Quantum Behavior as a Consequence of Ze Systems

Authors

  • Jaba Tkemaladze Author

DOI:

https://doi.org/10.65649/93qfwv21

Keywords:

Quantum Foundations, Active Inference, Predictive Processing, Information Theory, Wavefunction Collapse, Cognitive Neuroscience, Decoherence

Abstract

This paper proposes a novel theoretical framework that reinterprets quantum behavior—superposition, interference, and wavefunction collapse—not as fundamental properties of matter but as emergent epistemic properties of a specific class of information-processing architectures, termed Ze systems. A Ze system is defined as an active predictive engine that operates on continuous data streams through two distinct modes: forward reading (ℱ) and retrograde encoding (ℛ). The core architectural constraint is that ℛ, the process of running predictions backward to reconcile models, necessitates the cessation of the forward information flow ℱ. We demonstrate that superposition corresponds to the system state where competing internal hypotheses remain compatible, formally defined by a small free energy difference (ΔF < θ). Collapse is not a primitive event but a structured, two-stage process triggered when ΔF ≥ θ: first, the mandatory stoppage of ℱ, and second, the execution of ℛ to achieve a single, globally consistent model. Interference is shown to be a statistical signature of the coherent blending of hypotheses when they are non-distinguishable. This framework generates testable predictions across scales, from the accelerated decoherence of complex molecules to the modulation of cognitive flexibility during REM sleep. By deriving quantum phenomena from a principle of predictive inference, the theory bridges the Free Energy Principle, relational quantum mechanics, and decoherence theory, suggesting that quantumness is a universal signature of systems that must pause to look backward in order to predict the future.

References

Blake, R., & Logothetis, N. K. (2001). Visual competition. Nature Reviews Neuroscience, 3(1), 13–21. https://doi.org/10.1038/nrn701 DOI: https://doi.org/10.1038/nrn701

Busch, N. A., Dubois, J., & VanRullen, R. (2009). The phase of ongoing EEG oscillations predicts visual perception. Journal of Neuroscience, 29(24), 7869–7876. https://doi.org/10.1523/JNEUROSCI.0113-09.2009 DOI: https://doi.org/10.1523/JNEUROSCI.0113-09.2009

Busemeyer, J. R., & Bruza, P. D. (2012). Quantum Models of Cognition and Decision. Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511997716

Carhart-Harris, R. L., & Friston, K. J. (2019). REBUS and the Anarchic Brain: Toward a Unified Model of the Brain Action of Psychedelics. Pharmacological Reviews, 71(3), 316–344. https://doi.org/10.1124/pr.118.017160 DOI: https://doi.org/10.1124/pr.118.017160

Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(3), 181–204. https://doi.org/10.1017/S0140525X12000477 DOI: https://doi.org/10.1017/S0140525X12000477

Diekelmann, S., & Born, J. (2010). The memory function of sleep. Nature Reviews Neuroscience, 11(2), 114–126. https://doi.org/10.1038/nrn2762 DOI: https://doi.org/10.1038/nrn2762

Englert, B.-G. (1996). Fringe visibility and which-way information: An inequality. Physical Review Letters, 77(11), 2154–2157. https://doi.org/10.1103/PhysRevLett.77.2154 DOI: https://doi.org/10.1103/PhysRevLett.77.2154

Feldman, H., & Friston, K. J. (2010). Attention, uncertainty, and free-energy. Frontiers in Human Neuroscience, 4, 215. https://doi.org/10.3389/fnhum.2010.00215 DOI: https://doi.org/10.3389/fnhum.2010.00215

Fletcher, P. C., & Frith, C. D. (2009). Perceiving is believing: a Bayesian approach to explaining the positive symptoms of schizophrenia. Nature Reviews Neuroscience, 10(1), 48–58. https://doi.org/10.1038/nrn2536 DOI: https://doi.org/10.1038/nrn2536

Foster, D. J., & Wilson, M. A. (2006). Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature, 440(7084), 680–683. https://doi.org/10.1038/nature04587 DOI: https://doi.org/10.1038/nature04587

Friston, K. (2009). The free-energy principle: a rough guide to the brain? Trends in Cognitive Sciences, 13(7), 293–301. https://doi.org/10.1016/j.tics.2009.04.005 DOI: https://doi.org/10.1016/j.tics.2009.04.005

Friston, K. (2010). The free-energy principle: a unified brain theory? Nature Reviews Neuroscience, 11(2), 127–138. https://doi.org/10.1038/nrn2787 DOI: https://doi.org/10.1038/nrn2787

Fuchs, C. A., & Peres, A. (2000). Quantum theory needs no 'interpretation'. Physics Today, 53(3), 70–71. https://doi.org/10.1063/1.883004 DOI: https://doi.org/10.1063/1.883004

Gopnik, A., Glymour, C., Sobel, D. M., Schulz, L. E., Kushnir, T., & Danks, D. (2004). A theory of causal learning in children: causal maps and Bayes nets. Psychological Review, 111(1), 3–32. https://doi.org/10.1037/0033-295X.111.1.3 DOI: https://doi.org/10.1037/0033-295X.111.1.3

Gould, S. J., & Eldredge, N. (1977). Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology, 3(2), 115–151. https://doi.org/10.1017/S0094837300005224 DOI: https://doi.org/10.1017/S0094837300005224

Healey, R. (2017). The Quantum Revolution in Philosophy. Oxford University Press. DOI: https://doi.org/10.1093/oso/9780198714057.001.0001

Hobson, J. A., & Friston, K. J. (2012). Waking and dreaming consciousness: Neurobiological and functional considerations. Progress in Neurobiology, 98(1), 82–98. https://doi.org/10.1016/j.pneurobio.2012.05.003 DOI: https://doi.org/10.1016/j.pneurobio.2012.05.003

Hohwy, J. (2013). The Predictive Mind. Oxford University Press. DOI: https://doi.org/10.1093/acprof:oso/9780199682737.001.0001

Hornberger, K., Uttenthaler, S., Brezger, B., Hackermüller, L., Arndt, M., & Zeilinger, A. (2003). Collisional Decoherence Observed in Matter Wave Interferometry. Physical Review Letters, 90(16), 160401. https://doi.org/10.1103/PhysRevLett.90.160401 DOI: https://doi.org/10.1103/PhysRevLett.90.160401

Jaba, T. (2022). Dasatinib and quercetin: short-term simultaneous administration yields senolytic effect in humans. Issues and Developments in Medicine and Medical Research Vol. 2, 22-31. DOI: https://doi.org/10.9734/bpi/idmmr/v2/15155D

Khrennikov, A. (2020). Quantum-like modeling of cognition. Frontiers in Physics, 8, 177. https://doi.org/10.3389/fphy.2020.00177 DOI: https://doi.org/10.3389/fphy.2020.00177

Kingma, D. P., & Welling, M. (2013). Auto-Encoding Variational Bayes. arXiv preprint arXiv:1312.6114.

Knill, D. C., & Pouget, A. (2004). The Bayesian brain: the role of uncertainty in neural coding and computation. Trends in Neurosciences, 27(12), 712–719. https://doi.org/10.1016/j.tins.2004.10.007 DOI: https://doi.org/10.1016/j.tins.2004.10.007

Körding, K. P., Beierholm, U., Ma, W. J., Quartz, S., Tenenbaum, J. B., & Shams, L. (2007). Causal inference in multisensory perception. PLOS ONE, 2(9), e943. https://doi.org/10.1371/journal.pone.0000943 DOI: https://doi.org/10.1371/journal.pone.0000943

Lakshminarayanan, B., Pritzel, A., & Blundell, C. (2017). Simple and scalable predictive uncertainty estimation using deep ensembles. Advances in Neural Information Processing Systems, 30, 6402–6413.

Leopold, D. A., & Logothetis, N. K. (1999). Multistable phenomena: changing views in perception. Trends in Cognitive Sciences, 3(7), 254–264. https://doi.org/10.1016/S1364-6613(99)01332-7 DOI: https://doi.org/10.1016/S1364-6613(99)01332-7

Lin, J. (1991). Divergence measures based on the Shannon entropy. IEEE Transactions on Information Theory, 37(1), 145–151. https://doi.org/10.1109/18.61115 DOI: https://doi.org/10.1109/18.61115

Lisman, J. E., & Jensen, O. (2013). The θ-γ neural code. Neuron, 77(6), 1002–1016. https://doi.org/10.1016/j.neuron.2013.03.007 DOI: https://doi.org/10.1016/j.neuron.2013.03.007

Momennejad, I., Russek, E. M., Cheong, J. H., Botvinick, M. M., Daw, N. D., & Gershman, S. J. (2017). The successor representation in human reinforcement learning. Nature Human Behaviour, 1(9), 680–692. https://doi.org/10.1038/s41562-017-0180-8 DOI: https://doi.org/10.1038/s41562-017-0180-8

Ortega, P. A., & Braun, D. A. (2013). Thermodynamics as a theory of decision-making with information-processing costs. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 469(2153), 20120683. https://doi.org/10.1098/rspa.2012.0683 DOI: https://doi.org/10.1098/rspa.2012.0683

Pearl, J. (2009). Causality: Models, Reasoning, and Inference (2nd ed.). Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511803161

Penrose, R., & Hameroff, S. (1995). What gaps? Reply to Grush and Churchland. Journal of Consciousness Studies, 2(2), 98–112.

Rovelli, C. (1996). Relational Quantum Mechanics. International Journal of Theoretical Physics, 35(8), 1637–1678. https://doi.org/10.1007/BF02302261 DOI: https://doi.org/10.1007/BF02302261

Schlosshauer, M. (2005). Decoherence, the measurement problem, and interpretations of quantum mechanics. Reviews of Modern Physics, 76(4), 1267–1305. https://doi.org/10.1103/RevModPhys.76.1267 DOI: https://doi.org/10.1103/RevModPhys.76.1267

Schrödinger, E. (1935). Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften, 23(48), 807–812. https://doi.org/10.1007/BF01491891 DOI: https://doi.org/10.1007/BF01491891

Scully, M. O., & Drühl, K. (1982). Quantum eraser: A proposed photon correlation experiment concerning observation and "delayed choice" in quantum mechanics. Physical Review A, 25(4), 2208–2213. https://doi.org/10.1103/PhysRevA.25.2208 DOI: https://doi.org/10.1103/PhysRevA.25.2208

Seisenberger, S., Andrews, S., Krueger, F., Arand, J., Walter, J., Santos, F., & Reik, W. (2012). The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Molecular Cell, 48(6), 849–862. https://doi.org/10.1016/j.molcel.2012.11.001 DOI: https://doi.org/10.1016/j.molcel.2012.11.001

Sumpter, D. J. (2006). The principles of collective animal behaviour. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1465), 5–22. https://doi.org/10.1098/rstb.2005.1733 DOI: https://doi.org/10.1098/rstb.2005.1733

Tkemaladze, J. (2024). Editorial: Molecular mechanism of ageing and therapeutic advances through targeting glycative and oxidative stress. Front Pharmacol. 2024 Mar 6;14:1324446. DOI : 10.3389/fphar.2023.1324446. PMID: 38510429; PMCID: PMC10953819. DOI: https://doi.org/10.3389/fphar.2023.1324446

Tkemaladze, J. (2026). Old Centrioles Make Old Bodies. Annals of Rejuvenation Science, 1(1). DOI : https://doi.org/10.65649/yx9sn772

Tkemaladze, J. (2026). Visions of the Future. Longevity Horizon, 2(1). DOI : https://doi.org/10.65649/8be27s21 DOI: https://doi.org/10.65649/8be27s21

Tkemaladze, J. (2026). Ze System Manifesto. Longevity Horizon, 2(1). DOI : https://doi.org/10.65649/3hm9b025 DOI: https://doi.org/10.65649/3hm9b025

Tong, F., Nakayama, K., Vaughan, J. T., & Kanwisher, N. (1998). Binocular rivalry and visual awareness in human extrastriate cortex. Neuron, 21(4), 753–759. https://doi.org/10.1016/S0896-6273(00)80592-9 DOI: https://doi.org/10.1016/S0896-6273(00)80592-9

VanRullen, R., & Koch, C. (2003). Is perception discrete or continuous? Trends in Cognitive Sciences, 7(5), 207–213. https://doi.org/10.1016/S1364-6613(03)00095-0 DOI: https://doi.org/10.1016/S1364-6613(03)00095-0

Von Neumann, J. (1955). Mathematical Foundations of Quantum Mechanics. Princeton University Press. (Original work published 1932)

Walborn, S. P., Terra Cunha, M. O., Pádua, S., & Monken, C. H. (2002). Double-slit quantum eraser. Physical Review A, 65(3), 033818. https://doi.org/10.1103/PhysRevA.65.033818 DOI: https://doi.org/10.1103/PhysRevA.65.033818

Zeilinger, A. (1999). Experiment and the foundations of quantum physics. Reviews of Modern Physics, 71(2), S288–S297. https://doi.org/10.1103/RevModPhys.71.S288 DOI: https://doi.org/10.1103/RevModPhys.71.S288

Zurek, W. H. (2003). Decoherence, einselection, and the quantum origins of the classical. Reviews of Modern Physics, 75(3), 715–775. https://doi.org/10.1103/RevModPhys.75.715 DOI: https://doi.org/10.1103/RevModPhys.75.715

Downloads

Published

2026-01-16

Issue

Section

Theoretical Frameworks

How to Cite

Tkemaladze, J. (2026). Quantum Behavior as a Consequence of Ze Systems. Longevity Horizon, 2(2). DOI : https://doi.org/10.65649/93qfwv21

Most read articles by the same author(s)

1 2 3 4 5 6 7 > >> 

Similar Articles

31-39 of 39

You may also start an advanced similarity search for this article.