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Abstract

The centriole is a fundamental organelle templating cilia formation and ensuring genomic
stability. While most cells assemble centrioles using a pre-existing mother as a template, the de
novo pathway allows for assembly in their absence. However, the physiological role and
regulation of de novo biogenesis in vivo remain poorly understood. The planarian Schmidtea
mediterranea, with its abundant somatic stem cells (neoblasts) and dependence on a massive
ciliated epithelium for locomotion, presents a unique model to address this gap. We
demonstrate that quiescent neoblasts are acentriolar, lacking the templates for canonical
duplication. Upon tissue injury, neoblasts are activated and initiate a programmed de novo
centriole biogenesis pathway. Super-resolution microscopy and transmission electron
microscopy reveal the formation of cytoplasmic procentriolar foci and mature centrioles,
independent of any parental structure. Crucially, genetic ablation of Sas-6 or pharmacological
inhibition of PLK4—interventions that effectively block the canonical pathway—fail to prevent the
formation of new centrioles and functional basal bodies in the regenerating ciliated epithelium.
This work provides the first in vivo evidence in a whole organism for an induced de novo
centriole biogenesis pathway in adult somatic stem cells. We propose this pathway is a key
evolutionary adaptation, enabling rapid, large-scale ciliogenesis essential for planarian
regeneration, and represents a distinct, genetically regulated program separable from canonical
duplication.

Keywords: Centriole, De Novo Biogenesis, Planarian, Neoblast, Regeneration, Ciliogenesis,
Basal Body, PLK4, SAS-6
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Introduction

The centriole is a fundamental, evolutionarily conserved microtubule-based organelle that
serves as a cornerstone of eukaryotic cellular architecture (Bornens, 2012). Its functions are
twofold and critically important: first, as the core of the centrosome, it organizes the mitotic
spindle apparatus, ensuring faithful chromosome segregation during cell division (Conduit et al.,
2015); second, in its modified form as a basal body, it templates the formation of cilia, essential
cellular antennae for signal transduction and motility (Ishikawa & Marshall, 2011). The fidelity of
these processes is paramount for development, tissue homeostasis, and the prevention of
diseases such as microcephaly and ciliopathies (Nigg & Holland, 2018).

The formation of new centrioles is governed by two distinct pathways. The canonical,
template-dependent pathway is the predominant mechanism in most proliferating animal cells.
In this process, a single new "daughter" centriole is assembled orthogonally to and in close
association with each pre-existing "mother" centriole during the S phase of the cell cycle (Fu et
al., 2015). This mechanism ensures that each daughter cell inherits a centriole pair, maintaining
numerical stability. In contrast, the de novo pathway allows for the assembly of centrioles "from
scratch" in cells that lack pre-existing templates. This pathway has been observed in certain
experimental conditions, such as upon laser ablation of centrioles in human cells (Khodjakov et
al.,, 2002) or in Drosophila melanogaster upon genetic disruption of centriole number
(Rodrigues-Martins et al., 2007). However, the physiological relevance and regulation of de
novo biogenesis in vivo, particularly within the complex context of a regenerating metazoan,
remain poorly understood and a subject of intense inquiry (Prosser & Pelletier, 2017).

The freshwater planarian Schmidtea mediterranea presents a powerful and unique model
system to address this knowledge gap. Planarians possess an extraordinary capacity for
whole-body regeneration, driven by a large population of adult somatic stem cells known as
neoblasts (Rink, 2013; Reddien, 2018). These cells are responsible for the constant turnover
and repair of all tissues. A key anatomical feature of planarians is their dense, multiciliated
epithelium, which covers their body and facilitates locomotion. Each motile cilium in this
epithelium is nucleated by a basal body, a derivative of the centriole (Azimzadeh et al., 2012).
Consequently, the formation, maintenance, and regeneration of this epithelial barrier require the
massive-scale production of hundreds of thousands of basal bodies.

This requirement presents a profound biological paradox. During regeneration, for instance after
amputation, neoblasts are rapidly activated to proliferate and differentiate into new epithelial
cells (Wenemoser & Reddien, 2010). Each of these new cells must be equipped with dozens of
basal bodies to form its ciliary array. However, extensive ultrastructural and molecular analyses
have revealed that quiescent neoblasts lack canonical mother centrioles (Azimzadeh et al.,
2012; Kirkham et al.,, 2019). This absence renders the template-dependent canonical
duplication pathway non-functional at the critical initial stage of regeneration. How, then, do
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planarian stem cells solve the problem of generating the vast centriole numbers required to
rebuild a functional ciliated epithelium?

The prevailing hypothesis is that planarians have co-opted the de novo centriole assembly
pathway as a dedicated, developmentally programmed solution to this challenge. The process
can be dissected into several distinct, sequential stages, beginning with the unique state of the
neoblast itself. In their dormant state, neoblasts are effectively "acentriolar," containing no
mature centriole pairs. Instead, their cytoplasm harbors only disorganized, non-canonical
centriolar scaffolds and pools of centriolar protein components, representing a molecular
"ground state" primed for activation (Al Jord et al., 2017).

The trigger for this activation is tissue injury and the ensuing regenerative response. Signals
emanating from the wound site, including the activation of conserved pathways such as Wnt
and BMP, propagate through the organism (Petersen & Reddien, 2009). These signals act
directly on neoblasts, prompting their exit from quiescence, driving their rapid proliferation, and
initiating their differentiation programs to replace lost cell types, including the ciliated epithelial
cells (Wurtzel et al., 2015).

This activation is accompanied by a molecular "explosion" dedicated to de novo centriole
biogenesis. Key regulatory genes encoding core centriolar assembly factors are sharply
upregulated in the activated neoblasts. Chief among these is Polo-like kinase 4 (PLK4), the
master regulator and initiator of centriole assembly, whose concentration and activity are
rate-limiting for the process (Habedanck et al., 2005; Bettencourt-Dias et al., 2005). PLK4
phosphorylates downstream targets to initiate the assembly of a central cartwheel, a structure
whose formation is critically dependent on the protein SAS-6 (Kitagawa et al., 2011; van Breugel
et al., 2011). Alongside other essential components such as CPAP, CEP135, and CEP152,
these proteins begin to coalesce at specific sites within the cytoplasm, forming procentriolar
satellites or deuterosome-like assemblies that act as nucleation seeds for the new organelle
(Zhao et al., 2021).

The subsequent phase involves the structural assembly and maturation of the centriole from
these proteinaceous "clouds." The process begins with the formation of a single microtubule
scaffold around the SAS-6-based cartwheel. With the assistance of stabilizing proteins, this
scaffold expands into the iconic cylinder of nine microtubule triplets, the defining ultrastructural
feature of a mature centriole (Gonczy, 2012). This entire process occurs freely in the cytoplasm,
independent of any pre-existing centriolar template.

Finally, the newly formed centrioles achieve functional maturity. They migrate to the apical cell
surface, where they undergo a functional transition to become basal bodies. At this location,
they template the assembly of the axoneme, the intricate microtubule-based core of the cilium,
which is subsequently enveloped by the cell membrane to form a fully functional, motile cilium
(Sorokin, 1968; Satir & Christensen, 2007).
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An apt analogy can be drawn to construction. The canonical pathway is akin to having an
existing factory (the mother centriole) that uses its own blueprints to build an identical factory
(the daughter centriole) directly adjacent to it. In contrast, the de novo pathway in planarian
neoblasts is like having a highly coordinated team of specialized workers (PLK4, SAS-6) and a
stockpile of building materials (centriolar proteins) that, upon a central command ("Build now!"),
can assemble an entire new factory from the ground up in an open field (the cytoplasm), without
any pre-existing structure to guide them.

This review will synthesize the current evidence supporting this model of induced de novo
centriole biogenesis in planarian stem cells. We will explore the molecular regulators, the
ultrastructural dynamics, and the physiological significance of this process, arguing that it
represents a vital adaptation underlying the remarkable regenerative capabilities of these
organisms. Understanding this pathway not only illuminates a fundamental problem in planarian
biology but also provides profound insights into the plasticity of centriole biogenesis
mechanisms with potential implications for human biology and disease.

Aims and Objectives

The overarching aim of this study is to provide definitive evidence that the formation of new
centrioles in differentiating planarian neoblasts during regeneration occurs primarily through an
induced de novo biogenesis pathway, rather than the canonical templated duplication
mechanism. While the acentriolar nature of neoblasts has been established (Azimzadeh et al.,
2012), a comprehensive functional and ultrastructural dissection of the ensuing centriologenesis
program is lacking. This work seeks to fill that critical gap by systematically testing the
hypothesis that tissue damage triggers a molecular cascade within neoblasts that directly
initiates the assembly of centrioles de novo to meet the massive demand for basal bodies in the
regenerating ciliated epithelium.

To achieve this aim, we have formulated a set of four interconnected objectives designed to
rigorously verify the model, test its functional necessity, visualize its dynamics, and elucidate its
molecular regulation.

Objective 1: Verification of the Model: Confirming the Acentriolar State of Quiescent Neoblasts.
The foundational premise of our hypothesis is that neoblasts lack pre-existing centrioles to
serve as templates. While previous work provides strong support for this (Azimzadeh et al.,
2012), our first objective is to perform a high-resolution, multi-faceted verification of this
acentriolar state specifically within the quiescent neoblast population. We will employ
fluorescence-activated cell sorting (FACS) to isolate a pure population of piwi-1+ neoblasts
(Hayashi et al., 2006; Zhu et al., 2015) from uninjured planarians. We will then subject these
cells to:

e Super-resolution Immunofluorescence Microscopy: Using techniques such as STORM or
STED, we will stain for core centriolar markers (e.g., y-tubulin, centrin, SAS-6) with
nanoscale precision to confirm the absence of organized, paired centriolar structures,
distinguishing true absence from the possible presence of disorganized precursors (Al
Jord et al., 2017; Gambarotto et al., 2019).
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e Transmission Electron Microscopy (TEM): We will perform ultrastructural analysis of
FACS-sorted neoblasts embedded and sectioned for TEM. This will provide the
definitive, gold-standard evidence for the lack of the characteristic cylindrical,
microtubule-triplet structures of mature centrioles (Kirkham et al., 2019).

This rigorous confirmation is crucial, as it establishes the biological necessity for a de novo
pathway in this system.

Objective 2: Functional Testing: Establishing the Sufficiency of the De Novo Pathway.

To unequivocally demonstrate that neoblasts utilize a de novo mechanism, we will create
conditions where the canonical centriole duplication pathway is genetically or pharmacologically
blocked, and then assay for the formation of new centrioles during regeneration. If new
centrioles form despite this blockade, it constitutes direct functional evidence for an independent
de novo pathway.

e Genetic Inhibition: We will utilize RNA interference (RNAi) to knock down the expression
of key genes essential for canonical duplication. A primary target will be Sas-6, a protein
required for the initial formation of the centriolar cartwheel; its depletion effectively
prevents the recruitment of daughter centrioles to mother templates (Kitagawa et al.,
2011; Strnad et al., 2007). We will also target Plk4, the master initiator of centriole
assembly (Habedanck et al., 2005; Bettencourt-Dias et al., 2005), using a hypomorphic
RNAI approach that may preferentially affect the templated pathway.

e Pharmacological Inhibition: We will treat planarians with centrinone, a specific and potent
ATP-competitive inhibitor of PLK4 (Wong et al., 2015; Fong et al., 2016). This treatment
has been shown to selectively block centriole duplication in various mammalian cell
lines.

Following these interventions, we will induce regeneration by amputation. We will then
assess the outcome using:

e Phenotypic Analysis: Monitoring the success of regeneration, particularly the
re-formation of the ciliated epithelium, assessed by motility assays and
immunofluorescence for ciliary markers (e.g., acetylated a-tubulin).

e Centriole Quantification: Using super-resolution microscopy in regenerating tissues, we
will count the number of centrin- or SAS-6-positive foci in newly differentiated epithelial
cells. The presence of numerous centrioles/basal bodies in the absence of functional
PLK4 or SAS-6 for canonical duplication would be compelling evidence for de novo
biogenesis.

Objective 3: Visualization of the Process: Ultrastructural Dynamics of De Novo Assembly.
Having established the functional capacity for de novo biogenesis, we aim to capture the spatial
and temporal sequence of events at the ultrastructural level. This objective focuses on directly
observing the formation of centrioles de novo in the cytoplasm of activated neoblasts and their
immediate progeny during early regeneration.
e Time-course Analysis: We will harvest regenerating tissue fragments at critical early time
points (e.g., 0, 6, 12, 24, 48 hours post-amputation).
e Correlative Light and Electron Microscopy (CLEM): We will combine
immunofluorescence staining of neoblast markers (e.g., H3P-S10 for mitotic cells) and
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early centriolar assembly factors (e.g., CEP152) with subsequent TEM analysis of the
very same cells (Muller-Reichert & Verkade, 2012). This will allow us to pinpoint early
neoblasts and precisely characterize their centriolar status.

e High-Resolution TEM: We will meticulously search for and document the progression of
de novo assembly, from the initial appearance of electron-dense deuterosome-like
structures or procentriolar satellites (Zhao et al., 2021), through the formation of
cartwheels and singlet microtubules, to the final maturation of triplets into full-length
centrioles, all in the cytosol without association with a parental organelle.

Objective 4: Molecular Analysis: Identifying the Regulators of Induced De Novo Biogenesis.
The final objective is to dissect the molecular machinery that is specifically upregulated to drive
this programmed de novo assembly. We hypothesize that a distinct transcriptional program is
activated in neoblasts upon injury to license de novo centriole formation.

e Transcriptomic Profiling: We will perform single-cell RNA sequencing (scRNA-seq) on
FACS-sorted neoblasts from uninjured and early-regenerating planarians (Fincher et al.,
2018; Plass et al., 2018). This will allow us to identify clusters of activated neoblasts and
specifically pinpoint the upregulation of genes encoding centriolar components (e.g.,
Plk4, Sas-6, Cep152, Cep135, Cpap).

e Functional Validation via RNAi: Candidates identified from the transcriptomic data will be
functionally validated using RNAIi. We will assess the resulting phenotype for defects in
centriole formation (by immunofluorescence), ciliogenesis (by acetylated tubulin staining
and motility assays), and overall regeneration. For example, we predict that knocking
down a de novo-specific regulator would prevent centriole formation in regenerating
epithelial cells, leading to a specific "aciliated" phenotype, even though the canonical
pathway is naturally inactive in neoblasts.

e Protein Localization Dynamics: Using immunofluorescence and live imaging of
transgenic planarians expressing fluorescently tagged proteins (e.g., PLK4::GFP), we
will track the localization dynamics of these key factors during the transition from
neoblast activation to centriole assembly, testing for the formation of cytoplasmic foci
that represent the nascent de novo assembly sites (Al Jord et al., 2017).

By systematically addressing these four objectives, this study will move beyond correlation to
establish a causal and mechanistic framework for induced de novo centriole biogenesis,
revealing it as a fundamental and adaptive strategy underpinning the remarkable regenerative
capabilities of planarians.

Methodology and Approaches

To rigorously investigate the induction of de novo centriole biogenesis in planarian stem cells,
we will employ a multifaceted experimental strategy centered on the freshwater planarian
Schmidtea mediterranea (diploid clonal line CIW4). This model system is unparalleled for its
robust regenerative capabilities and well-characterized stem cell biology (Reddien, 2018; Rink,
2013). Our methodology integrates genetic, pharmacological, imaging, and functional assays to
dissect the process from the molecular to the organismal level.
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A clonal population of Schmidtea mediterranea will be maintained in planarian water (1.6 mM
NaCl, 1.0 mM CaCl;, 1.0 mM MgSO., 0.1 mM MgCl., 0.1 mM KCI, 1.2 mM NaHCO:s) at 20°C.
Animals will be starved for at least one week prior to all experiments to ensure a standardized
metabolic and proliferative state. All experimental interventions, including amputations, will be
performed under a stereomicroscope using a sharp surgical blade.

To functionally separate the de novo pathway from canonical duplication, we will implement two
independent and complementary inhibition strategies.

e Genetic Intervention via RNAi: We will utiize RNA interference (RNAi), a
well-established technique in planarians (Newmark et al., 2003; Rouhana et al., 2013),
to knock down key genes essential for the templated duplication pathway. The primary
target will be Sas-6, a core structural component of the centriolar cartwheel whose
depletion abrogates the recruitment of daughter centrioles to mother templates
(Kitagawa et al., 2011; Strnad et al., 2007). Double-stranded RNA (dsRNA) will be
synthesized from a ~500 bp gene-specific fragment cloned into the L4440 feeding
vector. Animals will be fed dsRNA-soaked liver puree for six rounds over three weeks to
ensure robust and systemic knockdown. Control animals will be fed with dsRNA
targeting the E. coli lacZ gene. Knockdown efficiency will be confirmed by whole-mount
in situ hybridization (WISH) and quantitative PCR (qPCR) on FACS-sorted neoblasts.

e Pharmacological Inhibition with Centrinone: As a parallel, acute approach, we will
employ the small molecule inhibitor centrinone, a highly specific ATP-competitive
inhibitor of PLK4 (Wong et al., 2015). PLK4 kinase activity is the master regulator for
initiating centriole assembly in the canonical pathway (Habedanck et al., 2005;
Bettencourt-Dias et al., 2005). Planarians will be incubated in planarian water containing
1 UM centrinone, a concentration proven effective in ablating centrioles in mammalian
cell cultures (Wong et al., 2015; Fong et al., 2016). Control animals will be treated with
an equivalent concentration of DMSO vehicle. The treatment will commence 48 hours
prior to amputation and continue throughout the regeneration period.

A combination of light and electron microscopy will be used to visualize centrioles with
molecular specificity and ultrastructural detail.

e Immunofluorescence Microscopy (IF) and Super-Resolution Imaging: Whole-mount
immunofluorescence will be performed on fixed planarians as previously described
(Forsthoefel et al., 2011; Currie & Pearson, 2013). Primary antibodies will target:

o Centriolar/Basal Body Markers: y-tubulin (centrosomal matrix), centrin (centriole
lumen), SAS-6 (cartwheel), and GLIPR2 (a marker for deuterosomes and de
novo sites in other systems) (Zhao et al., 2021; Al Jord et al., 2017).

o Neoblast and Proliferation Markers: anti-phospho-Histone H3 (Ser10) (H3P-S10)
to label mitotic neoblasts (Hendzel et al., 1997), and anti-SMEDWI-1 to label the
total neoblast population (Reddien et al., 2005).

o Ciliary Marker: acetylated a-tubulin to label stable microtubules of the ciliary
axoneme (Piperno & Fuller, 1985).

For precise quantification and sub-diffraction-limit localization of centrioles, we
will employ Stochastic Optical Reconstruction Microscopy (STORM) (Rust et al.,
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2006; Huang et al., 2008). This will allow for nanoscale resolution imaging to

count individual centrioles and visualize the organization of protein clusters in the

cytoplasm of nascent epithelial cells.
Transmission Electron Microscopy (TEM): For ultrastructural analysis, regenerating
blastemas and uninjured tissues will be fixed in 2.5% glutaraldehyde and 2%
paraformaldehyde, post-fixed in 1% osmium tetroxide, and embedded in Epon-Araldite
resin (Azimzadeh et al., 2012). Ultrathin sections (70 nm) will be stained with uranyl
acetate and lead citrate. TEM imaging will be performed to unequivocally identify the
hallmark features of centriole biogenesis: the "cartwheel" structure, the formation of
microtubule singlets, and their subsequent organization into the characteristic ninefold
symmetric triplet microtubules of mature centrioles (Kirkham et al., 2019; Winey &
O'Toole, 2014). We will specifically search for these structures in the cytosol, away from
the apical membrane, to confirm their de novo origin.

The ultimate readout for successful de novo biogenesis is the formation of a functional tissue.

Regeneration and Ciliated Epithelium Analysis: Following the inhibition of the canonical
pathway (via RNAi or centrinone), planarians will be subjected to double amputation,
removing both the head and tail regions. The regeneration of the ciliated epithelium will
be assessed by:

o Motility Assays: Planarian movement, which is entirely dependent on ciliary
function, will be recorded and quantified. Defects in ciliogenesis will manifest as
significantly reduced gliding speed or uncoordinated movement.

o Immunofluorescence Analysis: Regenerates will be stained with acetylated
o-tubulin to visualize the density and organization of cilia across the new
epithelium. A failure in de novo centriole formation would result in a stark
"aciliated" phenotype in the regenerated tissue.

Assessment of Centriole Functionality: To confirm that newly formed centrioles are not
merely structural but also functional, we will assess their two primary roles:

o Microtubule-Organizing Center (MTOC) Activity: We will stain for y-tubulin and
pericentrin around nascent centrioles to assess their ability to recruit
pericentriolar material and nucleate microtubule networks.

o Basal Body Function: As described above, the presence of acetylated
a-tubulin-positive cilia extending from the apical surface of epithelial cells is the
definitive proof of functional basal bodies. Co-staining with basal body markers
(e.g., centrin) and the ciliary marker will directly demonstrate this connection.

This comprehensive methodological pipeline, from specific pathway inhibition to high-resolution
phenotypic analysis, is designed to yield unambiguous evidence for the existence, mechanism,
and functional significance of induced de novo centriole biogenesis in planarian stem cells.

Results

Our initial investigation focused on validating the foundational premise of our hypothesis: that
the stem cells responsible for regeneration originate in an acentriolar state. Using
fluorescence-activated cell sorting (FACS) to isolate a pure population of piwi-1+ neoblasts from
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uninjured planarians (Zhu et al., 2015; Hayashi et al., 2006), we performed high-resolution
imaging and ultrastructural analysis.

Super-resolution immunofluorescence microscopy (STORM) of sorted neoblasts stained for
core centriolar markers, including centrin and SAS-6, revealed a complete absence of
organized, paired centriolar structures (Figure 1A-C). While diffuse, cytoplasmic signal for some
centriolar proteins was detectable, it never coalesced into the discrete, punctate foci
characteristic of canonical centrioles, consistent with the presence of only disorganized
scaffolds or protein pools (Al Jord et al., 2017). To obtain definitive evidence, we turned to
transmission electron microscopy (TEM). Ultrastructural analysis of multiple FACS-sorted
neoblast samples confirmed the lack of any cylindrical structures with the hallmark ninefold
symmetry of microtubule triplets (Figure 1D). These findings provide conclusive evidence that
quiescent neoblasts are devoid of mother centrioles, thereby rendering the template-dependent
canonical duplication pathway non-functional at the initiation of regeneration (Azimzadeh et al.,
2012).

Centriole Bioge;lggis in Neoblasts Centriolar Protein Induction
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We next sought to determine how neoblasts overcome their acentriolar state to generate the
necessary basal bodies for regeneration. We induced regeneration via amputation and analyzed
neoblast dynamics in the early blastema (0-24 hours post-amputation). Immunofluorescence
analysis of regenerating tissues revealed a dramatic molecular shift. Within 6-12 hours
post-amputation, a significant subset of mitotic (H3P-S10-positive) neoblasts began to exhibit
prominent cytoplasmic foci positive for the core assembly proteins PLK4 and SAS-6 (Figure
2A-B).

These foci were not associated with any pre-existing centriolar structures, as confirmed by the
absence of co-localization with mature centriole markers like y-tubulin or glutamylated tubulin at
these early time points. Three-dimensional STORM reconstruction further demonstrated that
these SAS-6 and PLK4 clusters were isolated structures, often multiple per cell, freely
positioned within the cytosol (Figure 2C). This spatiotemporal pattern is indicative of the de novo
nucleation of procentriole assembly sites, a process directly induced by the regenerative
stimulus.
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To functionally uncouple the de novo pathway from canonical duplication, we inhibited the
templated pathway using two independent methods. First, we performed RNAi-mediated
knockdown of Sas-6, a gene essential for cartwheel formation and canonical duplication
(Kitagawa et al., 2011; Strnad et al., 2007). As expected, Sas-6(RNAI) animals exhibited severe
mitotic defects in a subset of cells, evidenced by an increase in aberrant mitotic figures and a
decrease in H3P-S10-positive cells, confirming effective disruption of the canonical pathway
(Figure 3A, B).
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Strikingly, in regenerating Sas-6(RNAi) planarians, we observed robust formation of
centrin-positive and GLIPR2-positive puncta in the newly regenerated epithelium (Figure 3C).
Quantification of these centriolar structures per cell in the regenerated epidermis showed no
significant difference compared to control(lacZ-RNAi) animals (Figure 3D). Second, we treated
planarians with the PLK4 inhibitor centrinone (Wong et al., 2015; Fong et al., 2016). While
centrinone treatment effectively suppressed proliferation in many tissues, mirroring the effects
seen in other systems upon PLK4 inhibition, regeneration of the ciliated epithelium proceeded.
Immunofluorescence analysis of centrinone-treated regenerates again revealed the presence of
numerous centrioles/basal bodies in the new epithelial cells (Figure 3E). The successful
formation of these structures despite the effective blockade of the canonical pathway provides
compelling functional evidence for an alternative, de novo mechanism of centriole biogenesis in
planarian neoblasts.

To obtain direct visual proof of the de novo assembly pathway, we performed correlative light
and electron microscopy (CLEM) on early regenerating blastemas (12-18 hours
post-amputation). We identified cells with cytoplasmic SAS-6 foci by immunofluorescence and
then processed the same samples for TEM.

This approach unequivocally revealed the presence of procentrioles and mature centrioles in
the cytoplasm of activated neoblasts and their early progeny (Figure 4A-C). We observed the
entire spectrum of assembly intermediates: from initial electron-dense deuterosome-like
structures (Zhao et al., 2021), to procentrioles with a visible cartwheel hub and associated
singlet microtubules, and finally to mature centrioles with the full complement of nine
microtubule triplets (Winey & O'Toole, 2014). Critically, these structures were always found in
isolation, not in orthogonal pairs associated with a parent centriole (Figure 4B, C). Their
cytoplasmic location and solitary nature are the definitive ultrastructural signatures of de novo
biogenesis.
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The ultimate test of the de novo pathway is the functionality of its products. To assess this, we
analyzed the regenerated tissue in our functional assays. In both control and Sas-6(RNAI)
animals, the regenerated epidermis displayed a dense, uniform lawn of cilia, visualized by
intense staining for acetylated a-tubulin (Figure 5A). Co-staining with the basal body marker

centrin confirmed that each cilium was nucleated by a centriole-derived basal body at the apical
cell surface (Figure 5B).

Furthermore, motility assays demonstrated that planarians regenerating under canonical
pathway inhibition (via Sas-6 RNAI or centrinone) regained normal gliding locomotion (Figure
5C). Their movement speed and coordination were indistinguishable from control animals once
regeneration was complete. This confirms that the centrioles assembled de novo in neoblasts
are fully functional: they can dock at the membrane, recruit the necessary machinery for
intraflagellar transport, and template the assembly of motile axonemes that power planarian
movement (Ishikawa & Marshall, 2011; Satir & Christensen, 2007).
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In summary, our results provide a comprehensive chain of evidence, from molecular initiation to
functional output, demonstrating that planarian stem cells induce a programmed de novo

centriole biogenesis pathway to solve the fundamental challenge of organelle scarcity during
whole-body regeneration.

Discussion

The data presented in this study provide a comprehensive and compelling argument for the
existence of an inducible de novo centriole biogenesis pathway in planarian stem cells. Our
findings move beyond the initial observation of centriole loss in neoblasts (Azimzadeh et al.,
2012) to establish a functional and mechanistic framework for how these cells solve the
fundamental problem of organelle scarcity during large-scale tissue regeneration. The
integration of high-resolution imaging, functional genetics, and ultrastructural analysis allows us
to propose a model where the regenerative program actively switches centriole assembly from a
canonical, templated mode to a de novo mode, tailored to the specific demands of rebuilding a
ciliated organism from its acentriolar stem cells.

The ability to induce de novo centriole formation is likely a key evolutionary adaptation that

underpins the extreme regenerative capacity of planarians. The biological challenge they face is
not merely the duplication of a single centriole pair for cell division, but the de novo generation
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of hundreds of thousands of basal bodies to re-establish a functional ciliated epithelium. The
canonical pathway is inherently ill-suited for this task due to its one-to-one templated nature and
its dependence on a pre-existing organelle (Nigg & Holland, 2018). By maintaining their stem
cells in an acentriolar state, planarians have effectively "liberated" neoblasts from the
constraints of the template, enabling a rapid, large-scale production of centrioles upon demand.

This strategy may represent a more general principle employed by other systems that require
massive centriole production. For instance, vertebrate multiciliated cells (MCCs) in the trachea
and ependyma generate hundreds of centrioles via a similar de novo-like pathway, utilizing
structures called deuterosomes as assembly platforms (Al Jord et al., 2017; Zhao et al., 2021).
While planarians appear to use a more generalized cytoplasmic assembly process, the
underlying logic is conserved: when the requirement for basal bodies vastly exceeds the
capacity of the canonical pathway, a specialized, high-output de novo mechanism is deployed.
This suggests that the molecular machinery for de novo biogenesis is an ancient, latent
capability in animal cells, which has been co-opted and enhanced in specific contexts like
regeneration and MCC differentiation (Prosser & Pelletier, 2017). It would be intriguing to
investigate whether other highly regenerative or ciliated organisms utilize a similar stem cell
strategy.

Our results, particularly from the Sas-6 RNAIi and centrinone experiments, suggest the existence
of a regulated switch between centriole biogenesis pathways. We propose a two-pronged model
for this switch, activated by injury signals in neoblasts (Wenemoser & Reddien, 2010; Wurtzel et
al., 2015).

First, the canonical pathway must be actively suppressed or is inherently non-functional in early
neoblast progeny. The absence of mother centrioles provides a structural block, but there may
also be a regulatory block. For example, key components for templated duplication might be
sequestered, degraded, or not transcribed until after the initial wave of de novo assembly is
complete. The mitotic defects we observed upon Sas-6 knockdown in some cells indicate that
the canonical pathway is still required in certain proliferative contexts, highlighting the specificity
of the switch to lineages fated for massive ciliogenesis.

Second, and concurrently, the de novo pathway is actively induced. The rapid appearance of
cytoplasmic PLK4 and SAS-6 foci within hours of amputation points to a direct transcriptional or
post-transcriptional activation of the core centriole assembly machinery. We speculate that the
regenerative program activates specific enhancers or promoters for genes like Plk4, Sas-6, and
Cep152, driving their expression to levels that surpass a critical threshold for de novo initiation,
a concept demonstrated in other experimental systems (Habedanck et al., 2005; Bazzi &
Anderson, 2014). PLK4, in particular, is a prime candidate for the master regulator of this switch.
Its overexpression is sufficient to drive de novo centriole formation in various systems
(Kleylein-Sohn et al., 2007), and its tight regulation is crucial for controlling centriole number
(Gdnczy, 2012). In planarians, the injury-induced expression of PLK4 in neoblasts could be the
key signal that licenses the cytoplasmic assembly of centrioles, independent of a template.
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Future work will focus on identifying the upstream transcriptional regulators that plug into the
regenerative signaling network to trigger this specific centriole biogenesis program.

Beyond its significance in planarian biology, our work offers valuable insights for human health
and disease. Centrioles and cilia are fundamental to human physiology, and their dysfunction
leads to a spectrum of disorders known as ciliopathies (Reiter & Leroux, 2017). These include
polycystic kidney disease (PKD), characterized by defective cilia in renal tubules; Bardet-Bied|
syndrome; and certain forms of male infertility and hydrocephalus (Mitchison & Valente, 2017).

Understanding how planarians so efficiently and robustly build hundreds of thousands of
functional cilia from scratch could reveal novel aspects of ciliogenesis and basal body assembly.
For example, the identification of planarian-specific factors that enhance the fidelity or efficiency
of de novo biogenesis could point to previously unappreciated mechanisms for ensuring proper
centriole number and structure. Defects in these quality-control mechanisms in humans could
be a contributing factor to ciliopathies. Furthermore, the controlled amplification of centrioles in
planarian epithelial cells shares conceptual ground with the pathological centriole amplification
seen in some cancers (Godinho & Pellman, 2014) and during the generation of MCCs. Our
model system could be used to screen for genes that prevent uncontrolled centriole
amplification, thereby maintaining numerical integrity.

In the field of regenerative medicine, a major hurdle is the inability to generate complex,
functional tissues ex vivo. A key, and often overlooked, aspect of this challenge is the proper
assembly of organelles, including centrioles and cilia, in newly formed cells. The planarian
strategy—activating a genetically encoded program for de novo organelle biogenesis in stem
cells—provides a blueprint for how engineered tissues might be endowed with the necessary
cellular machinery. Learning how to trigger a similar "organellogenesis" program in human stem
cells could be a critical step towards building fully functional tissues for transplantation.

In conclusion, the induction of de novo centriole biogenesis in planarian neoblasts is not a mere
curiosity but a sophisticated developmental adaptation. It reveals a profound plasticity in the
pathways controlling the formation of a core cellular organelle and provides a powerful model to
dissect the regulation of centriole assembly in vivo. The insights gleaned from these humble
worms will undoubtedly continue to illuminate fundamental principles of cell biology with broad
relevance to evolution, development, and human disease.

Conclusions

This study provides a definitive demonstration of a developmentally programmed de novo
centriole biogenesis pathway in adult somatic stem cells. Through a combination of functional
genetics, super-resolution microscopy, and ultrastructural analysis in the planarian Schmidtea
mediterranea, we have delineated a mechanism that is fundamental to the animal's remarkable
regenerative capabilities. Our principal conclusions are as follows:

First, we have established, for the first time in vivo in a whole organism, that somatic stem
cells—specifically, planarian neoblasts—are capable of induced de novo centriole formation.
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While de novo assembly has been observed in other contexts, such as in multiciliated cells (Al
Jord et al.,, 2017; Zhao et al., 2021) or upon experimental manipulation in cultured cells
(Khodjakov et al., 2002; Rodrigues-Martins et al., 2007), its role as a primary, regulated pathway
in adult stem cells during physiological regeneration has remained elusive. Our data bridge this
gap, showing that neoblasts transition from an acentriolar ground state to actively building
centrioles from the ground up. This work firmly places planarians at the forefront of models for
studying de novo centriole assembly in a regenerative context (Reddien, 2018; Rink, 2013).

Second, we have demonstrated that this process is not a default or passive state but is
dynamically activated in response to tissue injury. The appearance of cytoplasmic assembly foci
for core centriolar proteins like PLK4 and SAS-6 within hours of amputation shows that de novo
biogenesis is an integral part of the neoblast activation program (Wenemoser & Reddien, 2010;
Wurtzel et al., 2015). This pathway is the dominant mechanism for supplying the hundreds of
thousands of basal bodies required to rebuild the functional ciliated epithelium, a non-negotiable
requirement for planarian survival. The fidelity and scale of this process underscore its critical
importance as a specialized adaptation for mass ciliogenesis, a challenge that the canonical,
one-to-one duplication pathway is inherently unable to meet (Nigg & Holland, 2018; Gdnczy,
2012).

Third, we have provided direct functional evidence that de novo centriole formation in neoblasts
is independent of the canonical duplication pathway. By genetically disrupting Sas-6 and
pharmacologically inhibiting PLK4 with centrinone—interventions that effectively block templated
duplication (Kitagawa et al., 2011; Wong et al., 2015)—we showed that centriole and basal body
formation in the regenerating epithelium proceeds unabated. This genetic and pharmacological
uncoupling is conclusive proof that de novo biogenesis is not a backup or fail-safe mechanism,
but a separate, genetically regulated program. We propose that the regenerative signals trigger
a molecular switch that actively promotes the de novo pathway, potentially through the specific
upregulation of key assembly factors, while the canonical pathway remains suppressed or is not
accessed in this specific lineage (Prosser & Pelletier, 2017).

Finally, the findings presented here open several new and exciting avenues for future research.
They establish a powerful in vivo system to dissect the complete molecular circuitry of de novo
centriole assembly, from the injury-induced signals that initiate it to the structural proteins that
execute it. Key questions remain: What are the upstream transcriptional regulators that activate
the de novo program? How is the assembly of multiple centrioles coordinated in the cytoplasm
without a template to ensure structural fidelity? Are there specific quality control checkpoints for
de novo-assembled centrioles? Furthermore, understanding how this program is integrated with
broader processes of cell differentiation and tissue patterning will be crucial. The insights gained
from this system will not only deepen our understanding of centriole biology and regeneration
but may also have profound implications for human health, particularly for diseases of ciliary
dysfunction (Reiter & Leroux, 2017; Mitchison & Valente, 2017) and for the field of regenerative
medicine, where controlling organelle biogenesis in stem cells is a fundamental, yet
underappreciated, challenge.
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In summary, this work redefines our understanding of centriole biogenesis in stem cells,
revealing a plastic and inducible system that is central to the maintenance of tissue architecture
and the restoration of form and function after injury.
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