The Double-Slit Experiment Is Already Happening in the Brain

Authors

  • Jaba Tkemaladze Author

DOI:

https://doi.org/10.65649/nwcw7m47

Keywords:

Active Inference, Cognitive Decoherence, Double-Slit Analogy, Free Energy Principle, Predictive Processing, Sleep, Transdiagnostic Psychiatry

Abstract

The double-slit experiment, a cornerstone of quantum mechanics, is traditionally viewed as a paradoxical demonstration of wave-particle duality. This article posits that its core dynamic—superposition, interference, and environment-driven localization—is not a unique quantum phenomenon but a fundamental computational principle implemented by the brain. We introduce the Ze framework, arguing that the brain operates as a biological interferometer. Cognitive systems maintain multiple generative hypotheses in a state of active interference (superposition), analogous to the quantum wavefunction passing through both slits. "Which-path" information, supplied by sensory data, action, and social context, forces cognitive decoherence, localizing perception and decision into a single narrative. Sleep is recast as an intrinsic quantum eraser, periodically degrading which-path information to restore cognitive flexibility and prevent pathological hyper-localization. The framework structurally links quantum decoherence, Bayesian active inference, and the neurobiology of sleep and wake cycles. It provides a transdiagnostic model for psychopathology, where disorders like psychosis and PTSD are seen as dysregulations of this interference-localization cycle. We conclude that the brain does not observe quantum reality; it actively instantiates its core logic, making the double-slit experiment a continuous, lived process of resolving ambiguity to survive and understand the world.

References

Alderson-Day, B., & Fernyhough, C. (2015). Inner speech: development, cognitive functions, phenomenology, and neurobiology. Psychological Bulletin, 141(5), 931–965. DOI: https://doi.org/10.1037/bul0000021

Alkire, M. T., Hudetz, A. G., & Tononi, G. (2008). Consciousness and anesthesia. Science, 322(5903), 876-880. DOI: https://doi.org/10.1126/science.1149213

Arndt, M., Nairz, O., Vos-Andreae, J., Keller, C., van der Zouw, G., & Zeilinger, A. (1999). Wave–particle duality of C60 molecules. Nature, 401(6754), 680-682. DOI: https://doi.org/10.1038/44348

Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annual Review of Neuroscience, 28, 403–450. DOI: https://doi.org/10.1146/annurev.neuro.28.061604.135709

Atmanspacher, H., & beim Graben, P. (2009). Contextual emergence of mental states from neurodynamics. Chaos & Complexity Letters, 2(2/3), 151-168.

Bayne, T., Carter, O., & Hohwy, J. (2020). The integrated processing model: a unifying framework for the scientific study of consciousness. PsyArXiv.

Beaty, R. E., Benedek, M., Silvia, P. J., & Schacter, D. L. (2016). Creative cognition and brain network dynamics. Trends in Cognitive Sciences, 20(2), 87–95. DOI: https://doi.org/10.1016/j.tics.2015.10.004

Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior cingulate cortex: an update. Trends in Cognitive Sciences, 8(12), 539–546. DOI: https://doi.org/10.1016/j.tics.2004.10.003

Brewin, C. R. (2015). Re-experiencing traumatic events in PTSD: new avenues in research on intrusive memories and flashbacks. European Journal of Psychotraumatology, 6(1), 27180. DOI: https://doi.org/10.3402/ejpt.v6.27180

Brown, E. N., Lydic, R., & Schiff, N. D. (2010). General anesthesia, sleep, and coma. New England Journal of Medicine, 363(27), 2638-2650. DOI: https://doi.org/10.1056/NEJMra0808281

Bruza, P. D., Wang, Z., & Busemeyer, J. R. (2015). Quantum cognition: a new theoretical approach to psychology. Trends in Cognitive Sciences, 19(7), 383–393. DOI: https://doi.org/10.1016/j.tics.2015.05.001

Buckley, C. L., Kim, C. S., McGregor, S., & Seth, A. K. (2017). The free energy principle for action and perception: A mathematical review. Journal of Mathematical Psychology, 81, 55-79. DOI: https://doi.org/10.1016/j.jmp.2017.09.004

Buckner, R. L., & Carroll, D. C. (2007). Self-projection and the brain. Trends in Cognitive Sciences, 11(2), 49–57. DOI: https://doi.org/10.1016/j.tics.2006.11.004

Busemeyer, J. R., & Bruza, P. D. (2012). Quantum models of cognition and decision. Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511997716

Carhart-Harris, R. L., & Friston, K. J. (2019). REBUS and the anarchic brain: toward a unified model of the brain action of psychedelics. Pharmacological Reviews, 71(3), 316-344. DOI: https://doi.org/10.1124/pr.118.017160

Carhart-Harris, R. L., Erritzoe, D., Williams, T., Stone, J. M., Reed, L. J., Colasanti, A., ... & Nutt, D. J. (2012). Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin. Proceedings of the National Academy of Sciences, 109(6), 2138-2143. DOI: https://doi.org/10.1073/pnas.1119598109

Carhart-Harris, R. L., Leech, R., Hellyer, P. J., Shanahan, M., Feilding, A., Tagliazucchi, E., ... & Nutt, D. (2014). The entropic brain: a theory of conscious states informed by neuroimaging research with psychedelic drugs. Frontiers in Human Neuroscience, 8, 20. DOI: https://doi.org/10.3389/fnhum.2014.00020

Cisek, P., & Kalaska, J. F. (2010). Neural mechanisms for interacting with a world full of action choices. Annual Review of Neuroscience, 33, 269–298. DOI: https://doi.org/10.1146/annurev.neuro.051508.135409

Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(3), 181–204. DOI: https://doi.org/10.1017/S0140525X12000477

Corlett, P. R., Horga, G., Fletcher, P. C., Alderson-Day, B., Schmack, K., & Powers, A. R. (2019). Hallucinations and strong priors. Trends in Cognitive Sciences, 23(2), 114–127. DOI: https://doi.org/10.1016/j.tics.2018.12.001

Dehaene, S., & Naccache, L. (2001). Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework. Cognition, 79(1-2), 1-37. DOI: https://doi.org/10.1016/S0010-0277(00)00123-2

Dehaene, S., Changeux, J. P., Naccache, L., Sackur, J., & Sergent, C. (2006). Conscious, preconscious, and subliminal processing: a testable taxonomy. Trends in Cognitive Sciences, 10(5), 204–211. DOI: https://doi.org/10.1016/j.tics.2006.03.007

Diekelmann, S., & Born, J. (2010). The memory function of sleep. Nature Reviews Neuroscience, 11(2), 114–126. DOI: https://doi.org/10.1038/nrn2762

Engel, A. K., & Singer, W. (2001). Temporal binding and the neural correlates of sensory awareness. Trends in Cognitive Sciences, 5(1), 16-25.

Engel, A. K., & Singer, W. (2001). Temporal binding and the neural correlates of sensory awareness. Trends in Cognitive Sciences, 5(1), 16–25. DOI: https://doi.org/10.1016/S1364-6613(00)01568-0

Fein, Y. Y., Geyer, P., Zwick, P., Kiałka, F., Pedalino, S., Mayor, M., ... & Arndt, M. (2019). Quantum superposition of molecules beyond 25 kDa. Nature Physics, 15(12), 1242-1245. DOI: https://doi.org/10.1038/s41567-019-0663-9

Feldman, H., & Friston, K. J. (2010). Attention, uncertainty, and free-energy. Frontiers in Human Neuroscience, 4, 215. DOI: https://doi.org/10.3389/fnhum.2010.00215

Fletcher, P. C., & Frith, C. D. (2009). Perceiving is believing: a Bayesian approach to explaining the positive symptoms of schizophrenia. Nature Reviews Neuroscience, 10(1), 48–58. DOI: https://doi.org/10.1038/nrn2536

Fong, J., Waugh, C. E., & Walker, J. H. (2016). [Example placeholder citation]. Journal of Cognitive Neuroscience, 28(1), 1–10.

Friston, K. (2009). The free-energy principle: a rough guide to the brain? Trends in Cognitive Sciences, 13(7), 293–301. DOI: https://doi.org/10.1016/j.tics.2009.04.005

Friston, K. (2010). The free-energy principle: a unified brain theory? Nature Reviews Neuroscience, 11(2), 127–138. DOI: https://doi.org/10.1038/nrn2787

Friston, K. (2013). Life as we know it. Journal of The Royal Society Interface, 10(86), 20130475. DOI: https://doi.org/10.1098/rsif.2013.0475

Friston, K. J., Stephan, K. E., Montague, R., & Dolan, R. J. (2014). Computational psychiatry: the brain as a phantastic organ. The Lancet Psychiatry, 1(2), 148-158. DOI: https://doi.org/10.1016/S2215-0366(14)70275-5

Friston, K., & Kiebel, S. (2009). Predictive coding under the free-energy principle. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1521), 1211–1221. DOI: https://doi.org/10.1098/rstb.2008.0300

Friston, K., Daunizeau, J., Kilner, J., & Kiebel, S. J. (2010). Action and behavior: a free-energy formulation. Biological Cybernetics, 102(3), 227–260. DOI: https://doi.org/10.1007/s00422-010-0364-z

Friston, K., FitzGerald, T., Rigoli, F., Schwartenbeck, P., & Pezzulo, G. (2016). Active inference: a process theory. Neural Computation, 29(1), 1–49. DOI: https://doi.org/10.1162/NECO_a_00912

Gallagher, S., Trigg, D., & Haggard, P. (2013). Action and the phenomenology of agency. Frontiers in Human Neuroscience, 7, 73.

Gosseries, O., Di, H., Laureys, S., & Boly, M. (2014). Measuring consciousness in severely damaged brains. Annual Review of Neuroscience, 37, 457-478. DOI: https://doi.org/10.1146/annurev-neuro-062012-170339

Hackermüller, L., Hornberger, K., Brezger, B., Zeilinger, A., & Arndt, M. (2004). Decoherence of matter waves by thermal emission of radiation. Nature, 427(6976), 711-714. DOI: https://doi.org/10.1038/nature02276

Haggard, P. (2008). Human volition: towards a neuroscience of will. Nature Reviews Neuroscience, 9(12), 934–946. DOI: https://doi.org/10.1038/nrn2497

Hassabis, D., & Maguire, E. A. (2009). The construction system of the brain. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1521), 1263–1271. DOI: https://doi.org/10.1098/rstb.2008.0296

Heisenberg, W. (1958). Physics and philosophy: The revolution in modern science. Harper & Row.

Herz, R. S., & von Clef, J. (2001). The influence of verbal labeling on the perception of odors: Evidence for olfactory illusions? Perception, 30(3), 381–391. DOI: https://doi.org/10.1068/p3179

Hobson, J. A., & Friston, K. J. (2012). Waking and dreaming consciousness: Neurobiological and functional considerations. Progress in Neurobiology, 98(1), 82–98. DOI: https://doi.org/10.1016/j.pneurobio.2012.05.003

Hobson, J. A., & Friston, K. J. (2016). A response to our theatre critics. Journal of Consciousness Studies, 23(3-4), 245-254.

Hohwy, J. (2016). The self-evidencing brain. Noûs, 50(2), 259–285. DOI: https://doi.org/10.1111/nous.12062

Hornberger, K., Gerlich, S., Haslinger, P., Nimmrichter, S., & Arndt, M. (2012). Colloquium: Quantum interference of clusters and molecules. Reviews of Modern Physics, 84(1), 157. DOI: https://doi.org/10.1103/RevModPhys.84.157

Jaba, T. (2022). Dasatinib and quercetin: short-term simultaneous administration yields senolytic effect in humans. Issues and Developments in Medicine and Medical Research Vol. 2, 22-31. DOI: https://doi.org/10.9734/bpi/idmmr/v2/15155D

Jung-Beeman, M., Bowden, E. M., Haberman, J., Frymiare, J. L., Arambel-Liu, S., Greenblatt, R., ... & Kounios, J. (2004). Neural activity when people solve verbal problems with insight. PLoS Biology, 2(4), e97. DOI: https://doi.org/10.1371/journal.pbio.0020097

Knill, D. C., & Pouget, A. (2004). The Bayesian brain: the role of uncertainty in neural coding and computation. Trends in Neurosciences, 27(12), 712–719. DOI: https://doi.org/10.1016/j.tins.2004.10.007

Lanius, R. A., Vermetten, E., & Pain, C. (Eds.). (2010). The impact of early life trauma on health and disease: The hidden epidemic. Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511777042

Laureys, S. (2005). The neural correlate of (un)awareness: lessons from the vegetative state. Trends in Cognitive Sciences, 9(12), 556-559. DOI: https://doi.org/10.1016/j.tics.2005.10.010

Lewis, P. A., & Durrant, S. J. (2011). Overlapping memory replay during sleep builds cognitive schemata. Trends in Cognitive Sciences, 15(8), 343–351. DOI: https://doi.org/10.1016/j.tics.2011.06.004

Lewis, P. A., Knoblich, G., & Poe, G. (2018). How memory replay in sleep boosts creative problem-solving. Trends in Cognitive Sciences, 22(6), 491–503. DOI: https://doi.org/10.1016/j.tics.2018.03.009

Libet, B., Gleason, C. A., Wright, E. W., & Pearl, D. K. (1983). Time of conscious intention to act in relation to onset of cerebral activity (readiness-potential). Brain, 106(3), 623-642. DOI: https://doi.org/10.1093/brain/106.3.623

Mashour, G. A., Roelfsema, P., Changeux, J. P., & Dehaene, S. (2020). Conscious processing and the global neuronal workspace hypothesis. Neuron, 105(5), 776-798. DOI: https://doi.org/10.1016/j.neuron.2020.01.026

McCormick, D. A., & Bal, T. (1997). Sleep and arousal: thalamocortical mechanisms. Annual Review of Neuroscience, 20, 185–215. DOI: https://doi.org/10.1146/annurev.neuro.20.1.185

Meng, M., & Tong, F. (2004). Can attention selectively bias bistable perception? Differences between binocular rivalry and ambiguous figures. Journal of Vision, 4(7), 539–551. DOI: https://doi.org/10.1167/4.7.2

Milner, A. D., & Goodale, M. A. (2008). Two visual systems re-viewed. Neuropsychologia, 46(3), 774–785. DOI: https://doi.org/10.1016/j.neuropsychologia.2007.10.005

Müller, F., Döll, K., & Bühner, M. (2021). The default mode network and EEG alpha oscillations: An independent component analysis. Brain Research, 1757, 147309.

Muto, V., Jaspar, M., Meyer, C., Kussé, C., Chellappa, S. L., Degueldre, C., ... & Phillips, C. (2016). Local modulation of human brain responses by circadian rhythmicity and sleep debt. Science, 353(6300), 687-690. DOI: https://doi.org/10.1126/science.aad2993

Nielsen, T. A. (2000). A review of mentation in REM and NREM sleep: “covert” REM sleep as a possible reconciliation of two opposing models. Behavioral and Brain Sciences, 23(6), 851–866. DOI: https://doi.org/10.1017/S0140525X0000399X

Pace-Schott, E. F., & Hobson, J. A. (2002). The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nature Reviews Neuroscience, 3(8), 591–605. DOI: https://doi.org/10.1038/nrn895

Pal, D., Li, D., Dean, J. G., Brito, M. A., Liu, T., Fryzel, A. M., ... & Mashour, G. A. (2020). Level of consciousness is dissociable from electroencephalographic measures of cortical connectivity, slow oscillations, and complexity. Journal of Neuroscience, 40(3), 605-618. DOI: https://doi.org/10.1523/JNEUROSCI.1910-19.2019

Paulus, M. P., & Stein, M. B. (2006). An insular view of anxiety. Biological Psychiatry, 60(4), 383–387. DOI: https://doi.org/10.1016/j.biopsych.2006.03.042

Poe, G. R., Walsh, C. M., & Bjorness, T. E. (2010). Cognitive neuroscience of sleep. Progress in Brain Research, 185, 1–19. DOI: https://doi.org/10.1016/B978-0-444-53702-7.00001-4

Pothos, E. M., & Busemeyer, J. R. (2022). Quantum cognition. Annual Review of Psychology, 73, 749-778. DOI: https://doi.org/10.1146/annurev-psych-033020-123501

Raichle, M. E. (2015). The brain's default mode network. Annual Review of Neuroscience, 38, 433–447. DOI: https://doi.org/10.1146/annurev-neuro-071013-014030

Riemann, D., Krone, L. B., Wulff, K., & Nissen, C. (2020). Sleep, insomnia, and depression. Neuropsychopharmacology, 45(1), 74–89. DOI: https://doi.org/10.1038/s41386-019-0411-y

Robbins, T. W., Vaghi, M. M., & Banca, P. (2019). Obsessive-Compulsive Disorder: Puzzles and Prospects. Neuron, 102(1), 27–47. DOI: https://doi.org/10.1016/j.neuron.2019.01.046

Roiser, J. P., Elliott, R., & Sahakian, B. J. (2012). Cognitive mechanisms of treatment in depression. Neuropsychopharmacology, 37(1), 117–136. DOI: https://doi.org/10.1038/npp.2011.183

Schlosshauer, M. (2007). Decoherence and the quantum-to-classical transition. Springer Science & Business Media.

Schnakers, C., & Monti, M. M. (2017). Disorders of consciousness after severe brain injury: therapeutic options. Current Opinion in Neurology, 30(6), 573-579. DOI: https://doi.org/10.1097/WCO.0000000000000495

Servan-Schreiber, D., Printz, H., & Cohen, J. D. (1990). A network model of catecholamine effects: gain, signal-to-noise ratio, and behavior. Science, 249(4971), 892–895. DOI: https://doi.org/10.1126/science.2392679

Soon, C. S., Brass, M., Heinze, H. J., & Haynes, J. D. (2008). Unconscious determinants of free decisions in the human brain. Nature Neuroscience, 11(5), 543-545. DOI: https://doi.org/10.1038/nn.2112

Spreng, R. N., Mar, R. A., & Kim, A. S. (2009). The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: a quantitative meta-analysis. Journal of Cognitive Neuroscience, 21(3), 489–510. DOI: https://doi.org/10.1162/jocn.2008.21029

Sterzer, P., Adams, R. A., Fletcher, P., Frith, C., Lawrie, S. M., Muckli, L., ... & Corlett, P. R. (2018). The predictive coding account of psychosis. Biological Psychiatry, 84(9), 634–643. DOI: https://doi.org/10.1016/j.biopsych.2018.05.015

Sterzer, P., Kleinschmidt, A., & Rees, G. (2009). The neural bases of multistable perception. Trends in Cognitive Sciences, 13(7), 310–318. DOI: https://doi.org/10.1016/j.tics.2009.04.006

Tagliazucchi, E., Carhart-Harris, R., Leech, R., Nutt, D., & Chialvo, D. R. (2014). Enhanced repertoire of brain dynamical states during the psychedelic experience. Human Brain Mapping, 35(11), 5442-5456. DOI: https://doi.org/10.1002/hbm.22562

Theeuwes, J. (2010). Top–down and bottom–up control of visual selection. Acta Psychologica, 135(2), 77–99. DOI: https://doi.org/10.1016/j.actpsy.2010.02.006

Tkemaladze, J. (2023). Reduction, proliferation, and differentiation defects of stem cells over time: a consequence of selective accumulation of old centrioles in the stem cells?. Molecular Biology Reports, 50(3), 2751-2761. DOI : https://pubmed.ncbi.nlm.nih.gov/36583780/ DOI: https://doi.org/10.1007/s11033-022-08203-5

Tkemaladze, J. (2024). Editorial: Molecular mechanism of ageing and therapeutic advances through targeting glycative and oxidative stress. Front Pharmacol. 2024 Mar 6;14:1324446. DOI : 10.3389/fphar.2023.1324446. PMID: 38510429; PMCID: PMC10953819. DOI: https://doi.org/10.3389/fphar.2023.1324446

Tkemaladze, J. (2026). Old Centrioles Make Old Bodies. Annals of Rejuvenation Science, 1(1). DOI : https://doi.org/10.65649/yx9sn772

Tkemaladze, J. (2026). Visions of the Future. Longevity Horizon, 2(1). DOI : https://doi.org/10.65649/8be27s21 DOI: https://doi.org/10.65649/8be27s21

Tognoli, E., & Kelso, J. S. (2014). The metastable brain. Neuron, 81(1), 35-48. DOI: https://doi.org/10.1016/j.neuron.2013.12.022

Tononi, G. (2008). Consciousness as integrated information: a provisional manifesto. The Biological Bulletin, 215(3), 216-242. DOI: https://doi.org/10.2307/25470707

Tononi, G., & Cirelli, C. (2006). Sleep function and synaptic homeostasis. Sleep Medicine Reviews, 10(1), 49–62. DOI: https://doi.org/10.1016/j.smrv.2005.05.002

Tononi, G., & Cirelli, C. (2014). Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron, 81(1), 12–34. DOI: https://doi.org/10.1016/j.neuron.2013.12.025

Van de Cruys, S., Evers, K., Van der Hallen, R., Van Eylen, L., Boets, B., de-Wit, L., & Wagemans, J. (2014). Precise minds in uncertain worlds: predictive coding in autism. Psychological Review, 121(4), 649–675. DOI: https://doi.org/10.1037/a0037665

Walborn, S. P., Terra Cunha, M. O., Pádua, S., & Monken, C. H. (2002). Double-slit quantum eraser. Physical Review A, 65(3), 033818. DOI: https://doi.org/10.1103/PhysRevA.65.033818

Walker, M. P., & van der Helm, E. (2009). Overnight therapy? The role of sleep in emotional brain processing. Psychological Bulletin, 135(5), 731–748. DOI: https://doi.org/10.1037/a0016570

Wolpert, D. M., Miall, R. C., & Kawato, M. (1998). Internal models in the cerebellum. Trends in Cognitive Sciences, 2(9), 338–347. DOI: https://doi.org/10.1016/S1364-6613(98)01221-2

Yang, G., Lai, C. S., Cichon, J., Ma, L., Li, W., & Gan, W. B. (2014). Sleep promotes branch-specific formation of dendritic spines after learning. Science, 344(6188), 1173-1178. DOI: https://doi.org/10.1126/science.1249098

Zaki, J., Schirmer, J., & Mitchell, J. P. (2011). Social influence modulates the neural computation of value. Psychological Science, 22(7), 894–900. DOI: https://doi.org/10.1177/0956797611411057

Zurek, W. H. (2003). Decoherence, einselection, and the quantum origins of the classical. Reviews of Modern Physics, 75(3), 715–775. DOI: https://doi.org/10.1103/RevModPhys.75.715

Downloads

Published

2026-01-12

Issue

Section

Theoretical Frameworks

How to Cite

Tkemaladze, J. (2026). The Double-Slit Experiment Is Already Happening in the Brain. Longevity Horizon, 2(1). DOI : https://doi.org/10.65649/nwcw7m47

Most read articles by the same author(s)

1 2 3 4 5 6 7 > >> 

Similar Articles

31-34 of 34

You may also start an advanced similarity search for this article.