A Direct Ze-Type Experiment

Authors

  • Jaba Tkemaladze Author

DOI:

https://doi.org/10.65649/d5yt8606

Keywords:

Information-Based Time, Emergent Relativity, Causal Structure, Quantum Zeno Effect, Digital Experiment, Update Counting, Lorentz Factor

Abstract

The Ze framework proposes that proper time is not a geometric parameter but a count of effective information updates, with relativistic kinematics emerging statistically from the dynamics of event processing rather than from assumed spacetime structure. This paper presents a comprehensive experimental programme to test four core Ze postulates across multiple domains. The foundational digital experiment employs identical processors receiving identical input streams operating in maximally sequential versus maximally parallel modes, predicting update count ratios τ_B/τ_A = √(1 - v²) where v represents the proportion of parallel correlations—a functional form identical to the Lorentz factor of special relativity. Physical clock experiments compare internal transition counts in systems with different internal complexity (trapped ions, molecular clocks, optical lattice clocks) under identical relativistic conditions, testing whether proper time correlates with update statistics rather than merely with velocity. Non-inertial experiments subject systems to periodic correlation modulation without changing average velocity, predicting that proper time accumulation depends on causal structure rather than path length alone. Quantum-level experiments leverage programmable quantum computers (IBM, IonQ) to test whether interference corresponds to parallel update distribution and whether the quantum Zeno effect reflects mode switching with measurable update deficits. The Ze framework does not claim special relativity is incorrect but seeks to show it arises as an effective theory from deeper informational principles. Structural convergence with causal set theory, twistor theory, and emergent spacetime frameworks provides indirect support. The digital experiment offers the most direct test: if the relativistic curve emerges from pure information dynamics, it demonstrates that relativistic kinematics are not unique to physics but reflect universal constraints on information processing. Independent replication by multiple groups and derivation of relativity without assuming it would constitute sufficient evidence to attract serious scientific engagement. All proposed experiments are feasible with current technology, and their falsification conditions are clearly specified, ensuring the Ze framework meets the highest standards of empirical testability.

References

Alessandrini, A., Ciaramelletti, C., & Paganelli, S. (2024). Observation of the quantum Zeno effect on a NISQ device. Physica Scripta, 99(9), 095128.

Appleby, S., Chingangbam, P., Park, C., Yogendran, K. P., & Joby, P. K. (2018). Minkowski tensors in three dimensions: Probing the anisotropy generated by redshift space distortion. The Astrophysical Journal, *863*(2), 200.

Araújo, J. S., Khan, K., Aguilar, G. H., & Coelho, A. S. (2025). Programmable interferometer: An application in quantum channels. arXiv preprint, arXiv:2502.18670.

Bothwell, T., Kennedy, C. J., Aeppli, A., Kedar, D., Robinson, J. M., Oelker, E., Staron, A., & Ye, J. (2022). Resolving the gravitational redshift across a millimetre-scale atomic sample. Nature, 602, 420-424.

Cao, T. Y. (1997). Conceptual developments of 20th century field theories. Cambridge University Press.

Cepollaro, C., & Giacomini, F. (2023). Note on the time dilation of charged quantum clocks. Physical Review D, 108(4), 044036.

Chen, B.-H., Chiou, D.-W., & Hsu, H.-C. (2025). Demonstration of Scully-Drühl-type quantum erasers on quantum computers. New Journal of Physics, 27, 074503.

Chiou, D.-W., & Hsu, H.-C. (2024). Complementarity relations of a delayed-choice quantum eraser in a quantum circuit. Quantum Information Processing, 23(1), 18.

Chishtie, F. A. (2025). General relativity as an EFT with emergent gravity via principle of spatial energy potentiality: Implications for the standard model of cosmology. arXiv preprint, arXiv:2502.18524v3.

Constantin, F. L. (2020). Towards probing a variation of fundamental constants with optical clock transitions of ¹²⁷I₂. In *Proceedings of the 2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF)*. IEEE.

D'Ariano, G. M., & Tosini, A. (2013). Emergence of space–time from topologically homogeneous causal networks. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 44(3), 294-299.

Dowker, F. (2011). Spacetime discreteness, Lorentz invariance and locality. Journal of Physics: Conference Series, 306, 012016.

Dowker, F., Henson, J., & Sorkin, R. D. (2004). Quantum gravity phenomenology, Lorentz invariance and discreteness. Modern Physics Letters A, 19(24), 1829-1840.

Eastwood, M., LeBrun, C., & Mason, L. (Eds.). (2014). Progress in twistor theory [Special issue]. Symmetry, Integrability and Geometry: Methods and Applications, 10.

Emergent gravity and gauge interactions from a dynamical temporal field. (2025). Reports in Advances of Physical Sciences. https://doi.org/10.1142/S2424942425500173

Fang, S., Chen, J., & Ishii, H. (2016). Towards integrating control and information theories: From information-theoretic measures to control performance limitations. Springer.

Franceschetto, G., Pagliaro, E., Pereira, L., Zambrano, L., & Acín, A. (2025). Hamiltonian learning via quantum Zeno effect. arXiv preprint, arXiv:2509.15713.

Friedman, Y., & Gofman, Y. (2010). A new relativistic kinematics of accelerated systems. Physica Scripta, 82(1), 015004.

Ghasemi, A. H. (2025). Relational emergent time for quantum system: A multi-observer, gravitational, and cosmological framework. arXiv preprint, arXiv:2512.15789.

Hammerer, K., et al. (2022). Ab initio quantum theory of mass defect and time dilation in trapped-ion optical clocks. Physical Review A, 106, 032803.

Jaba, T. (2022). Dasatinib and quercetin: short-term simultaneous administration yields senolytic effect in humans. Issues and Developments in Medicine and Medical Research Vol. 2, 22-31.

Jizba, P., & Scardigli, F. (2013). Special relativity induced by granular space. European Physical Journal C, 73, 2491.

Leuenberger, G. (2022). Emergence of Minkowski-spacetime by simple deterministic graph rewriting. Universe, 8(3), 149.

Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E., & Schmidt, P. O. (2015). Optical atomic clocks. Reviews of Modern Physics, 87(2), 637-701.

Margalit, Y., et al. (2015). Realization of a complete which-path witness for a matter-wave interferometer. Science, 349(6253), 1205-1208.

Margalit, Y., Zhou, Z., Machluf, S., Rohrlich, D., Japha, Y., & Folman, R. (2015). Realization of a complete which-path witness for a matter-wave interferometer. Science, 349(6253), 1205-1208.

Martinez Lahuerta, V. J., Eilers, S., Schulte, M., Mehlstäubler, T., Schmidt, P., & Hammerer, K. (2021). Mass defect, time dilation and second order Doppler effect in trapped-ion optical clocks. Verhandlungen der Deutschen Physikalischen Gesellschaft, A 6.4.

MathOverflow. (2024). There are no Lorentz-invariant probability distributions on Minkowski space. https://mathoverflow.net/

Minazzoli, O. (2015). Galilean relativity and special relativity. Scholarpedia.

NASA. (1987). Time-partitioning simulation models for calculation on parallel computers (NASA Technical Reports Server Document 19870011333).

Nerlich, G. (1994). Ontology and methodology in relativity. In What spacetime explains: Metaphysical essays on space and time (pp. 11-16). Cambridge University Press.

Penrose, R. (1999). The central programme of twistor theory. Chaos, Solitons & Fractals, 10(2-3), 581-611.

Penrose, R. (2014). Preface. In M. Eastwood, C. LeBrun, & L. Mason (Eds.), Progress in twistor theory [Special issue]. Symmetry, Integrability and Geometry: Methods and Applications, 10.

QSNET Consortium. (2022). Molecule clock. Imperial College London Centre for Cold Matter.

Roura, A. (2025). Atom interferometer as a freely falling clock for time-dilation measurements. Quantum Science and Technology, 10(2), 025004.

Roura, A., Schubert, C., Schlippert, D., & Rasel, E. M. (2021). Measuring gravitational time dilation with delocalized quantum superpositions. Physical Review D, 104(8), 084001.

Schioppo, M., Kronjäger, J., Silva, A., Ilieva, R., Paterson, J. W., Baynham, C. F. A., Bowden, W., Hill, I. R., Hobson, R., Vianello, A., Dovale-Álvarez, M., Williams, R. A., Grosche, G., Margolis, H. S., & Tétu, P. (2022). A transportable optical clock for space applications. Nature Communications, 13, 207.

Smith, A. R. H., & Ahmadi, M. (2020). Quantum clocks observe classical and quantum time dilation. Nature Communications, 11, 5360.

Srinivasan, A. (2005). Latency tolerance through parallelization of time in scientific applications. Parallel Computing, *31*(7), 777-796.

Takamoto, M., Hong, F.-L., Higashi, R., & Katori, H. (2005). An optical lattice clock. Nature, 435, 321-324.

Tkemaladze, J. (2023). Reduction, proliferation, and differentiation defects of stem cells over time: a consequence of selective accumulation of old centrioles in the stem cells?. Molecular Biology Reports, 50(3), 2751-2761. DOI : https://pubmed.ncbi.nlm.nih.gov/36583780/

Tkemaladze, J. (2024). Editorial: Molecular mechanism of ageing and therapeutic advances through targeting glycative and oxidative stress. Front Pharmacol. 2024 Mar 6;14:1324446. DOI : 10.3389/fphar.2023.1324446. PMID: 38510429; PMCID: PMC10953819.

Tkemaladze, J. (2026). Old Centrioles Make Old Bodies. Annals of Rejuvenation Science, 1(1). DOI : https://doi.org/10.65649/yx9sn772

Tkemaladze, J. (2026). Visions of the Future. Longevity Horizon, 2(1). DOI : https://doi.org/10.65649/8be27s21

Virzì, S., Avella, A., Piacentini, F., Gramegna, M., Opatrný, T., Kofman, A. G., Kurizki, G., Gherardini, S., Caruso, F., Degiovanni, I. P., & Genovese, M. (2022). Quantum Zeno and anti-Zeno probes of noise correlations in photon polarization. Physical Review Letters, *129*(3), 030401.

Virzì, S., Avella, A., Piacentini, F., Gramegna, M., Opatrný, T., Kofman, A. G., Kurizki, G., Gherardini, S., Caruso, F., Degiovanni, I. P., & Genovese, M. (2022). Quantum Zeno and anti-Zeno probes of noise correlations in photon polarization. Physical Review Letters, 129(3), 030401.

Virzì, S., Avella, A., Piacentini, F., Gramegna, M., Opatrný, T., Kofman, A. G., Kurizki, G., Gherardini, S., Caruso, F., Degiovanni, I. P., & Genovese, M. (2022). Quantum Zeno and anti-Zeno probes of noise correlations in photon polarization. Physical Review Letters, 129(3), 030401. [citation:11]

Downloads

Published

2026-02-22

Issue

Section

In Silico Experimentation

How to Cite

Tkemaladze, J. (2026). A Direct Ze-Type Experiment. Longevity Horizon, 2(4). DOI : https://doi.org/10.65649/d5yt8606

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 9 > >> 

Similar Articles

1-10 of 59

You may also start an advanced similarity search for this article.