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Abstract

In vitro gametogenesis (IVG)—the generation of functional gametes from pluripotent or somatic
cells in culture—represents a paradigm-shifting frontier in reproductive medicine with the
potential to address absolute infertility (Saitou & Hayashi, 2021). This review synthesizes the
current state and formidable challenges of human oocyte IVG. We detail the two primary
strategies: the stepwise differentiation of induced pluripotent stem cells (iPSCs) through a
primordial germ cell-like cell (PGCLC) intermediate, and the direct reprogramming of somatic
cells. Both pathways confront significant biological barriers, including the achievement of
complete epigenetic reprogramming and correct genomic imprinting, the faithful completion of
meiosis | to prevent aneuploidy, and the acquisition of cytoplasmic competence (Seisenberger
et al.,, 2012; Nagaoka, Hassold, & Hunt, 2012). Critically, oocyte development is inseparable
from its somatic niche; thus, advances in ovarian organoids and 3D biofabrication are essential
to reconstruct the follicular microenvironment (Laronda et al., 2017; Sun, Parikh, & Fuller, 2022).
Beyond the laboratory, IVG raises profound ethical and social questions concerning
reproductive longevity, embryo selection, the redefinition of parenthood, and equitable access
(Greely, 2016; Mathews, Morain, & Finkelstein, 2017). We conclude that while mouse models
prove principle, translation to humans requires solving fundamental biological puzzles and
concurrently developing rigorous ethical and regulatory frameworks. The clinical application of
IVG, likely decades away, must be guided by a paramount commitment to offspring safety and
inclusive public discourse.
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Introduction

Human fertility is constrained by a finite, non-renewable endowment of germ cells. Conditions
like premature ovarian insufficiency, gonadotoxic therapies, genetic disorders, and age-related
depletion result in an inability to produce functional gametes—an unresolved challenge in
reproductive medicine (Choi, Chung, & Lee, 2020). While assisted reproductive technologies
(ART) like in vitro fertilization (IVF) offer solutions, they are limited by existing ovarian reserve or
introduce complex genetic and ethical issues via donor programmes (Cobo, Garcia-Velasco, &
Domingo, 2021). This fundamental gap has driven a paradigm shift towards in vitro
gametogenesis (IVG): the differentiation of pluripotent stem cells (PSCs) or somatic cells into
functional haploid gametes entirely ex vivo (Saitou & Hayashi, 2021).

Landmark murine studies have demonstrated proof-of-concept, with IVG-derived oocytes
yielding live, fertile offspring (Hikabe et al., 2016). However, translating these protocols to
human cells has proven vastly more complex, exposing critical knowledge gaps in human germ
cell development. This article synthesizes recent breakthroughs in generating human oocytes in
vitro, critically analyses persistent technological hurdles—focusing on epigenetic fidelity, meiotic
completion, and niche recapitulation—and confronts the unprecedented ethical, social, and
regulatory challenges precipitated by this transformative technology.

The Architectures of Creation: Strategic Pathways
to an Artificial Oocyte

Two primary, converging strategic pathways are pursued for human IVG: differentiation from
pluripotent stem cells and direct reprogramming of somatic cells (Figure 1).

Figure 1: Strategic Pathways for In Vitro Oogenesis

The schematic compares the two main approaches: the Pluripotent Stem Cell (PSC) Route
(stepwise differentiation recapitulating development) and the Direct Reprogramming Route
(transdifferentiation bypassing pluripotency).

The Pluripotent Stem Cell Route: Recapitulating Development

This established approach guides human ESCs or iPSCs through developmental stages
mirroring fetal germ cell development. The first critical step is the induction of primordial germ
cell-like cells (PGCLCs) by activating key signaling pathways (e.g., BMP4) and transcription
factors like PRDM1, TFAP2C, and SOX17 (Irie et al., 2015; Sasaki et al., 2015). The resulting
PGCLCs initiate epigenetic reprogramming, including global DNA demethylation (Seisenberger
et al., 2012; Guo et al., 2015). Subsequent progression to oogonia and entry into meiosis
requires pro-meiotic signals like retinoic acid and factors such as DAZL (Chen et al., 2014). A
major bottleneck is achieving complete meiotic progression; current protocols often yield
oocyte-like cells arrested at the germinal vesicle (GV) stage (Yamashiro et al., 2018). This
impasse underscores the third critical component: reconstructing the ovarian somatic niche. The
oocyte’s growth and maturation depend entirely on bidirectional communication with granulosa
and theca cells within the follicular unit. Co-culture systems with fetal ovarian somatic cells or



iPSC-derived somatic cells within 3D aggregates or organoids aim to provide this essential
microenvironment (Hikabe et al., 2016; Yamashiro et al., 2018).

Direct Reprogramming: A Shortcut with Epigenetic Hurdles

This alternative strategy aims to convert a somatic cell (e.g., a fibroblast) directly into a germ
cell-like state by forced expression of key transcription factors, bypassing the pluripotent
intermediate (Murakami et al., 2021). While conceptually efficient and avoiding tumorigenic
risks, this "shortcut" is fraught with the risk of epigenetic infidelity. The natural germline
development involves two major waves of epigenetic reprogramming: erasure of somatic marks
followed by de novo establishment of sex-specific imprints during gametogenesis (Seisenberger
et al., 2012). Direct reprogramming, collapsing this multi-step process, may fail to achieve a
complete and accurate epigenetic reset. Incorrect imprinting could lead to severe developmental
disorders like Beckwith-Wiedemann or Angelman syndromes (Sanchez-Delgado et al., 2016).
Therefore, the PSC route, which more closely follows the natural developmental timeline, is
currently considered a more reliable, albeit complex, path forward.

Technological Barriers and Recent Breakthroughs

Translating IVG strategies into a clinically viable protocol requires surmounting profound,
interconnected biological challenges.

1. Epigenetic Reprogramming: The Ghost in the Machine

Achieving a complete and accurate epigenetic reset is arguably the most formidable barrier. The
oocyte’s genome carries a sex-specific DNA methylation pattern at genomic imprinting control
regions (ICRs), essential for normal embryonic development (Ferguson-Smith & Bourc'his,
2018). This state results from erasure of somatic marks in primordial germ cells (PGCs) followed
by de novo imprint establishment during oogenesis (Seisenberger et al.,, 2012; Guo et al.,
2015). While human PGCLCs can initiate demethylation, the completeness of erasure and,
more critically, the precise re-establishment of imprints in vitro remain major hurdles (Tang et al.,
2015). Aberrant methylation at imprinted loci in mouse IVG models correlates with
developmental abnormalities (Holm, Rasmussen, & Zwart, 2018). For human IVG, ensuring
correct methylation at all ~100 known imprinted loci is a monumental quality control problem.
Advanced single-cell multi-omic analyses will be essential for validation (Zhou, Liu, & Zhang,
2019).

Figure 2: Epigenetic Reprogramming Challenges in IVG

The figure details: A. DNA methylation dynamics from somatic cell to mature oocyte; B. The
correct patterning required at imprinted loci; C. The complex network of epigenetic modifiers
(e.g., TET1/2, DNMT3A/B) whose spatiotemporal expression must be recapitulated in vitro.

2. Completing Meiosis |: The Aneuploidy Abyss

A functional oocyte requires a haploid genome achieved through accurate meiosis |. This
process is error-prone even in vivo, with aneuploidy rates rising with maternal age (Nagaoka et
al., 2012). In an artificial environment, the risk is likely amplified. While mouse IVG oocytes can
complete meiosis (Hikabe et al., 2016), human systems struggle to progress beyond the GV



stage (Yamashiro et al., 2018). Ensuring proper synapsis, crossover formation, and
chromosome segregation in vitro is a critical, unresolved bioengineering bottleneck.

3. Achieving Developmental Competence: More Than Just a Genome

Cytoplasmic competence—the accumulation of maternal RNA, proteins, organelles, and
metabolic reserves—is essential for directing early embryogenesis. A key hallmark is substantial
cytoplasmic growth; human oocytes grow from ~35 um to over 120 ym. Current IVG-derived
oocyte-like cells are typically much smaller, indicating failed cytoplasmic maturation (Yamashiro
et al., 2018). Mitochondria are a particular concern: IVG oocytes would inherit somatic-cell
mitochondria, which differ functionally from naturally selected oogonial mitochondria, posing
unknown metabolic and safety risks (Brevini, Vassena, & Gandolfi, 2020). The correct
deposition and regulation of maternal-effect factors (e.g., NLRP5, MATER) also remain a major
unanswered question.

4. Engineering the Three-Dimensional Niche: From Co-Culture to Organoids

All aspects of oogenesis depend on continuous bidirectional signaling within the 3D follicular
architecture. The field is advancing from simple co-culture to engineered ovarian organoids—3D
structures self-organizing from stem cells to recapitulate ovarian tissue and follicular-like
assemblies (Krotz, Robles, & Clark, 2020; Sun et al., 2022). The next frontier involves
biofabrication: using 3D bioprinting, microfluidic "ovary-on-a-chip" devices, and tunable
hydrogels to construct precisely controlled, vascularizable microenvironments that can support
the months-long duration of human oocyte growth (Laronda et al., 2017). Success in niche
engineering is key to unlocking progress across all other barriers.

Figure 3: Bioengineering the Ovarian Follicular Niche

The figure illustrates: A. The complex architecture of a natural follicle; B. Current engineered
follicle models (aggregates, hydrogel encapsulation); C. Advanced biofabrication strategies
(organoid systems, microfluidic devices).

The Ethico-Legal Landscape and Social Implications

The potential of IVG to decouple reproduction from biological constraints presents profound
challenges requiring proactive discourse (Mathews et al., 2017).

Reproductive Longevity and the "Endless" Supply: IVG could liberate female fertility from the
biological clock, allowing conception at any age (Shenfield, 2018). While overcoming a
significant inequity, this challenges notions of natural reproductive aging, may pathologize it, and
introduces unknown technological risks alongside known obstetrical risks of advanced maternal
age (Bayefsky, 2018; Harwood, 2019).

Mass Gamete Production and Embryo Selection: The scalability of IVG, combined with
preimplantation genetic testing (PGT), could enable selection not just against disease but for
polygenic traits, raising fears of "liberal eugenics" and exacerbating socioeconomic inequalities
by creating a biological stratification between those with and without access (Greely, 2016;
Gyngell, Bowman-Smart, & Savulescu, 2019; Bayefsky, 2018).



Risks to Offspring Health: The Paramount Safety Imperative: Novel risks, primarily epigenetic
and mitochondrial, are the foremost ethical constraint. Errors in imprint establishment or somatic
mitochondrial inheritance could lead to severe disorders or late-onset health issues
(Sanchez-Delgado et al.,, 2016; Wolf, Mitalipov, & Mitalipova, 2019). An exceptionally high
burden of proof, including long-term multi-generational preclinical studies in non-human
primates, is an absolute prerequisite for any clinical pathway (Perry, 2020).

Expanding Reproductive Choice and Redefining Parenthood: IVG could enable genetic
parenthood for male same-sex couples, postmenopausal women, and individuals with certain
karyotypic anomalies, dramatically expanding reproductive autonomy (Cutas & Smajdor, 2020).
However, it fundamentally disaggregates genetic, gestational, and social parenthood,
necessitating adaptation of legal frameworks and social narratives (Smajdor, 2018).

The Legal Status and Regulatory Vacuum: Current laws are ill-equipped for entities created from
somatic cells without traditional gametes (Ishii, Pera, & Greely, 2017). Urgent international
consensus is needed on safety protocols, informed consent, limits on selection, and access
equity to prevent a fragmented landscape and reproductive tourism (Mathews et al., 2017).

Discussion and Future Perspectives

The foundational principle of IVG is established, but translation to human application remains
distant, encumbered by interwoven scientific and societal challenges.

Scientifically, priorities must shift to safety and efficacy. The grand-challenge problems are: 1)
achieving perfect epigenetic fidelity, requiring base-resolution validation of imprinting control
regions using single-cell multi-omics (Zhou et al., 2019), and 2) engineering a sophisticated,
dynamic ovarian niche via advanced biofabrication to support the months-long process of
oocyte growth and maturation (Laronda et al., 2017; Sun et al., 2022).

Given these hurdles, clinical translation is measured in decades. Optimistically, the first highly
circumscribed trials for dire indications (e.g., infertility in young cancer survivors) might be
conceivable in 10-15 years, pending successful multi-generational primate safety studies (Perry,
2020).

The ultimate barrier may be socio-ethical. The profound implications demand a parallel,
proactive societal project. The scientific community must engage in sustained, transparent, and
inclusive dialogue to co-create robust ethical guardrails and adaptive legal frameworks that
ensure IVG, if realized, is deployed responsibly, equitably, and justly (Mathews et al., 2017;
Greely, 2016).

Figure 4: Translational Challenges and Timeline

A radar chart analysis comparing current capabilities versus minimum clinical requirements
across six domains: Epigenetic Fidelity, Meiotic Completion, Cytoplasmic Competence, Niche
Engineering, Scalability, and Safety Validation. A projected timeline highlights safety validation
as the most significant long-term barrier.



Conclusion

The vision of generating a gamete from any cell is a testament to human ingenuity. The journey
integrates developmental biology, epigenetics, and tissue engineering. While the scientific
challenges are profound, the greater challenge lies in navigating the human dimensions of this
power. The success of IVG will be measured not just by the birth of a healthy child from an in
vitro-derived oocyte, but by our collective wisdom in ensuring such a breakthrough enhances
human dignity, expands autonomy without exacerbating inequality, and serves the deepest
values of society. The laboratory quest must proceed hand-in-hand with the societal quest to
understand what it means to be human in an age of biological design.
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