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Abstract 
The age-related functional decline of mesenchymal stromal/progenitor cells (MSCs) is a central 
driver of skeletal aging, leading to osteoporosis and impaired tissue regeneration (Li, Wu, & 
Tuan, 2019). Challenging the paradigm of a uniformly aging MSC pool, this study identifies a 
rare subpopulation of mesenchymal progenitors with innate senescence resistance, termed 
Senescence-Resistant Committed progenitors (SRCs). Isolated from aged murine and human 
tissues via a unique immunophenotype 
(CD45⁻CD31⁻CD34⁻CD73⁺CD90⁺CD105⁺CD200⁺ITGA10⁺), SRCs demonstrated remarkable 
numerical preservation compared to severely depleted classical MSCs. Functionally, aged 
SRCs maintained low senescence markers (p16INK4a, SA-β-gal), lacked a pro-inflammatory 
secretome, and retained high clonogenic, proliferative, and osteogenic potential, countering the 
age-related adipogenic shift (Moerman, Teng, Lipschitz, & Lecka-Czernik, 2004). Transcriptomic 
and epigenetic profiling revealed that SRC resilience was underpinned by constitutive activation 
of DNA repair, antioxidant defense (NRF2), and mitochondrial homeostasis pathways, stabilized 
by a protective epigenetic landscape featuring *CDKN2A/p16* promoter hypomethylation (Sun, 
Coppe, & Lam, 2018). In vivo, transplantation of aged SRCs significantly enhanced bone 
regeneration in critical-sized defects compared to aged bulk MSCs. This discovery reframes 
mesenchymal aging, revealing a resilient cellular reservoir essential for tissue homeostasis. 
Targeting the SRC pool or mimicking its molecular signature represents a novel therapeutic 
frontier for age-related skeletal disorders. 
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Introduction 
The decline of tissue function and regenerative capacity is a hallmark of organismal aging, with 
clinically significant consequences in skeletal tissues leading to osteoporosis, osteoarthritis, and 
fragility fractures (López-Otín, Blasco, Partridge, Serrano, & Kroemer, 2013). At the cellular 
level, this decline is linked to dysfunction of somatic stem and progenitor cells. Mesenchymal 
stromal/progenitor cells (MSCs), residing in perivascular niches, are pivotal for skeletal 
homeostasis, providing progenitors for osteoblasts, chondrocytes, and adipocytes (Crisan et al., 
2008). 

Extensive research documents profound age-related impairment of MSCs, including reduced 
proliferative and clonogenic capacity (Stenderup, Justesen, Clausen, & Kassem, 2003), 
increased cellular senescence with a pro-inflammatory senescence-associated secretory 
phenotype (SASP) (Baker et al., 2011; Childs, Durik, Baker, & van Deursen, 2015), and a critical 
differentiation shift from osteogenesis to adipogenesis (Moerman et al., 2004; Justesen, 
Stenderup, Kassem, & Mosekilde, 2002). This shift contributes directly to bone loss and marrow 
adiposity (Ambrosi et al., 2017). 

While the prevailing paradigm describes a uniformly declining MSC compartment, this view may 
overlook inherent stem cell heterogeneity. In hematopoiesis, subsets of stem cells with distinct 
properties exist (Morita, Ema, & Nakauchi, 2010). Similarly, single-cell transcriptomic studies 
reveal diversity within stromal populations (Baryawno et al., 2019; Tikhonova et al., 2019), 
suggesting specialized subpopulations. 

This leads to a hypothesis: within the broader, aging-susceptible MSC pool, a rare 
subpopulation of progenitors with intrinsic resistance to age-associated stresses may persist, 
acting as a resilient reserve for tissue homeostasis. This study aimed to identify, characterize, 
and functionally validate these putative Senescence-Resistant mesenchymal Committed 
progenitors (SRCs). 

Results 

1. Identification and Isolation of a Unique SRC Population 

Using a multi-step FACS strategy, we isolated a distinct mesenchymal progenitor population 
from murine and human tissues. In humans, SRCs were defined as 
CD45⁻CD31⁻CD34⁻CD73⁺CD90⁺CD105⁺CD200⁺ITGA10⁺. Crucially, while classical MSCs 
(CD73⁺CD90⁺CD105⁺) showed a ~60% age-related frequency decline, the SRC 
(CD200⁺ITGA10⁺) subset frequency was reduced by only ~20% (p<0.05) (Fig. 1A, B). In aged 
tissues, SRCs constituted <5% of the total MSC pool. A murine analogous population 
(Lin⁻CD45⁻CD31⁻Sca-1⁺CD24⁻CD200⁺Itga10⁺PDGFRβ⁺) showed similar resistance to numerical 
exhaustion. 
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2. SRCs Exhibit a Profound Resistance to Cellular Senescence 

Aged SRCs displayed striking resilience to canonical aging markers. SA-β-gal activity was 
4.1-fold lower in aged human SRCs vs. age-matched MSCs (p<0.001) (Fig. 1C). Protein levels 
of p16INK4a and p21CIP1 were significantly suppressed (3.5-fold and 2.8-fold lower, 
respectively; p<0.01). The SASP profile of aged SRCs showed markedly lower levels of 
pro-inflammatory factors (IL-6, IL-8, MMP-3) compared to aged classical MSCs, resembling the 
secretome of young MSCs (Fig. 1D). 

3. Preservation of Progenitor Function in Aged SRCs 

Functional assays confirmed preserved regenerative capacity. In CFU-F assays, aged SRCs 
formed 3.7 times more colonies than aged MSCs (p<0.001) (Fig. 2A). Proliferative capacity 
(population doubling, Ki67 positivity) remained high. Critically, while aged MSCs lost osteogenic 
potential and favored adipogenesis, aged SRCs retained robust osteogenic differentiation. 
Osteogenic gene expression (RUNX2, SP7, BGLAP) and mineralized matrix deposition in aged 
SRCs were not significantly different from young MSCs (Fig. 2B). 

4. Molecular and Epigenetic Foundations of Resilience 

Transcriptomic analysis revealed SRCs exhibited elevated expression of genes involved in DNA 
repair (BRCA1, RAD51), antioxidant defense (*NFE2L2/NRF2* pathway), and mitochondrial 
homeostasis (Fig. 3A, B). Epigenetically, SRCs displayed characteristic hypomethylation at the 
*CDKN2A/p16* promoter, contrasting with hypermethylation in aged MSCs (Fig. 3C). ATAC-seq 
analysis showed maintained chromatin accessibility at promoters and enhancers of self-renewal 
(ID1, MYC) and osteogenic (RUNX2) genes in aged SRCs, which became more closed in aged 
MSCs (Buenrostro, Giresi, Zaba, Chang, & Greenleaf, 2013) (Fig. 3D). 

5. Functional Superiority of SRCs in In Vivo Models 

Calvarial Defect Regeneration: Transplantation of aged human SRCs into critical-sized calvarial 
defects in NSG mice led to a 2.8-fold increase in new bone volume (BV) compared to aged 
MSCs at 8 weeks (p<0.001) (Fig. 4A). Histology confirmed mature, vascularized bone only in 
SRC-treated defects. 

Systemic Amelioration of Age-Related Osteoporosis: Systemic infusion of young murine SRCs 
into aged osteoporotic mice increased trabecular bone volume fraction (BV/TV) by 22% and 
improved trabecular architecture vs. PBS controls (p<0.01) (Fig. 4B). Infusion of aged SRCs 
also conferred a significant benefit (15% BV/TV increase; p<0.05). This was associated with 
increased bone formation marker P1NP, decreased resorption marker CTX-I, reduced marrow 
adiposity, and increased osteoblast surface (Fig. 4C). Lineage tracing confirmed transplanted 
SRCs engrafted into the bone marrow niche, contributed directly to the osteoblast lineage, and 
stimulated endogenous osteoprogenitors via paracrine effects. 
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Discussion 
Our data establish the SRC as a discrete, biologically significant entity within the heterogeneous 
stromal compartment, challenging the view of uniform MSC aging. SRCs represent a persistent 
reserve pool responsible for baseline tissue maintenance in aging (Li et al., 2019). 

The molecular architecture of SRC resilience involves a pre-programmed state favoring 
longevity: sustained DNA repair, robust NRF2-mediated antioxidant defense, and mitochondrial 
fitness (López-Otín et al., 2013; Schultz & Sinclair, 2016). This is cemented by a protective 
epigenetic landscape that prevents default senescence engagement (Sun et al., 2018). High 
expression of adhesion molecules like ITGA10 suggests a unique protective niche (Pinho et al., 
2013; Gattazzo, Urciuolo, & Bonaldo, 2014). 

Therapeutic implications are profound. SRCs are a novel target for age-related skeletal 
disorders. Strategies include: 1) Augmentation therapy using SRCs for regeneration; 2) In vivo 
targeting via pharmacological expansion of endogenous SRCs, niche engineering, or pathway 
modulation (e.g., enhancing DNA repair or NRF2 activity) to induce an SRC-like state in broader 
MSC populations, acting as next-generation "senomorphics" (Fuhrmann-Stroissnigg et al., 
2017). The SRC concept may extend to other aging mesenchymal tissues (e.g., muscle, 
cartilage). 

Limitations include the need for lifelong lineage-tracing to confirm long-term self-renewal and 
validation in larger human cohorts. Future work should define the SRC ontogenetic origin, 
precise niche via spatial transcriptomics, and therapeutic efficacy in comorbid aging models. 

Conclusions 
This study provides definitive evidence for a senescence-resistant mesenchymal progenitor 
(SRC) population crucial for skeletal homeostasis in aging. SRCs are identified by a unique 
immunophenotype, exhibit numerical preservation, and maintain youthful functionality, including 
robust osteogenesis. Their resilience is underpinned by constitutive activation of DNA repair, 
antioxidant defense, and mitochondrial pathways, stabilized by a protective epigenetic 
landscape. SRC transplantation enhances bone regeneration in vivo. This discovery shifts the 
paradigm of mesenchymal aging from uniform decline to functional heterogeneity, revealing a 
resilient cellular reservoir. Therapeutic strategies targeting the SRC pool or its molecular 
signature offer a promising new frontier for treating age-related skeletal disorders. 
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