Identifying Centriole-associated Factors That Induce Differentiation
DOI:
https://doi.org/10.65649/kxemyq77Keywords:
Centriole, Differentiation, Cell Fate, Asymmetric Division, Signal Transduction, Centrosome, ProteomicsAbstract
The centrosome is fundamentally recognized for its role in cell division and ciliogenesis. However, emerging evidence suggests a non-canonical function: the centriole, particularly the mother centriole, acts as a regulatory hub for cellular differentiation. This article synthesizes data from 65 studies (2010–2024) to test the hypothesis that centrioles are associated with unique sets of regulatory molecules which, upon specific cues, can act as local inducers of cell fate. We systematically identify and classify such Centriole-Associated Fate Determinants (CAFDs), including transcription factors (STAT3, YAP/TAZ, Gli), RNA regulators (Prospero mRNA), kinases (PLK4), and ubiquitin ligase components. We delineate four core mechanistic paradigms governing their function: Asymmetric Segregation, Controlled Release, Local Translation, and Local Degradation. A comparative analysis across neurogenesis, gliogenesis, myogenesis, and mesenchymal differentiation reveals both conserved principles and lineage-specific adaptations of these mechanisms. We further review critical methodological approaches—from centrosomal proteomics to proximity ligation (BioID/APEX) and mRNA-trapping—essential for discovering CAFDs. Finally, we propose an integrative "Centriolar Decision-Making Conveyor" model, positioning this organelle as an active processing station that integrates signals and dispatches instructive cues to the nucleus. This refines our understanding of cell fate specification and highlights the therapeutic potential of manipulating centriolar signaling to direct differentiation in regenerative medicine and oncology.
References
Andersen, J. S., Wilkinson, C. J., Mayor, T., Mortensen, P., Nigg, E. A., & Mann, M. (2003). Proteomic characterization of the human centrosome by protein correlation profiling. Nature, 426(6966), 570–574. DOI: https://doi.org/10.1038/nature02166
Arquint, C., & Nigg, E. A. (2016). The PLK4–STIL–SAS-6 module at the core of centriole duplication. Biochemical Society Transactions, 44(5), 1253–1263. DOI: https://doi.org/10.1042/BST20160116
Bangs, F., & Anderson, K. V. (2017). Primary cilia and mammalian Hedgehog signaling. Cold Spring Harbor Perspectives in Biology, 9(5), a028175. DOI: https://doi.org/10.1101/cshperspect.a028175
Barenz, F., Mayilo, D., & Gruss, O. J. (2011). Centriolar satellites: busy orbits around the centrosome. European Journal of Cell Biology, 90(12), 983–989. DOI: https://doi.org/10.1016/j.ejcb.2011.07.007
Betschinger, J., & Knoblich, J. A. (2004). Dare to be different: asymmetric cell division in Drosophila, C. elegans and vertebrates. Current Biology, 14(16), R674–R685. DOI: https://doi.org/10.1016/j.cub.2004.08.017
Dai, X., Liu, H., Shen, S., Guo, X., Yan, H., Ji, X., ... & Li, S. (2021). YAP activates the Hippo pathway in regulating osteogenesis of mesenchymal stem cells under tension. International Journal of Oral Science, 13(1), 3.
Fong, K. W., Hau, S. Y., Kho, Y. S., Jia, Y., He, L., & Qi, R. Z. (2016). Interaction of CDK5RAP2 with EB1 to track growing microtubule tips and to regulate microtubule dynamics. Molecular Biology of the Cell, 27(22), 3580–3593.
Gilden, J. K., Peck, S., Chen, Y. C. M., & Krummel, M. F. (2012). The septin cytoskeleton facilitates membrane retraction during motility and phagocytosis. Journal of Cell Biology, 196(1), 103–114. DOI: https://doi.org/10.1083/jcb.201105127
Gönczy, P. (2012). Towards a molecular architecture of centriole assembly. Nature Reviews Molecular Cell Biology, 13(7), 425–435. DOI: https://doi.org/10.1038/nrm3373
Holland, A. J., Lan, W., Niessen, S., Hoover, H., & Cleveland, D. W. (2010). Polo-like kinase 4 kinase activity limits centrosome overduplication by autoregulating its own stability. The Journal of Cell Biology, 188(2), 191–198. DOI: https://doi.org/10.1083/jcb.200911102
Hung, V., Udeshi, N. D., Lam, S. S., Loh, K. H., Cox, K. J., Pedram, K., ... & Ting, A. Y. (2016). Spatially resolved proteomic mapping in living cells with the engineered peroxidase APEX2. Nature Protocols, 11(3), 456–475. DOI: https://doi.org/10.1038/nprot.2016.018
Jaba, T. (2022). Dasatinib and quercetin: short-term simultaneous administration yields senolytic effect in humans. Issues and Developments in Medicine and Medical Research Vol. 2, 22-31. DOI: https://doi.org/10.9734/bpi/idmmr/v2/15155D
Kim, M., Kim, T., Johnson, R. L., & Lim, D. S. (2020). Transcriptional co-repressor function of the Hippo pathway transducers YAP and TAZ. Cell Reports, 11(2), 270–282. DOI: https://doi.org/10.1016/j.celrep.2015.03.015
Liao, E. H., Hung, W., Abrams, B., & Zhen, M. (2011). An SCF-like ubiquitin ligase complex that controls presynaptic differentiation. Nature, 480(7375), 111–117.
Mardin, B. R., & Schiebel, E. (2012). Breaking the ties that bind: new advances in centrosome biology. Journal of Cell Biology, 197(1), 11–18. DOI: https://doi.org/10.1083/jcb.201108006
Mitter, S. K., Rao, H. V., Qi, X., Cai, J., Sugrue, A., Dunn, W. A., ... & Rao, V. (2018). Autophagy in the retina: a potential role in age-related macular degeneration. Retinal Degenerative Diseases, 3–14.
Roux, K. J., Kim, D. I., Raida, M., & Burke, B. (2012). A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. The Journal of Cell Biology, 196(6), 801–810. DOI: https://doi.org/10.1083/jcb.201112098
Schneider, L., Clement, C. A., Teilmann, S. C., Pazour, G. J., Hoffmann, E. K., Satir, P., & Christensen, S. T. (2005). PDGFRαα signaling is regulated through the primary cilium in fibroblasts. Current Biology, 15(20), 1861–1866. DOI: https://doi.org/10.1016/j.cub.2005.09.012
Shin, J., Kim, H. C., & Kim, Y. K. (2015). Centrosomal localization of phosphorylated STAT3 is involved in astrocyte differentiation. Experimental & Molecular Medicine, 47(3), e148.
Tanos, B. E., Yang, H. J., Soni, R., Wang, W. J., Macaluso, F. P., Asara, J. M., & Tsou, M. F. (2013). Centriole distal appendages promote membrane docking, leading to cilia initiation. Genes & Development, 27(2), 163–168. DOI: https://doi.org/10.1101/gad.207043.112
Tkemaladze, J. (2023). Reduction, proliferation, and differentiation defects of stem cells over time: a consequence of selective accumulation of old centrioles in the stem cells?. Molecular Biology Reports, 50(3), 2751-2761. DOI : https://pubmed.ncbi.nlm.nih.gov/36583780/ DOI: https://doi.org/10.1007/s11033-022-08203-5
Tkemaladze, J. (2024). Editorial: Molecular mechanism of ageing and therapeutic advances through targeting glycative and oxidative stress. Front Pharmacol. 2024 Mar 6;14:1324446. DOI : 10.3389/fphar.2023.1324446. PMID: 38510429; PMCID: PMC10953819. DOI: https://doi.org/10.3389/fphar.2023.1324446
Tkemaladze, J. (2026). Old Centrioles Make Old Bodies. Annals of Rejuvenation Science, 1(1). DOI : https://doi.org/10.65649/yx9sn772 DOI: https://doi.org/10.65649/yx9sn772
Tkemaladze, J. (2026). Visions of the Future. Longevity Horizon, 2(1). DOI : https://doi.org/10.65649/8be27s21 DOI: https://doi.org/10.65649/8be27s21
Vertii, A., Hehnly, H., & Doxsey, S. (2016). The centrosome, a multitalented renaissance organelle. Cold Spring Harbor Perspectives in Biology, 8(12), a025049. DOI: https://doi.org/10.1101/cshperspect.a025049
Wallingford, J. B., & Mitchell, B. (2011). Strange as it may seem: the many links between Wnt signaling, planar cell polarity, and cilia. Genes & Development, 25(3), 201–213. DOI: https://doi.org/10.1101/gad.2008011
Wang, W. J., & Stearns, T. (2017). Centriole asymmetry determines algal cell geometry. Current Opinion in Plant Biology, 35, 61–66.
Wang, X., Tsai, J. W., Imai, J. H., Lian, W. N., Vallee, R. B., & Shi, S. H. (2009). Asymmetric centrosome inheritance maintains neural progenitors in the neocortex. Nature, 461(7266), 947–955. DOI: https://doi.org/10.1038/nature08435
Xie, T. (2012). Control of germline stem cell self-renewal and differentiation in the Drosophila ovary: concerted actions of niche signals and intrinsic factors. Wiley Interdisciplinary Reviews: Developmental Biology, 2(2), 261–273. DOI: https://doi.org/10.1002/wdev.60
Yeh, C. H., Bellon, M., & Nicot, C. (2018). FBXW7: a critical tumor suppressor of human cancers. Molecular Cancer, 17(1), 115. DOI: https://doi.org/10.1186/s12943-018-0857-2
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Jaba Tkemaladze (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
