynamics of spacetime: The Einstein equation of state. Physical Review Letters, 75(7), 1260-1263.

Jacobson, T. (1995). Thermodynamics of spacetime: The Einstein equation of state. Physical Review Letters, 75(7), 1260–1263.

Kempf, A., Mangano, G., & Mann, R. B. (1995). Hilbert space representation of the minimal length uncertainty relation. Physical Review D, 52(2), 1108-1118.

Kempf, A., Mangano, G., & Mann, R. B. (1995). Hilbert space representation of the minimal length uncertainty relation. Physical Review D, 52(2), 1108–1118.

Kiefer, C. (2012). Quantum Gravity (3rd ed.). Oxford University Press.

Klein, F. (1893). The mathematical theory of the top. Charles Scribner's Sons.

Lloyd, S. (2006). Programming the Universe. Knopf.

Magueijo, J. (2003). New varying speed of light theories. Reports on Progress in Physics, 66(11), 2025.

Maldacena, J. (1999). The large-N limit of superconformal field theories and supergravity. International Journal of Theoretical Physics, 38(4), 1113-1133.

Marolf, D. (2009). Black holes, AdS, and CFTs. General Relativity and Gravitation, 41(4), 903–917.

Minkowski, H. (1908). Space and time. In The Principle of Relativity (1920 translation, pp. 73-91). Dover.

Misner, C. W., Thorne, K. S., & Wheeler, J. A. (1973). Gravitation. W. H. Freeman.

Ollivier, H., Poulin, D., & Zurek, W. H. (2004). Objective properties from subjective quantum states: Environment as a witness. Physical Review Letters, 93(22), 220401.

Page, D. N. (1985). Will entropy decrease if the universe recollapses? Physical Review D, 32(10), 2496-2499.

Page, D. N., & Wootters, W. K. (1983). Evolution without evolution: Dynamics described by stationary observables. Physical Review D, 27(12), 2885-2892.

Penrose, R. (1972). Techniques of Differential Topology in Relativity. Society for Industrial and Applied Mathematics.

Penrose, R. (1979). Singularities and time-asymmetry. In S. W. Hawking & W. Israel (Eds.), General Relativity: An Einstein Centenary Survey (pp. 581-638). Cambridge University Press.

Rovelli, C. (1996). Relational quantum mechanics. International Journal of Theoretical Physics, 35(8), 1637–1678.

Rovelli, C. (2004). Quantum Gravity. Cambridge University Press.

Ryu, S., & Takayanagi, T. (2006). Holographic derivation of entanglement entropy from the anti–de Sitter space/conformal field theory correspondence. Physical Review Letters, 96(18), 181602.

Schlosshauer, M. (2007). Decoherence and the Quantum-to-Classical Transition. Springer.

Taylor, E. F., & Wheeler, J. A. (1992). Spacetime Physics (2nd ed.). W. H. Freeman.

Tkemaladze, J. (2023). Reduction, proliferation, and differentiation defects of stem cells over time: a consequence of selective accumulation of old centrioles in the stem cells?. Molecular Biology Reports, 50(3), 2751-2761. DOI : https://pubmed.ncbi.nlm.nih.gov/36583780/

Tkemaladze, J. (2024). Editorial: Molecular mechanism of ageing and therapeutic advances through targeting glycative and oxidative stress. Front Pharmacol. 2024 Mar 6;14:1324446. DOI : 10.3389/fphar.2023.1324446. PMID: 38510429; PMCID: PMC10953819.

Tkemaladze, J. (2026). Old Centrioles Make Old Bodies. Annals of Rejuvenation Science, 1(1). DOI : https://doi.org/10.65649/yx9sn772

Tkemaladze, J. (2026). Visions of the Future. Longevity Horizon, 2(1). DOI : https://doi.org/10.65649/8be27s21

Unruh, W. G. (1976). Notes on black-hole evaporation. Physical Review D, 14(4), 870–892.

Vaidman, L. (1998). On schizophrenic experiences of the neutron or why we should believe in the many‐worlds interpretation of quantum theory. International Studies in the Philosophy of Science, 12(3), 245–261.

Van Raamsdonk, M. (2010). Building up spacetime with quantum entanglement. General Relativity and Gravitation, 42, 2323-2329.

von Neumann, J. (1932). Mathematische Grundlagen der Quantenmechanik. Springer.

Wallace, D. (2010). How to prove the Born rule. In S. Saunders, J. Barrett, A. Kent, & D. Wallace (Eds.), Many Worlds? Everett, Quantum Theory, and Reality (pp. 227–263). Oxford University Press.

Wallace, D. (2012). The Emergent Multiverse: Quantum Theory according to the Everett Interpretation. Oxford University Press.

Weinberg, S. (1995). The Quantum Theory of Fields, Vol. 1: Foundations. Cambridge University Press.

Wheeler, J. A. (1962). Geometrodynamics. Academic Press.

Wilczek, F. (1999). Mass without mass I: Most of matter. Physics Today, 52(11), 11–13.

Zeh, H. D. (1992). The Physical Basis of The Direction of Time. Springer-Verlag.

Zurek, W. H. (2003). Decoherence, einselection, and the quantum origins of the classical. Reviews of Modern Physics, 75(3), 715-775.

Zurek, W. H. (2003). Decoherence, einselection, and the quantum origins of the classical. Reviews of Modern Physics, 75(3), 715-775.Bombelli, L., Lee, J., Meyer, D., & Sorkin, R. D. (1987). Spacetime as a causal set. Physical Review Letters, 59(5), 521-524.

Downloads

Published

2026-02-03

Issue

Section

Theoretical Frameworks

How to Cite

Tkemaladze, J. (2026). A Vectorial Axiomatization of Space – Time Unity. Longevity Horizon, 2(4). DOI : https://doi.org/10.65649/t6yawf32

Most read articles by the same author(s)

1 2 3 4 5 6 7 > >> 

Similar Articles

21-30 of 32

You may also start an advanced similarity search for this article.