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Abstract 
In vitro gametogenesis (IVG)—the generation of functional gametes from pluripotent or somatic 
cells in culture—represents a paradigm-shifting frontier in reproductive medicine with the 
potential to address absolute infertility (Saitou & Hayashi, 2021). This review synthesizes the 
current state and formidable challenges of human oocyte IVG. We detail the two primary 
strategies: the stepwise differentiation of induced pluripotent stem cells (iPSCs) through a 
primordial germ cell-like cell (PGCLC) intermediate, and the direct reprogramming of somatic 
cells. Both pathways confront significant biological barriers, including the achievement of 
complete epigenetic reprogramming and correct genomic imprinting, the faithful completion of 
meiosis I to prevent aneuploidy, and the acquisition of cytoplasmic competence (Seisenberger 
et al., 2012; Nagaoka, Hassold, & Hunt, 2012). Critically, oocyte development is inseparable 
from its somatic niche; thus, advances in ovarian organoids and 3D biofabrication are essential 
to reconstruct the follicular microenvironment (Laronda et al., 2017; Sun, Parikh, & Fuller, 2022). 
Beyond the laboratory, IVG raises profound ethical and social questions concerning 
reproductive longevity, embryo selection, the redefinition of parenthood, and equitable access 
(Greely, 2016; Mathews, Morain, & Finkelstein, 2017). We conclude that while mouse models 
prove principle, translation to humans requires solving fundamental biological puzzles and 
concurrently developing rigorous ethical and regulatory frameworks. The clinical application of 
IVG, likely decades away, must be guided by a paramount commitment to offspring safety and 
inclusive public discourse. 
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Introduction 
Human fertility is constrained by a finite, non-renewable endowment of germ cells. Conditions 
like premature ovarian insufficiency, gonadotoxic therapies, genetic disorders, and age-related 
depletion result in an inability to produce functional gametes—an unresolved challenge in 
reproductive medicine (Choi, Chung, & Lee, 2020). While assisted reproductive technologies 
(ART) like in vitro fertilization (IVF) offer solutions, they are limited by existing ovarian reserve or 
introduce complex genetic and ethical issues via donor programmes (Cobo, García-Velasco, & 
Domingo, 2021). This fundamental gap has driven a paradigm shift towards in vitro 
gametogenesis (IVG): the differentiation of pluripotent stem cells (PSCs) or somatic cells into 
functional haploid gametes entirely ex vivo (Saitou & Hayashi, 2021). 

Landmark murine studies have demonstrated proof-of-concept, with IVG-derived oocytes 
yielding live, fertile offspring (Hikabe et al., 2016). However, translating these protocols to 
human cells has proven vastly more complex, exposing critical knowledge gaps in human germ 
cell development. This article synthesizes recent breakthroughs in generating human oocytes in 
vitro, critically analyses persistent technological hurdles—focusing on epigenetic fidelity, meiotic 
completion, and niche recapitulation—and confronts the unprecedented ethical, social, and 
regulatory challenges precipitated by this transformative technology. 

The Architectures of Creation: Strategic Pathways 
to an Artificial Oocyte 
Two primary, converging strategic pathways are pursued for human IVG: differentiation from 
pluripotent stem cells and direct reprogramming of somatic cells (Figure 1). 

Figure 1: Strategic Pathways for In Vitro Oogenesis​
The schematic compares the two main approaches: the Pluripotent Stem Cell (PSC) Route 
(stepwise differentiation recapitulating development) and the Direct Reprogramming Route 
(transdifferentiation bypassing pluripotency). 

The Pluripotent Stem Cell Route: Recapitulating Development​
This established approach guides human ESCs or iPSCs through developmental stages 
mirroring fetal germ cell development. The first critical step is the induction of primordial germ 
cell-like cells (PGCLCs) by activating key signaling pathways (e.g., BMP4) and transcription 
factors like PRDM1, TFAP2C, and SOX17 (Irie et al., 2015; Sasaki et al., 2015). The resulting 
PGCLCs initiate epigenetic reprogramming, including global DNA demethylation (Seisenberger 
et al., 2012; Guo et al., 2015). Subsequent progression to oogonia and entry into meiosis 
requires pro-meiotic signals like retinoic acid and factors such as DAZL (Chen et al., 2014). A 
major bottleneck is achieving complete meiotic progression; current protocols often yield 
oocyte-like cells arrested at the germinal vesicle (GV) stage (Yamashiro et al., 2018). This 
impasse underscores the third critical component: reconstructing the ovarian somatic niche. The 
oocyte’s growth and maturation depend entirely on bidirectional communication with granulosa 
and theca cells within the follicular unit. Co-culture systems with fetal ovarian somatic cells or 



iPSC-derived somatic cells within 3D aggregates or organoids aim to provide this essential 
microenvironment (Hikabe et al., 2016; Yamashiro et al., 2018). 

Direct Reprogramming: A Shortcut with Epigenetic Hurdles​
This alternative strategy aims to convert a somatic cell (e.g., a fibroblast) directly into a germ 
cell-like state by forced expression of key transcription factors, bypassing the pluripotent 
intermediate (Murakami et al., 2021). While conceptually efficient and avoiding tumorigenic 
risks, this "shortcut" is fraught with the risk of epigenetic infidelity. The natural germline 
development involves two major waves of epigenetic reprogramming: erasure of somatic marks 
followed by de novo establishment of sex-specific imprints during gametogenesis (Seisenberger 
et al., 2012). Direct reprogramming, collapsing this multi-step process, may fail to achieve a 
complete and accurate epigenetic reset. Incorrect imprinting could lead to severe developmental 
disorders like Beckwith-Wiedemann or Angelman syndromes (Sanchez-Delgado et al., 2016). 
Therefore, the PSC route, which more closely follows the natural developmental timeline, is 
currently considered a more reliable, albeit complex, path forward. 

Technological Barriers and Recent Breakthroughs 
Translating IVG strategies into a clinically viable protocol requires surmounting profound, 
interconnected biological challenges. 

1. Epigenetic Reprogramming: The Ghost in the Machine​
Achieving a complete and accurate epigenetic reset is arguably the most formidable barrier. The 
oocyte’s genome carries a sex-specific DNA methylation pattern at genomic imprinting control 
regions (ICRs), essential for normal embryonic development (Ferguson-Smith & Bourc'his, 
2018). This state results from erasure of somatic marks in primordial germ cells (PGCs) followed 
by de novo imprint establishment during oogenesis (Seisenberger et al., 2012; Guo et al., 
2015). While human PGCLCs can initiate demethylation, the completeness of erasure and, 
more critically, the precise re-establishment of imprints in vitro remain major hurdles (Tang et al., 
2015). Aberrant methylation at imprinted loci in mouse IVG models correlates with 
developmental abnormalities (Holm, Rasmussen, & Zwart, 2018). For human IVG, ensuring 
correct methylation at all ~100 known imprinted loci is a monumental quality control problem. 
Advanced single-cell multi-omic analyses will be essential for validation (Zhou, Liu, & Zhang, 
2019). 

Figure 2: Epigenetic Reprogramming Challenges in IVG​
The figure details: A. DNA methylation dynamics from somatic cell to mature oocyte; B. The 
correct patterning required at imprinted loci; C. The complex network of epigenetic modifiers 
(e.g., TET1/2, DNMT3A/B) whose spatiotemporal expression must be recapitulated in vitro. 

2. Completing Meiosis I: The Aneuploidy Abyss​
A functional oocyte requires a haploid genome achieved through accurate meiosis I. This 
process is error-prone even in vivo, with aneuploidy rates rising with maternal age (Nagaoka et 
al., 2012). In an artificial environment, the risk is likely amplified. While mouse IVG oocytes can 
complete meiosis (Hikabe et al., 2016), human systems struggle to progress beyond the GV 



stage (Yamashiro et al., 2018). Ensuring proper synapsis, crossover formation, and 
chromosome segregation in vitro is a critical, unresolved bioengineering bottleneck. 

3. Achieving Developmental Competence: More Than Just a Genome​
Cytoplasmic competence—the accumulation of maternal RNA, proteins, organelles, and 
metabolic reserves—is essential for directing early embryogenesis. A key hallmark is substantial 
cytoplasmic growth; human oocytes grow from ~35 μm to over 120 μm. Current IVG-derived 
oocyte-like cells are typically much smaller, indicating failed cytoplasmic maturation (Yamashiro 
et al., 2018). Mitochondria are a particular concern: IVG oocytes would inherit somatic-cell 
mitochondria, which differ functionally from naturally selected oogonial mitochondria, posing 
unknown metabolic and safety risks (Brevini, Vassena, & Gandolfi, 2020). The correct 
deposition and regulation of maternal-effect factors (e.g., NLRP5, MATER) also remain a major 
unanswered question. 

4. Engineering the Three-Dimensional Niche: From Co-Culture to Organoids​
All aspects of oogenesis depend on continuous bidirectional signaling within the 3D follicular 
architecture. The field is advancing from simple co-culture to engineered ovarian organoids—3D 
structures self-organizing from stem cells to recapitulate ovarian tissue and follicular-like 
assemblies (Krotz, Robles, & Clark, 2020; Sun et al., 2022). The next frontier involves 
biofabrication: using 3D bioprinting, microfluidic "ovary-on-a-chip" devices, and tunable 
hydrogels to construct precisely controlled, vascularizable microenvironments that can support 
the months-long duration of human oocyte growth (Laronda et al., 2017). Success in niche 
engineering is key to unlocking progress across all other barriers. 

Figure 3: Bioengineering the Ovarian Follicular Niche​
The figure illustrates: A. The complex architecture of a natural follicle; B. Current engineered 
follicle models (aggregates, hydrogel encapsulation); C. Advanced biofabrication strategies 
(organoid systems, microfluidic devices). 

The Ethico-Legal Landscape and Social Implications 
The potential of IVG to decouple reproduction from biological constraints presents profound 
challenges requiring proactive discourse (Mathews et al., 2017). 

Reproductive Longevity and the "Endless" Supply: IVG could liberate female fertility from the 
biological clock, allowing conception at any age (Shenfield, 2018). While overcoming a 
significant inequity, this challenges notions of natural reproductive aging, may pathologize it, and 
introduces unknown technological risks alongside known obstetrical risks of advanced maternal 
age (Bayefsky, 2018; Harwood, 2019). 

Mass Gamete Production and Embryo Selection: The scalability of IVG, combined with 
preimplantation genetic testing (PGT), could enable selection not just against disease but for 
polygenic traits, raising fears of "liberal eugenics" and exacerbating socioeconomic inequalities 
by creating a biological stratification between those with and without access (Greely, 2016; 
Gyngell, Bowman-Smart, & Savulescu, 2019; Bayefsky, 2018). 



Risks to Offspring Health: The Paramount Safety Imperative: Novel risks, primarily epigenetic 
and mitochondrial, are the foremost ethical constraint. Errors in imprint establishment or somatic 
mitochondrial inheritance could lead to severe disorders or late-onset health issues 
(Sanchez-Delgado et al., 2016; Wolf, Mitalipov, & Mitalipova, 2019). An exceptionally high 
burden of proof, including long-term multi-generational preclinical studies in non-human 
primates, is an absolute prerequisite for any clinical pathway (Perry, 2020). 

Expanding Reproductive Choice and Redefining Parenthood: IVG could enable genetic 
parenthood for male same-sex couples, postmenopausal women, and individuals with certain 
karyotypic anomalies, dramatically expanding reproductive autonomy (Cutas & Smajdor, 2020). 
However, it fundamentally disaggregates genetic, gestational, and social parenthood, 
necessitating adaptation of legal frameworks and social narratives (Smajdor, 2018). 

The Legal Status and Regulatory Vacuum: Current laws are ill-equipped for entities created from 
somatic cells without traditional gametes (Ishii, Pera, & Greely, 2017). Urgent international 
consensus is needed on safety protocols, informed consent, limits on selection, and access 
equity to prevent a fragmented landscape and reproductive tourism (Mathews et al., 2017). 

Discussion and Future Perspectives 
The foundational principle of IVG is established, but translation to human application remains 
distant, encumbered by interwoven scientific and societal challenges. 

Scientifically, priorities must shift to safety and efficacy. The grand-challenge problems are: 1) 
achieving perfect epigenetic fidelity, requiring base-resolution validation of imprinting control 
regions using single-cell multi-omics (Zhou et al., 2019), and 2) engineering a sophisticated, 
dynamic ovarian niche via advanced biofabrication to support the months-long process of 
oocyte growth and maturation (Laronda et al., 2017; Sun et al., 2022). 

Given these hurdles, clinical translation is measured in decades. Optimistically, the first highly 
circumscribed trials for dire indications (e.g., infertility in young cancer survivors) might be 
conceivable in 10-15 years, pending successful multi-generational primate safety studies (Perry, 
2020). 

The ultimate barrier may be socio-ethical. The profound implications demand a parallel, 
proactive societal project. The scientific community must engage in sustained, transparent, and 
inclusive dialogue to co-create robust ethical guardrails and adaptive legal frameworks that 
ensure IVG, if realized, is deployed responsibly, equitably, and justly (Mathews et al., 2017; 
Greely, 2016). 

Figure 4: Translational Challenges and Timeline​
A radar chart analysis comparing current capabilities versus minimum clinical requirements 
across six domains: Epigenetic Fidelity, Meiotic Completion, Cytoplasmic Competence, Niche 
Engineering, Scalability, and Safety Validation. A projected timeline highlights safety validation 
as the most significant long-term barrier. 



Conclusion 
The vision of generating a gamete from any cell is a testament to human ingenuity. The journey 
integrates developmental biology, epigenetics, and tissue engineering. While the scientific 
challenges are profound, the greater challenge lies in navigating the human dimensions of this 
power. The success of IVG will be measured not just by the birth of a healthy child from an in 
vitro-derived oocyte, but by our collective wisdom in ensuring such a breakthrough enhances 
human dignity, expands autonomy without exacerbating inequality, and serves the deepest 
values of society. The laboratory quest must proceed hand-in-hand with the societal quest to 
understand what it means to be human in an age of biological design. 
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