Ze → Twistor → Spin Network

Authors

  • Jaba Tkemaladze Author

DOI:

https://doi.org/10.65649/nd2dae94

Keywords:

Quantum Gravity, Causal Sets, Twistor Theory, Spin Networks, Discrete Spacetime, Lorentz Invariance, Emergent Geometry

Abstract

This paper presents the Ze → Twistor → Spin Network framework, a unified conceptual pathway from a primitive discrete ontology to the emergence of relativistic spacetime. The framework begins with fundamental events, denoted ΔC_i, each characterized by dual aspects: a temporal component C_i^{temporal} governing participation in sequential causal chains, and a spatial component C_i^{spatial} governing participation in parallel structural configurations. The first transition, Ze → Twistor, encodes these aspects in a complex representation Z_i = C_i^{temporal} + i C_i^{spatial}, drawing on Penrose's twistor theory. The Hermitian norm |Z_i|^2 = (ΔC_i^{spatial})^2 - γ(ΔC_i^{temporal})^2 carries the Minkowski signature intrinsically, emerging from the SU(2,2) invariant structure of twistor space rather than being inserted by hand. This addresses the fundamental question of how a discrete substrate can give rise to a Lorentzian manifold without violating Lorentz invariance. The second transition, Twistor → Spin Network, discretizes the twistor representation into a labeled graph. Nodes correspond to events (antichains representing spatial slices), edges correspond to causal links, and each edge carries a spin label j determined by j(j+1) ∝ |Z_i|^2, connecting directly to loop quantum gravity where spin networks provide an orthonormal basis for kinematical states. From this structure, relativistic spacetime emerges in the continuum limit: proper time along a worldline is given by the sum of spin labels τ = Σ √[j(j+1)] × τ_Planck, velocity emerges from the ratio of accumulated spatial to temporal increments, and the twin paradox resolves combinatorially through different total spin sums along distinct worldlines. The framework synthesizes insights from causal set theory, twistor theory, and loop quantum gravity, demonstrating how these approaches complement rather than compete with one another. It offers resolutions to long-standing puzzles including the origin of the Lorentzian signature, the compatibility of discreteness with Lorentz invariance, and the combinatorial definition of proper time. Open questions regarding dynamics, the quantum measure, and phenomenological predictions are discussed as directions for future investigation.

References

Amelino-Camelia, G. (2009). Quantum gravity phenomenology. In D. Oriti (Ed.), Approaches to quantum gravity: Toward a new understanding of space, time and matter (pp. 427-449). Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511575549.027

Baez, J. (1996). Spin networks in nonperturbative quantum gravity. In L. Kauffman (Ed.), The interface of knots and physics (pp. 167-203). American Mathematical Society. DOI: https://doi.org/10.1090/psapm/051/1372769

Baez, J. (1997). Spin networks and quantum gravity. This Week's Finds in Mathematical Physics, Week 110. http://math.ucr.edu/home/baez/week110.html

Bianchi, E., Magliaro, E., & Perini, C. (2010). Coherent spin-networks. Physical Review D, 82(2), 024012. DOI: https://doi.org/10.1103/PhysRevD.82.024012

Bogna, G. (2025). Twistor theory and scattering amplitudes on strong curved backgrounds [Doctoral thesis, University of Oxford]. Oxford University Research Archive.

Bombelli, L., Henson, J., & Sorkin, R. D. (2009). Discreteness without symmetry breaking: A theorem. Modern Physics Letters A, 24(32), 2579-2587. DOI: https://doi.org/10.1142/S0217732309031958

Bombelli, L., Lee, J., Meyer, D., & Sorkin, R. D. (1987). Space-time as a causal set. Physical Review Letters, 59(5), 521-524. DOI: https://doi.org/10.1103/PhysRevLett.59.521

Carlip, S. (2024). Causal sets and an emerging continuum. arXiv preprint arXiv:2405.14059. DOI: https://doi.org/10.1007/s10714-024-03281-1

Cortês, M., & Smolin, L. (2014). The universe as a process of unique events. Physical Review D, 90(8), 084007. DOI: https://doi.org/10.1103/PhysRevD.90.084007

Dowker, F., Henson, J., & Sorkin, R. D. (2010). Quantum gravity phenomenology, Lorentz invariance and discreteness. Modern Physics Letters A, 25(10), 771-776.

Frauendiener, J., & Penrose, R. (2001). Twistors and general relativity. In B. Engquist & W. Schmid (Eds.), Mathematics unlimited—2001 and beyond (pp. 479-505). Springer. DOI: https://doi.org/10.1007/978-3-642-56478-9_24

Gambini, R., & Pullin, J. (2011). A first course in loop quantum gravity. Oxford University Press. DOI: https://doi.org/10.1093/acprof:oso/9780199590759.001.0001

Grandou, T., & Rubin, J. L. (2004). Time 'betwins'. arXiv preprint arXiv:gr-qc/0406064.

Hawking, S. W., King, A. R., & McCarthy, P. J. (1976). A new topology for curved space–time which incorporates the causal, differential, and conformal structures. Journal of Mathematical Physics, 17(2), 174-181. DOI: https://doi.org/10.1063/1.522874

Isham, C. J. (1993). Canonical quantum gravity and the problem of time. In Integrable systems, quantum groups, and quantum field theories (pp. 157-287). Springer. DOI: https://doi.org/10.1007/978-94-011-1980-1_6

Jaba, T. (2022). Dasatinib and quercetin: short-term simultaneous administration yields senolytic effect in humans. Issues and Developments in Medicine and Medical Research Vol. 2, 22-31. DOI: https://doi.org/10.9734/bpi/idmmr/v2/15155D

Kleitman, D. J., & Rothschild, B. L. (1975). Asymptotic enumeration of partial orders on a finite set. Transactions of the American Mathematical Society, 205, 205-220. DOI: https://doi.org/10.1090/S0002-9947-1975-0369090-9

Kronheimer, E. H., & Penrose, R. (1967). On the structure of causal spaces. Mathematical Proceedings of the Cambridge Philosophical Society, 63(2), 481-501. DOI: https://doi.org/10.1017/S030500410004144X

Långvik, M., & Speziale, S. (2016). Twisted geometries, twistors, and conformal transformations. Physical Review D, 94(2), 024050. DOI: https://doi.org/10.1103/PhysRevD.94.024050

Leuenberger, G. (2022). Emergence of Minkowski-spacetime by simple deterministic graph rewriting. Universe, 8(3), 149. DOI: https://doi.org/10.3390/universe8030149

Markopoulou, F. (1998). The internal description of a causal set: What the universe looks like from the inside. Communications in Mathematical Physics, 211(3), 559-583. DOI: https://doi.org/10.1007/s002200050826

Markopoulou, F., & Smolin, L. (1997). Causal evolution of spin networks. Nuclear Physics B, 508(1-2), 409-430. DOI: https://doi.org/10.1016/S0550-3213(97)80019-3

Mason, L. J., & Woodhouse, N. M. J. (1996). Integrability, self-duality, and twistor theory. Oxford University Press. DOI: https://doi.org/10.1093/oso/9780198534983.001.0001

Nesterov, A. I. (2019). How nonassociative geometry describes a discrete spacetime. Frontiers in Physics, 7, 32. DOI: https://doi.org/10.3389/fphy.2019.00032

Penrose, R. (1967). Twistor algebra. Journal of Mathematical Physics, 8(2), 345-366. DOI: https://doi.org/10.1063/1.1705200

Penrose, R. (1971). Angular momentum: An approach to combinatorial space-time. In T. Bastin (Ed.), Quantum theory and beyond (pp. 151-180). Cambridge University Press.

Penrose, R. (1975). Twistor theory: Its aims and achievements. In C. J. Isham, R. Penrose, & D. W. Sciama (Eds.), Quantum gravity: An Oxford symposium (pp. 268-407). Oxford University Press.

Penrose, R. (2024). From the origins of twistor theory to bi-twistors and curved space-times. Seminar presented at the Isaac Newton Institute for Mathematical Sciences, Cambridge, UK.

Penrose, R., & MacCallum, M. A. H. (1973). Twistor theory: An approach to the quantisation of fields and space-time. Physics Reports, 6(4), 241-315. DOI: https://doi.org/10.1016/0370-1573(73)90008-2

Penrose, R., & Rindler, W. (1984). *Spinors and space-time: Volume 1, Two-spinor calculus and relativistic fields*. Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511564048

Rideout, D. P., & Sorkin, R. D. (2000). Classical sequential growth dynamics for causal sets. Physical Review D, 61(2), 024002. DOI: https://doi.org/10.1103/PhysRevD.61.024002

Roukema, B. F., & Bajtlik, S. (2008). Homotopy symmetry in the multiply connected twin paradox of special relativity. Monthly Notices of the Royal Astronomical Society, 390(2), 655-664. DOI: https://doi.org/10.1111/j.1365-2966.2008.13734.x

Rovelli, C., & Smolin, L. (1995). Spin networks and quantum gravity. Physical Review D, 52(10), 5743-5759. DOI: https://doi.org/10.1103/PhysRevD.52.5743

Sorkin, R. D. (1991). Spacetime and causal sets. In J. C. D'Olivo, et al. (Eds.), Relativity and gravitation: Classical and quantum (pp. 150-173). World Scientific.

Sorkin, R. D. (1994). Stochastic mechanics and the quantum measure. Journal of Physics: Conference Series, 306(1), 012019.

Surya, S. (2019). The causal set approach to quantum gravity. Living Reviews in Relativity, 22(1), 5. DOI: https://doi.org/10.1007/s41114-019-0023-1

Tkemaladze, J. (2023). Reduction, proliferation, and differentiation defects of stem cells over time: a consequence of selective accumulation of old centrioles in the stem cells?. Molecular Biology Reports, 50(3), 2751-2761. DOI : https://pubmed.ncbi.nlm.nih.gov/36583780/ DOI: https://doi.org/10.1007/s11033-022-08203-5

Tkemaladze, J. (2024). Editorial: Molecular mechanism of ageing and therapeutic advances through targeting glycative and oxidative stress. Front Pharmacol. 2024 Mar 6;14:1324446. DOI : 10.3389/fphar.2023.1324446. PMID: 38510429; PMCID: PMC10953819. DOI: https://doi.org/10.3389/fphar.2023.1324446

Tkemaladze, J. (2026). Old Centrioles Make Old Bodies. Annals of Rejuvenation Science, 1(1). DOI : https://doi.org/10.65649/yx9sn772 DOI: https://doi.org/10.65649/yx9sn772

Tkemaladze, J. (2026). Visions of the Future. Longevity Horizon, 2(1). DOI : https://doi.org/10.65649/8be27s21 DOI: https://doi.org/10.65649/8be27s21

Ward, R. S., & Wells, R. O., Jr. (1990). Twistor geometry and field theory. Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511524493

Wieland, W. M. (2012). Twistorial phase space for complex Ashtekar variables. Classical and Quantum Gravity, 29(4), 045007. DOI: https://doi.org/10.1088/0264-9381/29/4/045007

Wüthrich, C., & Huggett, N. (2020). Spacetime from causality: Causal set theory. In Out of Nowhere: The Emergence of Spacetime in Quantum Theories of Gravity (Chapter 2). Oxford University Press.

Downloads

Published

2026-02-21

Issue

Section

Theoretical Frameworks

How to Cite

Tkemaladze, J. (2026). Ze → Twistor → Spin Network. Longevity Horizon, 2(4). DOI : https://doi.org/10.65649/nd2dae94

Most read articles by the same author(s)

<< < 4 5 6 7 8 9 

Similar Articles

1-10 of 37

You may also start an advanced similarity search for this article.