Ex Vivo Manipulation Strategies for Directed Stem Cell Differentiation

Authors

  • Jaba Tkemaladze Author

DOI:

https://doi.org/10.65649/hmrj2g17

Keywords:

Directed Differentiation, Stem Cells, Centrosome, Centriole, Cell Fate Determination, Regenerative Medicine, Ex Vivo Manipulation

Abstract

Directed differentiation of stem cells into functional somatic cell types ex vivo remains a cornerstone of regenerative medicine, yet conventional approaches relying solely on soluble factor modulation have reached a plateau in efficiency, homogeneity, and functional maturation. This review synthesizes classical and emerging manipulation strategies, with emphasis on the centrosome as an underappreciated but critical regulator of cell fate decisions. Classical methods—including growth factor-mediated chemical induction, matrix-engineered scaffolds, and coculture systems—are systematically evaluated for their strengths and limitations. Genetic engineering approaches utilizing transcription factor overexpression and CRISPR/Cas9-mediated reporter generation are discussed as tools for enhancing purity and enabling real-time fate monitoring. Physical stimulation through bioreactors delivering pulsatile flow, mechanical stretch, and electrical fields is examined for its capacity to engage mechanotransductive pathways that converge on the centrosome. The core of this review introduces pioneering strategies targeting centrioles and associated cell fate determination systems (CAFDs), including pharmacological modulation of centriolar kinases (PLK4, NEK2, Aurora A), optogenetic control of CAFD localization, nanoparticle-mediated delivery to centrosomes, magnetic manipulation of centrosome position, and pharmacological stimulation of ciliogenesis. An integrative protocol for generating functional dopaminergic neurons is presented as a proof-of-concept, sequentially incorporating centriole priming, dual SMAD inhibition, ciliogenesis-enhanced ventral specification, mechanical maturation, and reporter-based purification. Critical quality assessment methodologies—super-resolution imaging, ciliogenesis assays, spindle orientation analysis, single-cell omics, and transplantation validation—are outlined. Finally, key challenges including safety validation, persistent heterogeneity, scalability limitations, and ethical considerations are addressed. The emerging paradigm positions the centriole not as a static structural element but as a dynamic, manipulable target for biotechnological engineering of cell fate. Integration of centrosome-directed approaches with predictive digital twin modeling promises to accelerate the transition from generating incompletely differentiated populations toward creating truly functional, mature, and safe transplantable products for regenerative medicine.

References

An, Y. H., Choi, Y. H., Kim, H., Kim, S. H., Lee, E., Hwang, N. S., & Koh, R. H. (2016). High throughput approaches for controlled stem cell differentiation. Acta Biomaterialia, 34, 21–29.

Axon Medchem. (n.d.). Stem Cell LSB inhibitor Set (Axon 5004). Retrieved from https://www.axonmedchem.com/5004

Bruschi, M., Vanzolini, T., Sahu, N., Balduini, A., Magnani, M., & Fraternale, A. (2022). Engineering the hematopoietic stem cell niche for blood cell production. Frontiers in Bioengineering and Biotechnology, 10, 1012145.

Buta, C., David, R., Dressel, R., Emgård, M., Fuchs, C., Gross, U., … & Martin, U. (2013). Reconsidering pluripotency tests: Do we still need teratoma assays? Stem Cell Research, 11(1), 552–562.

Camargo Ortega, G., & Götz, M. (2022). Centrosome heterogeneity in stem cells regulates cell diversity. Trends in Cell Biology, 32(8), 707–719.

Camargo Ortega, G., & Götz, M. (2022). Centrosome heterogeneity in stem cells regulates cell diversity. Trends in Cell Biology, 32(8), 707–719.

Cetin, B., Erendor, F., Eksi, Y. E., Sanlioglu, A. D., & Sanlioglu, S. (2025). Advancing CRISPR genome editing into gene therapy clinical trials: Progress and future prospects. Expert Reviews in Molecular Medicine, 27, e12.

de Almeida Magalhães, T., Veiga Cruzeiro, G. A., Borges, K. S., Yulu, C. L., de Souza, G. R., da Silva, K. R., ... & Tone, L. G. (2020). Alisertib acts synergistically with sonidegib by modulating primary cilia assembly in a pediatric RELA ependymoma cell line. Cancer Research, 80(14 Supplement), A30.

de Almeida Magalhães, T., Veiga Cruzeiro, G. A., Borges, K. S., Yulu, C. L., de Souza, G. R., da Silva, K. R., Scridelli, C. A., Salic, A., & Tone, L. G. (2020). Alisertib acts synergistically with sonidegib by modulating primary cilia assembly in a pediatric RELA ependymoma cell line. Cancer Research, 80(14 Supplement), A30.

Della Rocca, Y., et al. (2025). Stem cells in regenerative medicine: A journey from adult stem cells to induced pluripotent cells. International Journal of Molecular Sciences, 26(17), 8255.

Dhaiban, S., et al. (2025). Clinical translation of human iPSC technologies: advances, safety concerns, and future directions. Frontiers in Cell and Developmental Biology, 13, 1627149.

Duan, L., Che, D., Zhang, K., Ong, Q., Guo, S., & Cui, B. (2015). Optogenetic control of molecular motors and organelle distributions in cells. Chemistry & Biology, 22(5), 671–682.

Duclos, M., Prigent, C., Le Borgne, R., & Guen, V. J. (2021). Immunofluorescence staining and light sheet microscopy analysis of primary cilia in mouse mammary organoids. Journal of Visualized Experiments, (170), e62365.

Elder, N., Fabbri, A., Snijders, A. P., & Wernig, M. (2022). Diseased, differentiated and difficult: Strategies for improved engineering of in vitro neurological systems. Frontiers in Cellular Neuroscience, 16, 962103.

Engel, M., Do-Ha, D., Muñoz, S. S., & Ooi, L. (2016). Common pitfalls of stem cell differentiation: A guide to improving protocols for neurodegenerative disease models and research. Cellular and Molecular Life Sciences, 73(19), 3693–3709.

Ferrai, C., & Schulte, C. (2024). Mechanotransduction in stem cells. European Journal of Cell Biology, 103(2), 151417.

Fong, C. Y., Gauthaman, K., & Bongso, A. (2025). Culturing potential: Advances in ex vivo cell culture systems for haematopoietic cell-based regenerative therapies. Regenerative Therapy, 28, 107–118.

Hayashi, Y., & Nakade, K. (2024). Generation of reporter human pluripotent stem cells using CRISPR/Cas9 editing. Methods in Molecular Biology, 210, 85–92.

Henise, J. C., Taunton, J., & Shokat, K. M. (2016). Irreversible Nek2 kinase inhibitors with cellular activity. Journal of Medicinal Chemistry, 59(8), 3760–3773.

Hu, J., Liang, R., Li, M., Zhang, X., Li, M., Qu, H., & Wang, Z. (2025). Differentiation of human umbilical cord mesenchymal stem cells into functional intestinal epithelial cells via conditioned medium co-culture. Gene, 934, 149008.

Huang, Y., Jia, X., Bai, K., Gong, X., & Fan, Y. (2010). Effect of fluid shear stress on cardiomyogenic differentiation of rat bone marrow mesenchymal stem cells. Archives of Medical Research, 41(7), 497–505.

Ieda, M. (2013). Direct reprogramming into desired cell types by defined factors. Keio Journal of Medicine, 62(3), 74–82.

Ieda, M., Fu, J. D., Delgado-Olguin, P., Vedantham, V., Hayashi, Y., Bruneau, B. G., & Srivastava, D. (2010). Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell, 142(3), 375–386.

International Society for Stem Cell Research. (2025). Guidelines for Stem Cell Research and Clinical Translation (Version 1.2).

Ito, H., Takano, C., Yamazaki, A., Kuki, N., Kaga, M., Taiko, I., ... & Miki, T. (2025). Intraportal transplantation of amniotic epithelial stem cells in pigs: in vivo kinetics and functional assessment. Transplantation, 109(10S), S93.

Jaba, T. (2022). Dasatinib and quercetin: short-term simultaneous administration yields senolytic effect in humans. Issues and Developments in Medicine and Medical Research Vol. 2, 22-31.

Januschke, J., Llamazares, S., Reina, J., & Gonzalez, C. (2011). Drosophila neuroblasts retain the daughter centrosome. Nature Communications, 2, 243.

Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816–821.

Kaitsuka, T., & Hakim, F. (2021). Response of pluripotent stem cells to environmental stress and its application for directed differentiation. Biology, 10(2), 84.

Kandasamy, M., & Ross, A. (2025). Chemogenetic regulation in reprogrammed stem cell-derived precursor cells in treating neurodegenerative diseases. Journal of Visualized Experiments, (68032).

Kawaguchi, H. (2026). Stem cell therapy for spinal cord injury: lessons from Japan's experiment in regulatory deregulation. The Spine Journal, available online 7 January 2026.

Konkuk University. (2026). Digital Twin–Guided Development of Stem Cell Organoids for Disease Modeling and Tissue Repair. Horizon Europe Project Proposal.

Lau, L., Lee, Y. L., Sahl, S. J., Stearns, T., & Moerner, W. E. (2012). STED microscopy with optimized labeling density reveals 9-fold arrangement of a centriole protein. Biophysical Journal, 102(12), 2926–2935.

Limitations of Induced Pluripotent Stem Cells in 2026. (2025). BioInformant.

Lin, Q., et al. (2024). Advances in shear stress stimulation of stem cells: A review of the last three decades. Biomedicines, 12(9), 1982.

Liu, J., Long, H., Zeuschner, D., Räder, A. F. B., Polacheck, W. J., Kessler, H., Sorokin, L., & Trappmann, B. (2021). Synthetic extracellular matrices with tailored adhesiveness and degradability support lumen formation during angiogenic sprouting. Nature Communications, 12(1), 3402.

Magalhães, T. A., Cruzeiro, G. A. V., Borges, K. S., Yulu, C. L., de Souza, G. R., da Silva, K. R., Scridelli, C. A., Salic, A., & Tone, L. G. (2020). Activation of Hedgehog signaling by the oncogenic RELA fusion reveals a primary cilia-dependent vulnerability in supratentorial ependymoma. Neuro-Oncology, 24(8), 1282–1294.

Magne, L., Pottier, T., Michel, D., Laussu, J., Bonnet, D., Bugarin, F., ... & Segonds, S. (2025). Unveiling how mitotic spindle orientation in 3D human colon organoids affects matrix displacements through a 4D study using DVC. Scientific Reports, 15, 22052.

Masip, M., Veiga, A., Izpisúa Belmonte, J. C., & Simón, C. (2010). Reprogramming with defined factors: From induced pluripotency to induced transdifferentiation. Stem Cells and Development, 19(11), 1625–1636.

Maul, T. M., Chew, D. W., Nieponice, A., & Vorp, D. A. (2011). Mechanical stimuli differentially control stem cell behavior: Morphology, proliferation, and differentiation. Biomechanics and Modeling in Mechanobiology, 10(6), 939–953.

McCoy, R. J., & O'Brien, F. J. (2012). Bioreactors to influence stem cell fate: Augmentation of mesenchymal stem cell signaling pathways via dynamic culture systems. Biochimica et Biophysica Acta (BBA)-General Subjects, 1820(2), 132–141.

Morrison, S. J., & Spradling, A. C. (2008). Stem cells and niches: Mechanisms that promote stem cell maintenance throughout life. Cell, 132(4), 598–611.

Müller, F. J., Goldmann, J., Löser, P., & Loring, J. F. (2010). A call to standardize teratoma assays used to define human pluripotent cell lines. Cell Stem Cell, 6(5), 412–414.

Pei, S. L., Chen, Y. T., & Yang, T. T. (2025). The crucial role of centrioles in tooth growth and development. Journal of the Formosan Medical Association, 124(3), 271–277.

Pereira, C. F., Chang, B., Qiu, J., Niu, X., Papatsenko, D., Hendry, C. E., Clark, N. R., Nomura-Kitabayashi, A., Kovacic, J. C., Ma'ayan, A., Schaniel, C., & Lemischka, I. R. (2016). Converting cell fates: Generating hematopoietic stem cells de novo via transcription factor reprogramming. Annals of the New York Academy of Sciences, 1370(1), 24–35.

PLIN2-GFP2-P2A-Puro human induced pluripotent stem cell line (SEUi001-A) via CRISPR/Cas9-mediated gene editing technology. (2025). Stem Cell Research, 90, 103896.

PMC NIH. (2025). Ethical and Regulatory Considerations Related to Regenerative Medicine. HSS Journal, online ahead of print.

R&D Systems. (n.d.). Centrinone (CAS 1798871-30-3). Product Information.

R&D Systems. (n.d.). Centrinone (CAS 1798871-30-3). Retrieved from https://www.rndsystems.com/products/centrinone_5687

Rajaei, B., et al. (2025). Clinically compliant enrichment of human pluripotent stem cell–derived islets. Science Translational Medicine, 17(795), eadl4390.

Razavi, Z., Mirzaei, M., Ghorbani, A., & Alizadeh, A. (2024). CRISPR innovations in tissue engineering and gene editing. Life Sciences, 358, 123120.

RegMedNet. (2025). Navigating the technical landscape of stem cell therapy production. Interview with Alyssa Clearwood, Sartorius.

Rowe, R. G., & Daley, G. Q. (2019). The centrosomal protein 83 (CEP83) regulates human pluripotent stem cell differentiation toward the kidney lineage. eLife, 8, e48976.

Salzmann, V., Chen, C., Chiang, C. Y., Tiyaboonchai, A., Mayer, M., & Yamashita, Y. M. (2013). Organelle asymmetry for proper fitness, function, and fate. Chromosome Research, 21(3), 271–286.

Samara, A., Falck, M., Spildrejorde, M., Leithaug, M., Acharya, G., Lyle, R., & Eskeland, R. (2022). Robust and reproducible neuronal differentiation of human embryonic stem cells for neurotoxicology. bioRxiv, 2022.01.26.477818.

Schmitt, M. T., Kroll, J., Ruiz-Fernandez, M. J. A., Hauschild, R., Ghosh, S., Kameritsch, P., ... & Renkawitz, J. (2025). Protecting centrosomes from fracturing enables efficient cell navigation. Science Advances, 11(17), eadx4047.

Schmitt, M. T., Kroll, J., Ruiz-Fernandez, M. J. A., Hauschild, R., Ghosh, S., Kameritsch, P., Merrin, J., Schmid, J., Stefanowski, K., Thomae, A. W., Cheng, J., Öztan, G. N., Konopka, P., Camargo Ortega, G., Penz, T., Bach, L., Baumjohann, D., Bock, C., Straub, T., Meissner, F., Kiermaier, E., & Renkawitz, J. (2025). Protecting centrosomes from fracturing enables efficient cell navigation. Science Advances, 11(17), eadx4047.

Sharma, N., & Jackson, P. K. (2025). Quantitative PCR-based assay to measure Sonic Hedgehog signaling in cellular model of ciliogenesis. Journal of Visualized Experiments, (67407).

Shen, N., Knopf, A., Westendorf, C., Kraushaar, U., Riedl, J., Bauer, H., Pöschel, S., Layland, S. L., Holeiter, M., & Knolle, S. (2017). Steps toward maturation of embryonic stem cell-derived cardiomyocytes by defined physical signals. Stem Cell Reports, 9(1), 122–135.

Shi, H., et al. (2023). Integrating physicomechanical and biological strategies for BTE: Biomaterials-induced osteogenic differentiation of MSCs. Theranostics, 13(10), 3245–3265.

Skriloff, O., & Tzanakakis, E. (2025). Data augmentation models for machine learning applications in stem cell bioprocessing. 2025 AIChE Annual Meeting Proceedings, Paper 595c.

Smith, L., Quelch-Cliffe, R., Liu, F., Hidalgo Aguilar, A., & Przyborski, S. (2025). Evaluating strategies to assess the differentiation potential of human pluripotent stem cells: A review, analysis and call for innovation. Stem Cell Reviews and Reports, 21(1), 107–125.

Song, Y., Zhang, J., Xu, T., & Wang, X. (2013). Trichostatin A promotes osteogenic differentiation of inflammatory gingival mesenchymal stem cells [曲古抑菌素A促进炎症牙龈间充质干细胞成骨分化的研究]. Master's thesis, Tianjin Medical University.

Stem Cell Research. (2019). Application of CRISPR/Cas9 editing and digital droplet PCR in human iPSCs to generate novel knock-in reporter lines to visualize dopaminergic neurons. Stem Cell Research, 41, 101656.

Su, Z., et al. (2025). Frontier progress and translational challenges of pluripotent differentiation of stem cells. Frontiers in Genetics, 16, 1583391.

Su, Z., et al. (2025). Frontier progress and translational challenges of pluripotent differentiation of stem cells. Frontiers in Genetics, 16, 1583391.

Taguchi, J., Yamada, Y., Ohta, S., Nakasuka, F., Yamamoto, T., Ozawa, M., & Yamada, Y. (2024). A versatile in vivo platform for reversible control of transgene expression in adult tissues. Stem Cell Reports, 19(12), 1789–1802.

Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.

Tkemaladze, J. (2023). Reduction, proliferation, and differentiation defects of stem cells over time: a consequence of selective accumulation of old centrioles in the stem cells?. Molecular Biology Reports, 50(3), 2751-2761. DOI : https://pubmed.ncbi.nlm.nih.gov/36583780/

Tkemaladze, J. (2024). Editorial: Molecular mechanism of ageing and therapeutic advances through targeting glycative and oxidative stress. Front Pharmacol. 2024 Mar 6;14:1324446. DOI : 10.3389/fphar.2023.1324446. PMID: 38510429; PMCID: PMC10953819.

Tkemaladze, J. (2026). Old Centrioles Make Old Bodies. Annals of Rejuvenation Science, 1(1). DOI : https://doi.org/10.65649/yx9sn772

Tkemaladze, J. (2026). Visions of the Future. Longevity Horizon, 2(1). DOI : https://doi.org/10.65649/8be27s21

Trappmann, B., Gautrot, J. E., Connelly, J. T., Strange, D. G. T., Li, Y., Oyen, M. L., Cohen Stuart, M. A., Boehm, H., Li, B., Vogel, V., Spatz, J. P., Watt, F. M., & Huck, W. T. S. (2012). Extracellular-matrix tethering regulates stem-cell fate. Nature Materials, 11(8), 642–649.

Vierbuchen, T., Ostermeier, A., Pang, Z. P., Kokubu, Y., Südhof, T. C., & Wernig, M. (2010). Direct conversion of fibroblasts to functional neurons by defined factors. Nature, 463(7284), 1035–1041.

Visone, R., Talò, G., Lopa, S., Rasponi, M., & Moretti, M. (2018). Enhancing all-in-one bioreactors by combining interstitial perfusion, electrical stimulation, on-line monitoring and testing within a single chamber for cardiac constructs. Scientific Reports, 8(1), 1–13.

Wang, M., & Duan, L. (2019). Optogenetic control of organelle transport and intracellular signaling. Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong.

Wang, X., Tsai, J. W., Imai, J. H., Lian, W. N., Vallee, R. B., & Shi, S. H. (2009). Asymmetric centrosome inheritance maintains neural progenitors in the neocortex. Nature, 461(7266), 947–955.

Warren, L., Manos, P. D., Ahfeldt, T., Loh, Y. H., Li, H., Lau, F., Ebina, W., Mandal, P. K., Smith, Z. D., Meissner, A., Daley, G. Q., Brack, A. S., Collins, J. J., Cowan, C., Schlaeger, T. M., & Rossi, D. J. (2010). Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell, 7(5), 618–630.

Woltjen, K., Michael, I. P., Mohseni, P., Desai, R., Mileikovsky, M., Hämäläinen, R., Cowling, R., Wang, W., Liu, P., Gertsenstein, M., Kaji, K., Sung, H. K., & Nagy, A. (2009). piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature, 458(7239), 766–770.

Wong, P. K., & Cane, M. (2024). Aurora kinase A inhibition plus Tumor Treating Fields suppress glioma cell proliferation in a cilium-independent manner. Science Translational Medicine, 16(742), eadi5678.

Yamashita, Y. M. (2009). The centrosome and asymmetric cell division. Prion, 3(2), 84–88.

Yamashita, Y. M., Jones, D. L., & Fuller, M. T. (2003). Orientation of asymmetric stem cell division by the APC tumor suppressor and centrosome. Science, 301(5639), 1547–1550.

Yamashita, Y. M., Mahowald, A. P., Perlin, J. R., & Fuller, M. T. (2007). Asymmetric inheritance of mother versus daughter centrosome in stem cell division. Science, 315(5811), 518–521

Yamashita, Y. M., Mahowald, A. P., Perlin, J. R., & Fuller, M. T. (2007). Asymmetric inheritance of mother versus daughter centrosome in stem cell division. Science, 315(5811), 518–521.

Yang, Y., et al. (2025). Automated and Enclosed Three-Dimensional Biofabrication System for Mesenchymal Stem Cell Culture to Enhance Diabetic Wound Healing. Biomaterials Research, 29, 0205.

Yeatts, A. B., & Fisher, J. P. (2011). Bone tissue engineering bioreactors: Dynamic culture and the influence of shear stress. Bone, 48(2), 171–181.

Zhao, T., Zhang, J., Gao, X., Yuan, D., Gu, Z., & Xu, Y. (2022). Advances in bone regeneration of electrospun nanofibers: Compositions, structures, functions, and fabrication technologies. Journal of Materials Chemistry B, 10(32), 6078–6106.

Zheng, F., & Piel, M. (2017). Programmed self-assembly of a biochemical and magnetic scaffold to trigger and manipulate microtubule structures. Scientific Reports, 7, 11344.

Downloads

Published

2026-02-17

Issue

Section

In Silico Experimentation

How to Cite

Tkemaladze, J. (2026). Ex Vivo Manipulation Strategies for Directed Stem Cell Differentiation. Longevity Horizon, 2(4). DOI : https://doi.org/10.65649/hmrj2g17

Most read articles by the same author(s)

<< < 3 4 5 6 7 8 9 > >> 

Similar Articles

1-10 of 54

You may also start an advanced similarity search for this article.