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Abstract 
The reconstitution of complete spermatogenesis in vitro remains a pivotal challenge in 
reproductive biology, with transformative potential for treating infertility and modeling disease. 
This study establishes a three-step protocol for synthetic spermatogenesis, enabling the 
generation of functional spermatozoa from mouse and human pluripotent stem cells (PSCs). 
Initially, PSCs were efficiently differentiated into primordial germ cell-like cells (PGCLCs) with 
appropriate epigenetic reprogramming. PGCLCs were then co-cultured with primary testicular 
somatic cells on a 3D scaffold, where they self-organized into seminiferous tubule-like 
structures. Sequential hormonal stimulation with retinoic acid, testosterone, and 
follicle-stimulating hormone (FSH) drove meiotic progression and haploid spermatid formation. 
In the mouse system, complete spermiogenesis was achieved, yielding sperm capable of 
fertilizing oocytes via intracytoplasmic sperm injection (ICSI) and producing healthy, fertile 
offspring. Human PGCLCs entered meiosis and formed haploid cells, but terminal 
spermiogenesis efficiency remained low. This work provides a foundational model for in vitro 
gametogenesis, offering new avenues for studying male reproduction and addressing absolute 
infertility, while highlighting critical technical and ethical considerations. 
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Introduction 
Spermatogenesis is a highly orchestrated process occurring within the seminiferous tubules, 
dependent on somatic support, hormonal signals, and precise epigenetic regulation (Griswold, 
2016; Neto, Bach, & Najari, 2016). Male infertility, particularly non-obstructive azoospermia 
(NOA), often results from intrinsic testicular failure, with limited treatment options (Corona et al., 
2021). Current in vitro models, such as PGCLC derivation from PSCs (Sasaki et al., 2015) or 
short-term culture of spermatogonial stem cells (Sakib et al., 2019), fail to recapitulate the full 
spermatogenic trajectory. A robust in vitro gametogenesis (IVG) system is urgently needed to 
study human spermatogenesis, model infertility, and potentially provide gametes for assisted 
reproduction. This study aimed to develop a stepwise protocol for complete synthetic 
spermatogenesis from murine and human PSCs, assessing genomic integrity and fertilization 
potential. 

Materials and Methods 

Cell Lines and Primary Cell Isolation 

●​ Murine and Human PSCs: Murine ESCs (E14Tg2a) were maintained in 2i/LIF medium 
(Ying et al., 2008). Human ESCs (H9) and iPSCs were cultured in mTeSR™ Plus on 
Matrigel. 

●​ Primary Testicular Somatic Cells: Isolated from pre-pubertal mice (5–7 days old) and 
human testicular biopsies (1–3 years old, IRB-approved). Cells were digested with 
collagenase IV and trypsin-EDTA, followed by differential plating to enrich Sertoli (>85% 
WT1+/SOX9+) and Leydig (>10% CYP17A1+) cells (Langenstroth et al., 2014; Zhang et 
al., 2016). 

Three-Step Synthetic Spermatogenesis Protocol 

1.​ PGCLC Induction: Murine PSCs were aggregated in GK15 medium with BMP4, 
CHIR99021, and SCF for 4 days. Human PSCs were primed in AF medium, then 
aggregated in hPGCLC induction medium with BMP4, SCF, EGF, Y-27632, and LIF for 6 
days (Sasaki et al., 2015; Irie et al., 2015). 

2.​ Niche Reconstruction: PGCLC clusters were co-cultured with primary somatic cells (1:4 
ratio) on 3D PLGA scaffolds in StemPro-34 SFM supplemented with GDNF and bFGF 
for 14 days (Alves-Lopes, Söder, & Stukenborg, 2017). 

3.​ Hormonal Imitation of Puberty: Cultures were switched to α-MEM with sequential 
addition of 1 µM retinoic acid (RA, days 14–21), followed by 10 nM testosterone and 100 
mIU/mL FSH (from day 21 onward) (Endo et al., 2017; Oduwole, Peltoketo, & 
Huhtaniemi, 2021). 
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Analytical Methods 

●​ Flow Cytometry and Immunocytochemistry: Antibodies against DDX4, c-KIT, 
SSEA1/SSEA4, SYCP3, and Protamine 1 were used. Haploid cells were detected with 
HAP1 antibody (Gaysinskaya et al., 2014). 

●​ Karyotyping and DNA Content Analysis: Chromosome spreads and propidium iodide 
staining for ploidy analysis. 

●​ RNA-Sequencing: Total RNA from key stages was sequenced (Illumina NovaSeq 6000). 
Data were analyzed with DESeq2 and clusterProfiler (Love, Huber, & Anders, 2014; Yu, 
Wang, Han, & He, 2012). 

●​ DNA Methylation Analysis: Reduced representation bisulfite sequencing (RRBS) on 
FACS-sorted DDX4+ cells (Guo et al., 2015; Seisenberger et al., 2012). 

Results 

1. Efficient Derivation and Epigenetic Reconfiguration of PGCLCs 

PGCLC induction efficiencies were 38.7% ± 5.2% for mESCs and 41.3% ± 4.8% for hPSCs 
(Figure 1A, B). Transcriptomic analysis confirmed downregulation of pluripotency genes and 
upregulation of germline specifiers (e.g., PRDM1, TFAP2C, SOX17) (Figure 1C). RRBS 
demonstrated global DNA demethylation in mouse PGCLCs (~80% to ~35%), mimicking in vivo 
PGCs (Figure 1D). Human PGCLCs showed significant erasure at imprinting control regions 
(e.g., H19 DMR). 

Figure 1. Efficient Derivation of PGCLCs from PSCs with Epigenetic Reprogramming​
(Note: In the preprint, Figure 1 would include bar graphs for induction efficiency, heatmaps for 
gene expression, and methylation plots.) 

2. Self-Organization into Artificial Seminiferous Tubule Structures 

Co-culture on 3D scaffolds led to self-organization into cord-like structures resembling immature 
seminiferous tubules within 7–10 days (Figure 2A). Sertoli cells (SOX9+, ZO-1+) formed a 
peripheral niche, enclosing DDX4+ germ cells in the adluminal compartment (Figure 2B). 
Control cultures without somatic cells failed to organize. 

Figure 2. Self-Organization into Artificial Seminiferous Tubules​
(Note: In the preprint, Figure 2 would show H&E staining and immunofluorescence for SOX9 
and DDX4.) 
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3. Complete Meiotic Progression and Generation of Haploid Cells 

SYCP3 staining confirmed meiotic prophase I in mouse (day 21) and human (day 35) cultures 
(Figure 3A). Chromosome spreads showed pachytene-stage spermatocytes with fully paired 
bivalents (Figure 3B). Flow cytometry identified a haploid (1n) population constituting 12.4% ± 
2.1% of mouse germ cells by day 40 (Figure 3C). Ploidy analysis revealed the expected 
temporal sequence: diploid (pre-meiotic), tetraploid (meiotic), and haploid (post-meiotic) 
populations (Figure 3D). 

Figure 3. Temporal Progression Through Meiosis to Haploid State in Mouse Synthetic 
Spermatogenesis​
(Note: In the preprint, Figure 3 would include immunostaining, chromosome spread images, and 
flow cytometry plots.) 

4. Morphological Maturation and Molecular Hallmarks of Spermiogenesis 

By day 50, mouse cultures contained round and elongating spermatids, with some displaying 
condensed nuclei and flagella (Figure 4A, B). Immunofluorescence confirmed the 
histone-to-protamine transition, with loss of histone H3 and gain of Protamine 1 (PRM1) staining 
(Figure 4C). Acrosome formation was detected via PNA-lectin staining. 

Figure 4. Morphological and Molecular Progression of Spermiogenesis​
*(Note: In the preprint, Figure 4 would show light/electron microscopy images and 
immunofluorescence for histone/protamine transition.)* 

5. Proof of Concept: Functional Fertility of Murine Synthetic Sperm 

ICSI using in vitro-derived mouse sperm resulted in a 58.3% fertilization rate and 42.1% 
blastocyst formation (Figure 5A, B). Embryo transfer yielded 19 live offspring from 7 
pregnancies (Figure 5C). These offspring were healthy, fertile, and produced viable F2 progeny. 

Figure 5. Functional Fertility Assessment via ICSI using In Vitro-Generated Mouse Sperm​
*(Note: In the preprint, Figure 5 would include bar graphs for fertilization/blastocyst rates and 
images of offspring.)* 

6. Current Limitations with Human Cells 

Human PGCLCs entered meiosis and formed haploid round spermatids (HAP1+ by day 60; 
Figure 6A). However, progression to elongated, motile spermatozoa was inefficient (<1%). Cells 
exhibited aberrant morphology and lacked progressive motility (Figure 6B). Transcriptomic 
analysis indicated incomplete activation of late spermatid-specific genes. 

Figure 6. Species-Specific Limitations in Terminal Spermiogenesis​
(Note: In the preprint, Figure 6 would compare mouse vs. human efficiency across stages, 
highlighting the human bottleneck.) 
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Discussion 
This study demonstrates complete murine spermatogenesis in vitro, yielding functional sperm 
and fertile offspring. Key findings include: 

1.​ Niche Reconstruction is Essential: Co-culture with primary somatic cells in a 3D 
environment enabled self-organization and proper germ-soma interactions (Alves-Lopes 
et al., 2017; Smith & Walker, 2014). 

2.​ Dynamic Hormonal Signaling Mimics Puberty: Sequential RA, testosterone, and FSH 
addition drove meiotic and spermiogenic progression (Endo et al., 2017; Oduwole et al., 
2021). 

3.​ Epigenetic Fidelity is Achievable but Requires Scrutiny: RRBS confirmed epigenetic 
reprogramming in PGCLCs, and healthy offspring validated functional epigenome 
resetting. However, comprehensive epigenomic profiling is needed before clinical 
translation (Ueda, Shimizu, & Saitou, 2022; Sendzikaite & Kelsey, 2019). 

4.​ Human Spermiogenesis Remains a Bottleneck: Inefficient terminal maturation in human 
cells highlights gaps in understanding late spermatid development, possibly due to 
missing biomechanical, metabolic, or post-transcriptional cues (Vernet, Aitken, & Drevet, 
2020; Boussouar & Benahmed, 2004; Iguchi, Yamashita, & Katsu, 2014). 

Clinical and Ethical Implications 
●​ Potential Infertility Treatment: IVG could offer hope for patients with absolute infertility 

(e.g., post-cancer, genetic conditions) via iPSC-derived gametes (Fayomi & Orwig, 2018; 
Valli et al., 2014). 

●​ Toxicological Screening: This model provides a human-relevant platform for assessing 
male reproductive toxicity (Moura & Hinton, 2022). 

●​ Ethical Challenges: Key issues include epigenetic safety, risk of reproductive 
hyper-autonomy (e.g., uniparental reproduction, cloning), and the need for stringent 
international governance (Ishii, Pera, & Greely, 2017; Greely, 2016; Lovell-Badge et al., 
2021). 

Conclusions and Future Directions 
This work establishes a foundational protocol for synthetic spermatogenesis. Future priorities 
include: 

1.​ Decoding Human Spermiogenesis: Integrating biomechanical forces (microfluidics), 
optimizing metabolic support, and mastering post-transcriptional control (Komeya et al., 
2016; Vernet et al., 2020). 
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2.​ Rigorous Epigenomic Validation: Conducting multi-omics profiling (WGBS, ATAC-seq) 
and long-term multi-generational studies in animal models. 

3.​ Proactive Ethical Governance: Establishing moratoriums on clinical use, fostering 
multidisciplinary consortia, and engaging public dialogue (Lovell-Badge et al., 2021; Ishii 
et al., 2017). 
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