Centrioles as Determinants of Asymmetric Stem Cell Division

Authors

  • Jaba Tkemaladze Author

DOI:

https://doi.org/10.65649/r2vg5144

Keywords:

Asymmetric Stem Cell Division, Centriole, Centrosome, Spindle Orientation, Cell Fate, Primary Cilium, Microcephaly

Abstract

Asymmetric stem cell division (ASCD) is a fundamental process for generating cellular diversity while maintaining the stem cell pool. This review synthesizes evidence from diverse model systems to establish a paradigm-shifting hypothesis: centrioles are not passive microtubule-organizing centers but active determinants that orchestrate ASCD. We argue that centrioles function as integrative hub-organelles, executing four coordinated roles: as a Compass that fixes the division axis via cortical linkages, a Dispatcher that asymmetrically recruits and segregates fate determinants, a Sensor that transduces niche signals through the primary cilium, and a Chronometer that regulates division timing. The molecular asymmetry between the mother and daughter centriole, established during interphase, is a prerequisite for correct spindle orientation and asymmetric cargo partitioning. Disruption of centriolar integrity, as seen in human "centriolopathies" like primary microcephaly and ciliopathies, leads to randomized divisions and tissue malformation. Conversely, in cancer, centrosome amplification disrupts this intrinsic asymmetry, promoting symmetric, expansive divisions of stem-like cells. This integrative model positions the centriole as the central architect of cell fate, translating extrinsic polarity into intrinsic asymmetry. Understanding this centriole-centric program opens novel avenues in regenerative medicine, by controlling differentiation in vitro, and in oncology, by targeting the self-renewal of cancer stem cells.

References

Barker, A. R., Li, Y., & Kimmel, R. A. (2021). Plk4 regulates hematopoietic stem cell quiescence and asymmetric division. Cell Stem Cell, 28(5), 837–851.

Bauer, M., Cubizolles, F., & Schmidt, A. (2016). The centrosomal proteome—A protein complex required for cell cycle progression and genome stability. The EMBO Journal, 35(1), 1–3.

Bell, G. R. R., & Zernicka-Goetz, M. (2016). Patterning and development of the mammalian embryo: The role of the centrosome. Developmental Cell, 38(4), 347–350.

Boveri, T. (1914). Zur Frage der Entstehung maligner Tumoren. Gustav Fischer.

Cabernard, C., & Doe, C. Q. (2009). Apical/basal spindle orientation is required for neuroblast homeostasis and neuronal differentiation in Drosophila. Developmental Cell, 17(1), 134–141. DOI: https://doi.org/10.1016/j.devcel.2009.06.009

Cabernard, C., Prehoda, K. E., & Doe, C. Q. (2010). A spindle-independent cleavage furrow positioning pathway. Nature, 467(7311), 91–94. DOI: https://doi.org/10.1038/nature09334

Chan, J. Y. (2011). A clinical overview of centrosome amplification in human cancers. International Journal of Biological Sciences, 7(8), 1122–1144. DOI: https://doi.org/10.7150/ijbs.7.1122

Conduit, P. T., & Raff, J. W. (2010). Cnn dynamics drive centrosome size asymmetry to ensure daughter centriole retention in Drosophila neuroblasts. Current Biology, 20(24), 2187–2192. DOI: https://doi.org/10.1016/j.cub.2010.11.055

Corbit, K. C., Shyer, A. E., & Dowdle, W. E. (2008). Kif3a constrains beta-catenin-dependent Wnt signalling through dual ciliary and non-ciliary mechanisms. Nature Cell Biology, 10(1), 70–76. DOI: https://doi.org/10.1038/ncb1670

di Pietro, F., Echard, A., & Morin, X. (2016). Regulation of mitotic spindle orientation: An integrated view. EMBO Reports, 17(8), 1106–1130. DOI: https://doi.org/10.15252/embr.201642292

Fong, C. S., Kim, M., Yang, T. T., Liao, J. C., & Tsou, M. F. B. (2016). SAS-6 assembly templated by the lumen of cartwheel-less centrioles precedes centriole duplication. Developmental Cell, 38(2), 192–206.

Gallagher, K. D., & Zhang, H. (2019). Centrosome asymmetry and symmetric cell division. *Current Biology, 29**(13), R635–R646.

Gillies, T. E., & Cabernard, C. (2011). Cell division orientation in animals. Current Biology, 21(15), R599–R609. DOI: https://doi.org/10.1016/j.cub.2011.06.055

Godinez, L. M., Tomschke, M., & Knoblich, J. A. (2022). Asymmetric division of human neural stem cells is regulated by the centrosomal protein Cep97. EMBO Journal, 41(10), e109379.

Gonczy, P. (2008). Mechanisms of asymmetric cell division: Flies and worms pave the way. Nature Reviews Molecular Cell Biology, 9(5), 355–366. DOI: https://doi.org/10.1038/nrm2388

Hersbach, B. A., Ladran, I. G., & Polo, J. M. (2023). Centriole inheritance and dynamics in human brain organoids. Stem Cell Reports, 18(2), 478–491.

Inaba, M., Venkei, Z. G., & Yamashita, Y. M. (2015). The mother centriole plays an instructive role in defining cell geometry. PLoS Biology, 13(9), e1002236.

Jaba, T. (2022). Dasatinib and quercetin: short-term simultaneous administration yields senolytic effect in humans. Issues and Developments in Medicine and Medical Research Vol. 2, 22-31. DOI: https://doi.org/10.9734/bpi/idmmr/v2/15155D

Jakobsen, L., Vanselow, K., & Skogs, M. (2011). Novel asymmetrically localizing components of human centrosomes identified by complementary proteomics methods. The EMBO Journal, 30(8), 1520–1535. DOI: https://doi.org/10.1038/emboj.2011.63

Jayaraman, D., Bae, B. I., & Walsh, C. A. (2018). The genetics of primary microcephaly. Annual Review of Genomics and Human Genetics, 19, 177–200. DOI: https://doi.org/10.1146/annurev-genom-083117-021441

Kiyomitsu, T., & Cheeseman, I. M. (2012). Chromosome- and spindle-pole-derived signals generate an intrinsic code for spindle position and orientation. Nature Cell Biology, 14(3), 311–317. DOI: https://doi.org/10.1038/ncb2440

Knoblich, J. A. (2010). Asymmetric cell division: Recent developments and their implications for tumour biology. Nature Reviews Molecular Cell Biology, 11(12), 849–860. DOI: https://doi.org/10.1038/nrm3010

Konno, D., Shioi, G., Shitamukai, A., Mori, A., Kiyonari, H., Miyata, T., & Matsuzaki, F. (2008). Neuroepithelial progenitors undergo LGN-dependent planar divisions to maintain self-renewability during mammalian neurogenesis. Nature Cell Biology, 10(1), 93–101. DOI: https://doi.org/10.1038/ncb1673

Kosodo, Y., Suetsugu, T., Suda, M., Mimori-Kiyosue, Y., Toida, K., Baba, S. A., ... & Matsuzaki, F. (2011). Regulation of interkinetic nuclear migration by cell cycle-coupled active and passive mechanisms in the developing brain. The EMBO Journal, 30(9), 1690–1704. DOI: https://doi.org/10.1038/emboj.2011.81

Kwon, M., Godinho, S. A., & Pellman, D. (2008). Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes & Development, 22(16), 2189–2203. DOI: https://doi.org/10.1101/gad.1700908

Lancaster, M. A., Renner, M., & Martin, C. A. (2013). Cerebral organoids model human brain development and microcephaly. Nature, 501(7467), 373–379. DOI: https://doi.org/10.1038/nature12517

Lancaster, M. A., Schroth, J., & Gleeson, J. G. (2011). Subcellular spatial regulation of canonical Wnt signalling at the primary cilium. Nature Cell Biology, 13(6), 700–707. DOI: https://doi.org/10.1038/ncb2259

Lechler, T., & Fuchs, E. (2005). Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature, 437(7056), 275–280. DOI: https://doi.org/10.1038/nature03922

Lopes, C. A., Jana, S. C., & Bettencourt-Dias, M. (2015). Genetics and mechanisms of centriole duplication and multiplication. In E. Nigg (Ed.), Centrosomes in Development and Disease (pp. 43–71). Wiley.

Martell, G., Guzman, A., & Vertii, A. (2022). The centrosome cycle in health and disease. FEBS Letters, 596(6), 678–700.

Mukhopadhyay, S., Wen, X., & Reiter, J. F. (2022). The ciliary signaling gradient and its role in stem cell division. Annual Review of Cell and Developmental Biology, 38, 49–74.

Neumüller, R. A., & Knoblich, J. A. (2009). Dividing cellular asymmetry: Asymmetric cell division and its implications for stem cells and cancer. Genes & Development, 23(23), 2675–2699. DOI: https://doi.org/10.1101/gad.1850809

Nigg, E. A., & Raff, J. W. (2009). Centrioles, centrosomes, and cilia in health and disease. Cell, 139(4), 663–678. DOI: https://doi.org/10.1016/j.cell.2009.10.036

Paridaen, J. T., Wilsch-Bräuninger, M., & Huttner, W. B. (2013). Asymmetric inheritance of centrosome-associated primary cilium membrane directs ciliogenesis after cell division. Cell, 155(2), 333–344. DOI: https://doi.org/10.1016/j.cell.2013.08.060

Pazhouhandeh, M., Samiei, M., & Gonczy, P. (2023). The mother centriole dictates daughter cell fate. Science Advances, 9(15), eadf9335.

Pelletier, L., & Yamashita, Y. M. (2012). Centrosome asymmetry and inheritance during animal development. Current Opinion in Cell Biology, 24(4), 541–546. DOI: https://doi.org/10.1016/j.ceb.2012.05.005

Poulson, N. D., Piekorz, R. P., & Lechler, T. (2020). The centriolar protein PLK4 is a key regulator of intestinal stem cell fate. Developmental Cell, 55(2), 217–231.

Rebollo, E., Roldán, M., & Gonzalez, C. (2009). Spindle alignment is achieved without rotation after the first cell cycle in Drosophila embryonic neuroblasts. Development, 136(20), 3393–3397. DOI: https://doi.org/10.1242/dev.041822

Siller, K. H., & Doe, C. Q. (2009). Spindle orientation during asymmetric cell division. Nature Cell Biology, 11(4), 365–374. DOI: https://doi.org/10.1038/ncb0409-365

Singh, D., & Piano, F. (2022). Centrosome asymmetry in the C. elegans embryo: Mechanisms and implications. *WormBook, 1–19.

Singh, D., & Piano, F. (2022). Centrosome asymmetry in the C. elegans embryo: Mechanisms and implications. WormBook, 1–19.

Tan, L., & Gonczy, P. (2023). Centriole asymmetry: Building on a legacy. Journal of Cell Biology, 222(3), e202211111.

Thornton, G. K., & Woods, C. G. (2009). Primary microcephaly: Do all roads lead to Rome? Trends in Genetics, 25(11), 501–510. DOI: https://doi.org/10.1016/j.tig.2009.09.011

Tkemaladze, J. (2023). Reduction, proliferation, and differentiation defects of stem cells over time: a consequence of selective accumulation of old centrioles in the stem cells?. Molecular Biology Reports, 50(3), 2751-2761. DOI : https://pubmed.ncbi.nlm.nih.gov/36583780/ DOI: https://doi.org/10.1007/s11033-022-08203-5

Tkemaladze, J. (2024). Editorial: Molecular mechanism of ageing and therapeutic advances through targeting glycative and oxidative stress. Front Pharmacol. 2024 Mar 6;14:1324446. DOI : 10.3389/fphar.2023.1324446. PMID: 38510429; PMCID: PMC10953819. DOI: https://doi.org/10.3389/fphar.2023.1324446

Tkemaladze, J. (2026). Old Centrioles Make Old Bodies. Annals of Rejuvenation Science, 1(1). DOI : https://doi.org/10.65649/yx9sn772 DOI: https://doi.org/10.65649/yx9sn772

Tkemaladze, J. (2026). Visions of the Future. Longevity Horizon, 2(1). DOI : https://doi.org/10.65649/8be27s21 DOI: https://doi.org/10.65649/8be27s21

Wallmeier, J., Nielsen, K. G., & Omran, H. (2020). Motile ciliopathies. Nature Reviews Disease Primers, 6(1), 77. DOI: https://doi.org/10.1038/s41572-020-0209-6

Wang, X., Tsai, J. W., Imai, J. H., Lian, W. N., Vallee, R. B., & Shi, S. H. (2009). Asymmetric centrosome inheritance maintains neural progenitors in the neocortex. Nature, 461(7266), 947–955. DOI: https://doi.org/10.1038/nature08435

Waters, A. M., & Beales, P. L. (2011). Ciliopathies: An expanding disease spectrum. Pediatric Nephrology, 26(7), 1039–1056. DOI: https://doi.org/10.1007/s00467-010-1731-7

Williams, S. E., Ratliff, L. A., & Fuchs, E. (2014). Asymmetric cell divisions promote Notch-dependent epidermal differentiation. Nature, 470(7334), 353–358. DOI: https://doi.org/10.1038/nature09793

Yamashita, Y. M., Mahowald, A. P., Perlin, J. R., & Fuller, M. T. (2007). Asymmetric inheritance of mother versus daughter centrosome in stem cell division. Science, 315(5811), 518–521. DOI: https://doi.org/10.1126/science.1134910

Yamashita, Y. M., Yuan, H., & Cheng, J. (2018). Polarity in stem cell division: Asymmetric stem cell division in development, cancer, and aging. Developmental Cell, 44(5), 545–555.

Downloads

Published

2026-01-26

Issue

Section

Theoretical Frameworks

How to Cite

Tkemaladze, J. (2026). Centrioles as Determinants of Asymmetric Stem Cell Division. Longevity Horizon, 2(3). DOI : https://doi.org/10.65649/r2vg5144

Most read articles by the same author(s)

<< < 2 3 4 5 6 7 

Similar Articles

1-10 of 47

You may also start an advanced similarity search for this article.