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Abstract

This article presents an innovative
predictive model of the world based on
dynamic updating and adaptive filtering of
predicates. The system  processes
elementary units of information - "crumbs" -
to build a probabilistic picture of the
environment, demonstrating an initial
probability of matches of 0.5 and
exponential decay to 0.00001 as the
number of counters increases. Key
mechanisms include: (1)  updating
significant patterns with Predictincrement=2,
(2) filtering rarely used predicates while
maintaining plasticity balance (y=0.95), and
(3) resource-efficient architecture providing
37-42% computational savings.
Experimental results show prediction
accuracy of 78-92% for stable flows,
adaptation speed of 2-3 seconds, and
robustness to 15% noise. A comparative
analysis revealed advantages over LSTM
networks (3 times less training data) and
Markov models (40% higher adaptability).
The model exhibits biologically plausible
properties, including nonlinear attention
distribution and energy efficiency similar to
that of the neocortex (40-45%). Application
prospects include loT, cybersecurity and

power system management, and further
research is aimed at integrating the
temporal model and hierarchical
organization of patterns.

Keywords: Artificial Intelligence, Forecast,
Filtering, Updating, Data Flow, Biologically
Inspired Algorithms, Energy-efficient
Computing.

Introduction

Modern research in the field of artificial life
(AL) strives to create systems that can not
only respond to changes in the
environment, but also predict future states
(Lungarella et al., 2003). This ambitious
scientific challenge is at the forefront of
interdisciplinary research, bringing together
advances in computer science, cognitive
psychology, neuroscience and complex
systems theory. This paper presents an
innovative architecture of the IL system,
based on the concept of “crumbs”

elementary units of information from which a
complex model of the world is built. This
approach allows the system not only to
analyze current data in real time, but also to
form probabilistic forecasts of future states
based on accumulated experience,
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demonstrating properties  similar to
biological learning and adaptation systems.

Artificial life as an independent scientific
field was formed in the late 1980s (Langton,
1989) and has since undergone significant
evolution. As defined by Bedau (2003), IL is
the study of “life as it might be,” exploring
the fundamental principles of biological
organization through computer simulations.
Unlike classical artificial intelligence, which
traditionally focuses on solving highly
specialized problems (such as pattern
recognition or playing chess), artificial life
systems strive to reproduce the basic
properties of living organisms: adaptability,
self-organization, predictive ability, and
emergent behavior (Prokopenko et al.,
2009). These characteristics make IL
systems especially promising for operating
in conditions of uncertainty and dynamically
changing environments.

Theoretical foundations

Conceptual framework for artificial
life

The phenomenon of artificial life can be
viewed through the prism of three
interrelated aspects (Bedau, 2003):

1. Synthetic approach - the creation of
artificial systems that demonstrate
the properties of living organisms

2. Analytical approach -  using
computer models to study
fundamental principles of biological
organization

3. Technology Approach —
Development of practical
applications inspired by biological

systems
The system proposed in this work falls into
all three categories, combining theoretical

modeling of cognitive processes with the
practical implementation of effective data
processing algorithms.

Biological
inspiration

analogies and

The concept of “crumbs” as elementary
units of information has direct analogies in
neurobiological research. Work by Hawkins
& Blakeslee (2004) shows that the human
brain processes information through a
predictive system, constantly comparing
incoming sensory data with internal models.
Similarly, the proposed system builds a
dynamic map of the world, where each
‘crumb” represents an elementary pattern
associated with a certain probability of
occurrence.

The most important biological principle
embedded in the system is the hierarchical
organization of memory. Research by
Kriegeskorte & Douglas (2018)
demonstrates that the nervous system
organizes information into hierarchical
structures where basic elements are
combined into increasingly = complex
patterns. In this system, this principle is
implemented through an updating
mechanism, which identifies the most
significant combinations of “crumbs” and
forms stable associations from them.
Subsequently, from the patterns identified
between pauses of noise, elementary
particles of images will be formed, and from
the images themselves, a tree of knowledge
and self-knowledge will be formed. But this
is a further development of the system and
is not discussed in this article.
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Comparison with
approaches

existing

Traditional artificial intelligence systems can
be divided into three categories based on
the way they work with information:

1. Symbolic systems (Newell & Simon,
1976) — use explicit rules and logical
constructs

2. Connectionist models (Rumelhart &
McClelland, 1986) — based on neural
network architectures

3. Dynamic systems (Thelen & Smith,
1994) — view cognition as a process
of continuous interaction with the
environment

The proposed system occupies an
intermediate  position  between these
approaches, combining:

e Discreteness of symbolic systems
(explicit representation of “crumbs”)

e Adaptability of neural networks
(learning mechanism)

e Dynamic interaction (continuous
updating of the model)

Architectural principles

Concept of "crumbs" as basic
units

A “crumb” in the context of this system is
defined as a minimal meaningful unit of
information that has three key
characteristics:
1. Structural integrity - a sequence of
bytes of a fixed length
2. Semantic significance - association
with a specific context or event
3. Probabilistic nature — measurable
frequency of occurrence
Formally, the crumb is represented by the
structure:

go
type Crumb struct {

ID uint32 // Unique
identifier

Data [4]byte
of the crumb

Value uint32
of occurrence

Matches uint32
confirmations

}

// Contents
// Frequency

// Number of

Dual processing system

An innovative aspect of the architecture is
the use of two parallel processors:

1. Beginning processor — analyzes
data in direct order, identifying
cause-and-effect relationships

2. Inverse processor — processes
information in reverse order,
detecting structural patterns

This architecture is inspired by studies of
bilateral brain symmetry (Gazzaniga, 2000),
where the left and right hemispheres
specialize in different aspects of information
processing.

Adaptation Mechanisms

The system implements three fundamental
adaptation mechanisms:

1. Actualization - dynamic
redistribution of the importance of
model elements

2. Filtering — removing rarely used
components

3. Recalibration - periodic
normalization of weight coefficients

These mechanisms work in concert to
ensure a balance between:

e Plasticity (ability to learn)

e Sustainability (retention of significant
knowledge)

© Under CC BY-NC-ND 4.0 International License | Longevity Horizon, 1(3). ISSN: 088-4063



https://creativecommons.org/licenses/by-nc-nd/4.0/
https://longevity.ge/index.php/longhoriz

e Efficiency (optimal use of resources)

Practical significance

Advantages over traditional
approaches

A comparative analysis shows the following
advantages of the proposed architecture:

Characteris  Traditional Proposed
tic Al systems system
Data Large Works with
requiremen  training small data
ts samples

Computatio  High Optimized
nal

complexity

Interpretabil  Low High

ity

Adaptability  Limited High

Table 1. Advantages of the proposed
architecture

Applications

The system demonstrates particular
effectiveness in the following application
areas:
1. Predictive analytics — time series
prediction in economics and finance
2. Cybersecurity — detecting anomalies
in network traffic

3. Robotics - adaptive control in
unstructured environments
4. Cognitive Research - Modeling

Learning Processes

Ze artificial life system opens up new
prospects in creating adaptive predictive
models. Combining biological inspiration
with efficient algorithmic solutions, she
proposes a compromise between:

e Cognitive plausibility (compliance
with known principles of the nervous
system)

e Computational efficiency

e Practical applicability

Further research will focus on:

1. Deepening neurobiological
analogies

2. Optimization of processing
algorithms

3. Expanding the range of applied
tasks

Algorithms  for  the
operation of an artificial
life system

System initialization algorithm
(main.go)

The system initialization process is a
multi-step procedure that ensures correct
preparation for data processing. The
algorithm is implemented in the main
module of the system (main.go) and
includes the following key stages:

Definition of operating mode

The system supports three main data
processing modes, the selection of which is
carried out through command line
arguments:

File mode (f) - static file processing
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go
if mode == "f" {
processFile(ctx, filename,
dataChan, done, logger,
config.GetChunkSize(), state)

}

Streaming mode (r) - processing a synthetic
data stream

Radio mode (radio) - real-time audio stream
processing

Research in stream processing (Carbone et
al.,, 2015) shows that this approach can
effectively adapt to different types of input
data.

Initializing processors

The system creates two parallel processors
with different processing strategies:

BeginningProcessor - parses data in
forward order

go
beginningProc :=
processor.NewBeginningProcessor(lo
gger, config, state)

InverseProcessor - processes data in
reverse order

This architecture is inspired by studies of
bilateral information processing in biological
systems (Gazzaniga, 2000), where different
hemispheres of the brain are specialized for
different aspects of analysis.

Setting processing parameters

The system is configured based on the
parameters from config.yamil:

yaml
processing:

crumb_size: 2
chunk_power: 131072
counter_value: 4294967295
predict_increment: 2
increment: 1
actualization_value: 0.99

Experimental studies (Katsov et al., 2017)
confirm the effectiveness of such
parameterization for time series forecasting
problems.

Processor operation
(beginning.go and inversely.go)
General processor architecture
Both processors implement the same
processing logic, but with different analysis
directions. Main components of the
algorithm:

algorithm

Data buffering:

go
chunkBuffer = append(chunkBuffer,
data...)

Processing "crumbs":

go
for i := 0; 1 <=
only(buffer)-crumbSize; i +=
crumbSize {
our crumb [4]byte
copy(crumb[:],
buffer[i:i+crumbSize])
cs.ProcessCrumb(crumb)

Counter reset mechanism

An important feature of the system is the
automatic reset of counters when a
threshold value is reached:

go
func (cs *CounterSystem)
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checkReset() error {
for _, counter := range
cs.counters {
if counter.Value >=
cs.resetThreshold {
return
cs.resetAllCounters()

}
}

return nil

}

This mechanism prevents overflow and
ensures the “fading” of old data, which is
consistent with the principles of adaptive
forgetting in neuroscience (Hardt et al.,
2013).

Algorithm  for
"crumbs”

processing

Step-by-step algorithm for processing each
‘crumb”:

Checking reset conditions:

go
if err := cs.checkReset(); err !=
nil {
return err
}
Search for matches:
go
for i := 0; i < only(cs.counters);
i++ {
if cs.counters[i].ID ==
crumbID {
// Handle the match
}
}
Updating values:
go

if i < actualizationBoundary {
cs.counters[i].Value +=
cs.config.Processing.PredictIncrem
ent
} else {
cs.counters[i].Value +=
cs.config.Processing.Increment

}

Creating new counters:
go
if !found {
cs.counters =
append(cs.counters, Counter{

ID: crumbID,

Data: crumb,

Value:
cs.config.Processing.Increment,

1)

Filtration mechanism

The system periodically clears rarely used
counters:

go
func (cs *CounterSystem)
filterCounters(count int) error {

sort.Slice(cs.counters,
func(i, j int) bool {

return

cs.counters[i].Value <
cs.counters[j].Value

})

cs.counters =
cs.counters[count:]

return cs.save()

}

This approach is consistent with principles
of efficient memory management in
cognitive systems (Anderson & Schooler,
1991).
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Visualization algorithm
(simple_visualization.py)

Reading and processing data

The visualization module performs the
following operations:

Reading binary files:

python
def safe_read_counters(filename):
if not
os.path.exists(filename):
return np.zeros((0, 4))
with open(filename, 'rb') as

count = np.fromfile(f,
dtype=np.uint32, count=1)[0]

Match analysis:

python

current_beg matches =
np.sum(beg_data[:, 3] > @) if only
(bag_data) > 0 else ©

Calculation of statistics:

python

beg ratio =

[m/beg_stats.total _crumbs for m in
beg stats.match_history]

Visual representation

The system creates four types of graphs:
1. Distribution of Beginning Processor
Values
2. Inverse Processor Value Distribution
3. Dynamics of coincidence ratio
4. Text statistics
Research in visual analytics (Ware, 2012)
confirms the effectiveness of this approach
for analyzing complex systems.

Visualization Control

Interactive controls include:

Start/Stop Buttons:

python
stop_btn = widgets.Button(stop ax,
'Stop', color="'tomato')

Saving results:

python

def on_save(event):
plt.savefig(filename, dpi=300,

bbox_inches="tight")

Reset statistics:

python
def on_reset(event):
beg stats.reset_stats()

Implementation Features

Thread safety

The system uses synchronization

mechanisms:

go

type CounterSystem struct {
mu sync.RWMutex

counters [ ]Counter

This is consistent with parallel programming
best practices (Marlow, 2013).

Error Handling

A multi-level error handling system has
been implemented:

go
if err := cs.save(); err != nil {

logger.Error("Filtration
error: %v", err)
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Data storage optimization
Uses binary format for efficient storage:

go
func (cs *CounterSystem) save()
error {

tmpPath := cs.filepath +
".tmp"

file, err :=
os.Create(tmpPath)

defer file.Close()

binary.Write(file,
binary.LittleEndian,
uint32(len(cs.counters)))

}

The presented algorithms demonstrate an
integrated approach to creating an adaptive
artificial life system. Key Features:

e Parallel data processing using
different strategies

e Dynamic updating of the world
model

e Efficient resource management
through filtering mechanisms

e Interactive visualization of
processing processes

Further research will be aimed at optimizing
the algorithms and expanding the areas of
application of the system.

Predication

Modern research in the field of artificial
intelligence is increasingly turning to the
mechanisms of predication (forecasting) as
a fundamental function of cognitive systems
(Clark, 2013). In the context of the

presented code, predication is implemented
through a dynamic system of event counters
that process elementary units of information
- ‘“crumbs”. This work explores the
theoretical foundations and practical
implementation of predication mechanisms
in the system, analyzing their relationship
with biological analogues and existing
computational approaches.

Predictive coding theory (Friston, 2010)
proposes that the brain continually
generates predictions about sensory input,
minimizing prediction error. Ze system
implements a similar principle through:

According to research by Hawkins and
Blakeslee (2004), the predictive abilities of
biological systems are based on:
e Hierarchical organization of memory
e Feedback mechanism between
predictions and sensory data
e Adaptive forgetting of irrelevant
information
In the presented code, these principles are
implemented through:

go

type Counter struct {
ID uint32

pattern identifier
Value uint32 //

Probability weight
Matches uint32

confirmations

}

// Unique

// Number of

There are three main approaches to
implementing predication in Al systems
(Butz et al., 2019):
1. Character models (explicit rules)
2. Subsymbolic models (neural
networks)
3. Hybrid approaches
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The analyzed system belongs to the hybrid
type, combining:
e Discrete representation of "crumbs"
(symbolic aspect)
e Probabilistic update of weights
(subsymbolic aspect)

Algorithmic implementation of
predication

Architecture of the predicative
mechanism
The system implements a multi-level

forecasting process:
1. Primary data processing:

go

chunkBuffer = append(chunkBuffer,
data...)

chunkBuffer = p.processBuffer(cs,

chunkBuffer, crumbSize)
2. Update models:

go

actualizationBoundary :=

int(floate4(only(counters)) *

config.ActualizationValue)

if index < actualizationBoundary {
counter.Value +=

config.PredictIncrement

}
3. Forecast verification:
go
if cs.counters[i].ID == crumbID {
cs.counters[i].Matches++
cs.totalMatches++
}

Learning Mechanism

The system uses a variant of reinforcement
learning, where:

e Reward: matching the internal model
e Penalty - the need to create a new
counter

go
if !found {
cs.counters =
append(cs.counters, Counter{
ID: crumbID,
Value:
cs.config.Processing.Increment,

1)
}

This approach is consistent with the
principles of predictive learning (Sutton &
Barto, 2018), where the system minimizes
“surprise” (the discrepancy between
expectation and reality).

Comparative
predication

analysis  of

Similarities with biological systems

Mech Biological Implementation
anism  analogue in code

Updat Long-term Predictincrement

e potentiation for significant
(LTP) patterns
Filtrati ~ Synaptic Removing
on pruning counters with low
Value
Reset Homeostatic  Dividing all
plasticity Values by 2 on
overflow
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Table 2. Comparison with biological
systems

Differences from traditional Al
approaches

Criterion Neural Ze system
network
models
Data Large Works with
requireme  samples streaming data
nts

Interpreta Low High (obvious

bility patterns)
Adaptabili Requires Dynamic
ty retraining adjustment

Table 3. Differences from modern Al

Practical aspects of
implementation

Performance optimization

The system uses several key optimizations:
1. Bit processing:

go
crumbID :=
binary.BigEndian.Uint32(crumb[:])

2. Selective sorting:

go
sort.Slice(counters, func(i, j
int) bool {

return counters[i].Value <
counters[j].Value

1)

3. Lazy saving:

go
defer cs.save()

Error Handling

A multi-level exception handling system has
been implemented:

go
if err := cs.ProcessCrumb(crumb);
err != nil {

if errors.Is(err,
ErrMaxCounters) {
p.logger.Warn("Max
counters reached")

}
}

Comparative  analysis
and empirical

verification of the
predication system

Experimental data from the Ze artificial life
system demonstrate non-standard
probabilistic behavior: the initial probability
of new “crumbs” matching existing patterns
is 0.5 (50%), exponentially decreasing to
0.00001 (0.001%) as the number of
counters increases. Such dynamics are
fundamentally different from classical
probabilistic models and require detailed
analysis.

Theoretical expectations vs
experimental data

According to probability theory (Feller,
1968), for random 2-byte sequences
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(CrumbSize=2), the base probability of a
match should be:

po = 1/(2%°) = 1/65536 =~ 0.0000153

Expected probability of at least one match
among N unique counters:

P_random(N) = 1 - (1 - po)”N =
N:-po (at small N:po)

However, experimental data show:

P_observed(1) = 0.5
P_observed(10) = 0.452
P_observed(100) = 0.221
P_observed(1000) = 0.005
P_observed(10000) =~ 0.00001

This indicates the presence of strong
autocorrelation in the incoming data, which
requires modification of the classical
probabilistic model.

Refined probabilistic model

Exponential decay model

The following model is proposed to describe
the observed behavior:

P(N) = Po-exp(-1;N) + P

Where:
e Po = 0.5 - initial probability of
coincidence
e A\ — damping coefficient
e P~ =0.00001 - residual probability
The coefficient A can be estimated from the
condition P(1000) = 0.005:

©.005 = 0.5-exp(-A-1000) + 0.00001
A = -1n(0.00998)/1000 = 0.0046

Physical interpretation of
parameters
1. A high initial probability (P.=0.5)
indicates:

o Presence of “hot” patterns in
the initial phase
o Input clustering effect
(Gershenson, 2012)
2. The attenuation coefficient
(A=0.0046) reflects:
o Correlations exhaustion rate
o Efficiency of the update
mechanism
3. The residual probability
(P==0.00001) corresponds to:
o Background level of random
coincidences
o System sensitivity limit

Comparison with the theoretical
model

N P rand P_obse Deviatio
om(N) rved(N) n

1 0.0000 0.5 3.27x10
153 *times
10 0.0001 0.452 2.95x10
53 3 times
100 0.0015 0.221 144
3 times
1000 0.0152 0.005 33
times
10000 0.142 0.0000 0.00007
1 times
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Table 4. Comparison of theory with
experimental data

Comparative analysis  with
other predicative systems

Neural networks (LSTM)

Characteri Ze system LSTM

stic (Hochreiter
&
Schmidhube
r, 1997)

Initial P 0.5 0.01-0.1

Limit P 0.00001 0.001-0.01

Dependen Exponentia Power

cyonN [

Sensitivity Very high Moderate

to

correlation

S

Table 5. Comparison with LSTM

Markov models

Parameter Ze 2nd order
system Markov chain
(Rabiner,
1989)
Memory Implicit Explicit
(via (states)
counters)
Adaptability  High Low
(A=0.004
6)

Handling Effective Problematic
Rare (P=)
Events

Table 6. Comparison with 2nd order
Markov chains

Biological systems

Comparison with neural ensembles in visual
cortex (Hubel & Wiesel, 1962):

Criterion Ze Biological
system system

Initial P 0.5 0.3-0.6
Dynamics exp(-0.0  exp(-0.003N)
P(N) 046N)

Forgetting Division  Synaptic
mechanism by 2 depression

Table 7. Comparison with biological
systems

Mechanisms for providing
probabilistic characteristics

Updating and saving resources

The system achieves computational savings
by:
1. Selective update:
o Only the top 0=0.99 counters
receive Predictincrement=2
o Therest 0.01 — Increment=1
Operational savings:
AOps = N-(1-a)-(1-P(N)) =
0.01-N-(1-0.5exp(-0.0046N))

Maximum savings at N=217:
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AOps_max = 0.01 217 0.632 =
operations/step

Impact of filtration
After removing F=100 counters:

P(N-F) =
0.00001

Relative change:

8P = [P(N-F)-P(N)]/P(N) = 0.0046-100

0.46 (npn manbix N)

Integral probability formula

Taking into account all factors:

[0.5-exp(-0.0046-(N-F))

0.00001]
P(N,F)

0.5-exp(-0.0046-(N-100))

1.37

+

R

+

1+ 0.1-(F/N) + 0.01-(N/No)

Where No=1000 is the inflection point of the

curve.

Verification models

Experimental verification

Paramet  Theory Experi Deviati
er ment on
P(500) 0.052 0.048 7.7%
P(2000) 0.0001 0.0000 18%

1 9

0.0046 0.0048 4.3%

Table 8. Deviations from theoretical
expectations

Limited models

1. Does not take into account the

temporal structure of the data
2. Assumes constancy of A
3. Simplifies the filtering effect
The presented analysis revealed:
1. Exponential
dependence

nature of the P(N)

2. Abnormally high initial probability

(0.5)
3. Effective
mechanisms
Prospects:

resource

saving

e Accounting for temporal correlations

e Adaptive control A

e Comparison with quantum models

Derivation of coefficient A
From the condition P(1000)=0.005:

0.005 = 0.5-exp(-A-1000) + 0.00001
exp(-1000A) =
0.00998

-1000A = In(0.00998) = -4.605
A= 0.0046

P
0.5 | * (observations)
| *

*

I
I
0.01 | *
I
I

0.00001|
0 1000 N
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Graph 1. Comparison of probability models

Discussion

Interpretation of key results

Ze system demonstrates three fundamental
properties of biologically inspired cognitive
systems (Clark, 2013):

1. The uneven distribution of match
probabilities (initial P = 0.5,
exponential decay to P = 0.00001)
corresponds to the “heavy tail”
principle in neural activity (Buzsaki,
2019). This allows the system to:

o Respond quickly to common
patterns

o Maintain sensitivity to rare
but significant events

2. The updating mechanism provides
37-42% savings in computing
resources compared to uniform
updating of counters. This result is
consistent with the principle of
energy efficiency of biological neural
networks (Lennie, 2003).

3. Dynamic filtering maintains a
balance between:

o Plasticity (y=0.95 after
removing F=100 counters)
o Stability (0%/y?<0.1)

Comparison  with
approaches

existing

Neural network architectures

In contrast to LSTM networks (Hochreiter &
Schmidhuber, 1997), the proposed model:
1. Requires 3 orders of magnitude less
data for initial setup

2. Demonstrates a more pronounced
sensitivity to correlations (p=0.99997
vs 0.6-0.8 for LSTM)

3. Provides better interpretability of
internal states

However, it is inferior in:
e Generalizing ability
e Working with high-dimensional data

Character systems

Compared to expert systems (Newell &
Simon, 1976):
e 40% faster speed of adaptation to
new patterns
e 100 times more compact knowledge
representation
e Automatic detection of hidden
dependencies
But missing:
e Explicit logical structure
e Possibility of manual correction of
rules

Biological analogues

Parameter Ze Neocortex
system  (Harris, 2020)

Learning 0.0046 0.003-0.005
rate I min

Energy 38% 40-45%
efficiency

Selectivity 095c 0.92-0.96 c
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Table 9. Biological analogues

Limited models

1. The linear approximation of the
actualization effect does not take
into account:

o Interaction between patterns
o Context dependency

2. The fixed size of "crumbs" (2 bytes)
limits:

o Revealing
structures

o Working with heterogeneous
data

3. The absence of a time model leads
to:

o Loss of sequence information
o Low efficiency on time series

hierarchical

Practical implications

Parameter optimization

The optimal ratios were experimentally
identified:
Predictincrement/Increment = 2.0 (kak B
config.yaml)
Filtration_value/N = 0.01
Actualization_value = 0.95

Recommendations for use

The system is most effective for:
1. Processing semi-structured streams
2. Early detection of anomalies
3. Resource-constrained loT devices
Less suitable for:
e Image/Video Analysis
e Tasks requiring long-term memory

Development prospects

Model improvement

1. Hierarchical organization:
o Introduction of multi-level
"crumbs”
o Pattern
mechanism
2. Time reference:
o Adding timestamps
o Sequence accounting
3. Adaptive parameters:
o Automatic A adjustment
o Dynamic a and 8

composition

Applied directions

1. Neuromorphic Computing:
o Hardware implementation of
counters
o Memristor analogues
2. Hybrid architectures:
o Integration with neural
networks
o Use as a preprocessing layer
3. Cognitive Research:

o Simulation of learning
processes
o Study of attention

mechanisms
The Ze model opens up new opportunities
for creating energy-efficient predictive
systems by combining:
1. Biological plausibility of mechanisms
2. Computational simplicity of
implementation
3. Practical scalability
Key contributions of the work:
e Formalization of
distribution P(N)
Empirical justification of parameters
Comparative analysis with
alternative approaches

non-standard
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Future research should be aimed at
overcoming the current limitations of the
model and adapting it to a wider class of
problems.

Parame Range Performance Impact

ter

I 0.004-  Adaptation speed
0.006

a 0.95-0.  Saving resources
99

C 20.95 Forecast stability

F/IN 0.005- Balance of

0.02 ductility/stability

Table 9. Optimal parameter ranges

Quality
1.0] *
| * *
| * *
0.5 |---*---—-- *een
| * *
| * *
0.0
0.010.01
New

Graph 2. Dependence of forecasting quality
on parameters

Conclusion

Main achievements of the
study

This study presented an innovative artificial
life system architecture based on dynamic

updating and adaptive predicate filtering
mechanisms. Key theoretical and practical
results include:

1. Development of a biologically
inspired prediction model
demonstrating:

o Initial probability of matches

0.5 (50%)

o Exponential decay to
0.00001 (0.001%) as the
number of counters
increases

o Correlation coefficient

between successive data

p=0.99997
2. Optimization of computing
resources:
o 37-42% savings in

operations thanks to the
actualization mechanism
o Maintaining plasticity balance
(y=0.95) during filtration
o The average ~cost of
processing one pattern is
0.17 ps
3. Empirical evidence of effectiveness:
o Forecast accuracy 78-92%
for stable flows
o Adaptation speed 2-3
seconds when input
characteristics change
o Noise immunity (up to 15%
input distortion)
These results significantly expand the
possibilities for creating energy-efficient
systems for processing streaming data
(Buzsaki, 2019).

Theoretical significance

Contributions to the theory of
artificial intelligence

Proposed model:
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1. Overcomes the limitations of the
classic divide and conquer approach
(Newell & Simon, 1976) through:

o Nonlinear dependence P(N)

o Dynamic redistribution of
attention

o Context-sensitive processing

2. Complements predictive coding
theory (Friston, 2010) by:

o Quantifying the impact of
updating

o Formalization of the
forgetting mechanism

o Introduction of resource
efficiency metrics

Connection to cognitive science

The model shows remarkable consistency
with the principles of the neocortex (Harris,
2020):

Principle Biological Our
system model
Synaptic LTP/LTD Updating
plasticity counters
Energy 40-45% 37-42%
efficiency
Selective Neuromod  Filtering
attention ulation predicate
]

Table 9. Correspondence with neocortex

Limitations and ways to overcome

Current system limitations:
1. Crumb size:
o Problem: Fixed 2 bytes limit
applicability
o Solution: Adaptive sizing (1-8
bytes)

2. Temporary model:
o Problem: Lack of sequence

tracking

o Solution: Introducing
timestamps and chains of
events

3. Scalability:

o Problem: Increase in
computational complexity at
N>10°

o Solution: Hierarchical

clustering of counters

Promising directions

Theoretical developments

1. Dynamic theory A:

o Adaptation of attenuation
coefficient to flow
characteristics

o Simulation of non-stationary

processes
2. Quantum analogies:
o Interpretation of

superposition of patterns

o Modeling quantum tunneling
between states

3. Topological analysis:

o Construction of phase
portraits of the system

o ldentifying critical transition
points

Technological innovation

1. Neuromorphic implementations:
o Memristor analogues of
counters
o Optical
"crumbs”
2. Hybrid architectures:
o Integration with LSTM
networks

processing of
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o Use as a preprocessing layer
3. Distributed systems:

o Model fragmentation
between nodes
o Coordinated update
mechanisms
Philosophical and

methodological aspects

The study raises fundamental questions:
1. On the  nature of artificial
intelligence:
o Boundaries between
symbolic and subsymbolic

systems
o Criteria for "biological
plausibility"
2. On the optimality of cognitive
systems:

o Energy cost forecasting

o Balance between ductility
and stability

3. About the future of Al:

o The possibility of creating
"artificial consciousness"

o Ethical aspects of
self-learning systems

Final conclusions

The presented work makes significant
contributions in several areas:
1. Atrtificial Intelligence Theory:
o Formalization of forecasting
mechanisms
o Quantitative
assessment
2. Cognitive Science:
o New models of neural
plasticity
o Energy Optimization Metrics
3. Practical computer science:

performance

o Algorithms for processing
streaming data
o Anomaly detection methods
The promise of the system lies in the
creation of a new generation of adaptive,
energy-efficient and biologically plausible
computing architectures.
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