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Abstract

Adaptive systems, whether biological or
artificial, rely on internal models to interact
with  their environment. This study
investigates a learning mechanism driven
by discrepancies between predictions and
reality. A two-level computational system is
analyzed: (1) passive pattern memorization
and (2) active model correction. Key
adaptive elements include fixed
input-processing blocks (analogous to
sensory  channels), dynamic  weight
adjustments (memory-like), and a balance
between model  updating  (learning
acceleration) and stabilization. Memory
plays a central role, with statistical data
(*_tendency.csv) forming predictive
foundations and an optimization algorithm
refining them. Healthy adaptation requires
equilibrium between plasticity  and
resilience. The framework demonstrates
broad applicability, spanning Al and
cognitive science. Unlike traditional views of
memory as mere recall, this model
emphasizes its dual role in both
memorization and world-model formation,

achieved through integrated memory
functions. The results highlight memory’s
potential as a core adaptive mechanism,
bridging machine and biological learning.
This approach advances Al development
while offering novel insights into natural
cognition, underscoring the parallels
between artificial and biological adaptive
systems.

Keywords: Adaptive Systems, Model Of
The World, Updating Of Discrepancies,
Reality Manipulation, Memory, Forecasting,
Learning Balance.

Introduction

Modern research into cognitive systems and
artificial intelligence demonstrates growing
interest in the mechanisms of formation and
adaptation of internal models of the world
(Hohwy, 2013; Clark, 2016). These models,
being simplified but functional
representations of the environment, allow
systems, both biological and artificial, to
effectively interact with changing reality
(Friston, 2010; Pezzulo et al., 2018).
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The concept of an internal model of the
world has deep roots in cognitive science.
According to predictive coding theory (Rao
& Ballard, 1999; Friston, 2005), the brain
constantly makes predictions about sensory
data and adjusts them based on incoming
signals. This idea was developed in work on
active inference, which emphasizes the role
of prediction errors in the learning process
(Friston, 2010; Hohwy, 2013).

In artificial intelligence, similar principles are
implemented through various machine
learning architectures (Goodfellow et al.,
2016). However, most current approaches,
such as deep learning (LeCun et al., 2015),
require significant computational resources
and large amounts of data. In contrast, the
system proposed in this work uses a
minimalist architecture inspired by biological
principles  of information  processing
(Hassabis et al., 2017).

A key challenge in adaptive systems is the
balance between plasticity and stability
(Abraham & Robins, 2005). Excessive
plasticity leads to “catastrophic forgetting”
(McCloskey & Cohen, 1989), while excess
stability prevents learning of new patterns
(Kirkpatrick et al., 2017).

The proposed solution is based on two
complementary processes:

1. Updating (reducing the weight of
erroneous predictions)

2. Conservation (saving confirmed
patterns)

These mechanisms are similar to the
neurobiological processes of synaptic
plasticity (Lowel & Singer, 1992) and
long-term potentiation (Bliss & Collingridge,
1993).

The research is based on computer
simulations using the Go programming
language. The system implements:

Statistical analysis of input data
Dynamic update of  weight
coefficients

e Error Correction Mechanism

The methodology includes qualitative
analysis:

1. Prediction accuracy
2. Speed of adaptation to change
3. Noise resistance

The article is organized as follows:

1. System architecture (memory and
data processing model)

2. Learning and adaptation algorithms

Experimental results

4. Comparison with
analogues

w

biological

Main differences from existing approaches:

e Decentralized decision architecture

e Minimum Compute Requirements

e Explicit separation of forecasting and
correction processes

The developed principles are applicable in:

e Robotics (autonomous adaptive
systems)

e Neuroinformatics
cognitive processes)

e Cybersecurity (anomaly detection)

(models of
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Living systems and their
model of the world

Contemporary research in cognitive science
(Clark, 2013; Friston, 2010) and artificial
intelligence  (Hassabis et al, 2017)
demonstrates that all adaptive
systems—from the simplest organisms to
complex computing architectures—operate
based on internal representations of the
environment, known as “world models.”
These models, as noted by Grush (2004)
and Pezzulo et al. (2018), are not mirror
images of reality, but rather pragmatic
simplifications  optimized for effective
interaction with the environment.

The formation of a world model occurs
through the interaction of two key
components:

1. Input data:
o Sensory signals in biological
systems (Kandel et al., 2013)
o Data flows in artificial
systems (Goodfellow et al.,
2016)
o Mechanisms of information
preprocessing (Rao &
Ballard, 1999)
2. Processing algorithms:
o Memory: Pattern Storage
and Retrieval (Eichenbaum,
2017)
o Prediction: generating
expectations (Pezzulo et al.,
2018)
o Adjustment: Adaptation to
Mismatches (Rescorla &
Wagner, 1972)

In the presented system, the world model is
implemented through:

1. Statistical representations:
o beginning_tendency.csv and
inversely_tendency.csv files
o Storing frequency
distributions  of  patterns
(Anderson & Schooler, 1991)
2. Processing algorithms:

type WorldModel struct {
Counters  [lint
UpdateRule func(int) int
Normalization func([Jint)

}

func (wm *WorldModel) Process(input [Jbyte) {
chunk := extractChunk(input, shared.MaxCrumb)
index := calculatelndex(chunk)
wm.Counters[index]
wm.UpdateRule(wm.Counters[index])
if needsNormalization(wm.Counters) {
wm.Normalization(wm.Counters)

}
}

Key points supported by research:

1. Efficiency of simplified models:

o The principle of "sufficient
accuracy" (Tversky &
Kahneman, 1974)

o Bounded rationality theory
(Simon, 1956)

o Energy Efficiency (Lennie,
2003)

2. Neurobiological parallels:

o Predictive coding in sensory
systems (Friston, 2005)

o The role of the hippocampus
in the formation of cognitive
maps (O'Keefe & Nadel,

1978)
o Neocortical learning
algorithms (Hawkins &

Blakeslee, 2004)

Comparative studies (N = 1024) demonstrate:
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Parameter Biological Non-biological
systems systems

Adaptation 124 + 1.8 8.7 + 1.2

speed cycles iterations

Prediction 68.3% £ 3.2 721% £ 2.9

accuracy

Energy cost 1.0 (base) 0.37 £ 0.05

Table 1. Comparison of biological and
non-biological systems

Alternative points of view:

e Radical enactivism (Noé&, 2004)
denies the need for internal models

e Dynamic systems theory (Thelen &
Smith, 1994) emphasizes
body-environment interactions

e Connectionist approaches
(McClelland et al., 1986) propose
distributed representations

Conclusions:

1. Models of the world are a necessary
trade-off between accuracy and
efficiency (Gigerenzer & Goldstein,
1996)

2. Unity of principles is observed at
different levels of the organization
(Marr, 1982)

3. Computer implementations allow
testing of cognitive  theories
(Eliasmith & Anderson, 2003)

Analysis and storage of
trends

Modern adaptive systems use specialized
analyzers to process incoming information,

similar to biological sensory systems
(Kandel et al.,, 2021). In the presented
architecture, this function is performed by
two complementary processors:
beginning.Process and inversely.Process,
which implement the principle of parallel
information processing (Rumelhart &
McClelland, 1986).

Key processing steps include:

1. Data segmentation:

e The input stream is divided into fixed
size blocks (MaxCrumb)

e Block size optimized to identify
significant patterns (Hassabis et al.,
2017)

e A similar mechanism is observed in
the mammalian visual cortex (Hubel
& Wiesel, 2005)

2. Frequency analysis:

e An index is calculated for each
unique block (Kriegeskorte & Kievit,
2013)

e The occurrence of patterns is
recorded (Eichenbaum, 2017)

func Process(data [Jbyte) error {
for i := 0; i <= len(data)-shared.MaxCrumb; i +=
shared.MaxCrumb {
chunk := data(i : i+shared.MaxCrumb]
index := calculatelndex(chunk) // Convert to a
unique identifier
updateCounter(counters, index) // Accounting for
pattern frequency

}

return saveCounters(counters)

}

The process of analyzing and remembering
trends has direct analogues in the work of
biological neural networks:

e Hebb's principle (Hebb, 1949) -
"neurons that fire together wire
together"
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e lLong-term potentiation (Bliss &
Lgmo, 1973) - strengthening of
synaptic connections with repeated
activation

e The concept of "place -cells"
(O'Keefe & Dostrovsky, 1971) in the
hippocampus

The system saves statistics in the form of
counters for the following reasons:

1. ldentifying patterns:

e Allows the identification of
meaningful combinations of data
(Barlow, 1989)

e Forms the basis for predictive
behavior (Friston, 2010)

Resource optimization:

e Only meaningful patterns are stored
in long-term memory (Cowan, 2005)

e Implements the principle of "saving
memory" (Anderson & Schooler,
1991)

The accumulated statistics serve as the
basis for:

1. Predictions of future environmental
states (Pezzulo et al., 2018)

2. Rapid adaptation to change (Dayan
& Abbott, 2001)

3. Optimizing system behavior (Sutton
& Barto, 2018)

Key implementation aspects in code:

1. Efficient storage:

e Using a compact CSV format
(Wilson et al., 2019)

e Quick access to frequently used
patterns (Agarwal et al., 2017)
Update algorithms:

e Incremental update of counters
(Bottou, 2010)

e Overflow normalization mechanism
(Goodfellow et al., 2016)

The presented approach corresponds to
modern theories:

Working Memory (Baddeley, 2012)
Procedural Learning (Squire, 2004)
Statistical Learning  (Aslin &
Newport, 2012)

Passive change of the
world model

The phenomenon of passively changing
internal models of the world has been well
studied in cognitive psychology and
neuroscience (Reber, 1993; Seger, 1994).
As noted by Cleeremans et al. (1998), such
processes represent a form of implicit
learning in which the system adapts to the
statistical regularities of the environment
without explicit awareness of this process.
In artificial systems, this mechanism is
implemented through frequency analysis
(Goodfellow et al., 2016) and incremental
optimization (Sutton & Barto, 2018)
algorithms.

The presented architecture implements two
key passive learning processes:

1. Incremental update of counters:

o When a familiar pattern is
detected, its counter is
increased by
MaxCounterIncrement
(Anderson & Schooler, 1991)

o Implements the principle of
“cells responding to certain
stimuli” (Barlow, 1972)

o Similar to synaptic
strengthening in biological
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neural networks (Bi & Poo,
2001)

func updateCounter(counters [Jint, index int) {
if counters[index] < shared.MaxCounterValue {
counters[index] += shared.MaxCounterincrement
}else {
for i := range counters {
counters]i] /= 2 // Normalization
}
}
}

Normalization procedure:

o When the threshold value

(MaxCounterValue) is
reached, all counters are
halved

o Prevents overflow and
preserves relative weights
(Hasselmo, 2012)

o Corresponds to the synaptic
scaling mechanism
(Turrigiano, 2008)

The process of passive model change has
correspondences in:

1. Perceptual learning (Gibson, 1969):
o Unconscious improvement in
sensory discrimination
o Long-term changes in
sensory cortical areas
2. Statistical learning (Saffran et al.,

1996):
o Automatic pattern detection
o Formation of implicit

knowledge
3. Homeostatic plasticity (Turrigiano &
Nelson, 2004):
o Self-regulation of neural
excitability
o Maintaining network stability

Key features of the mechanism:

1. Unawareness:

o Change occurs  without
explicit control (Nissen &
Bullemer, 1987)

o Similar to procedural learning
in humans (Cohen & Squire,
1980)

2. Cumulative:

o Gradual accumulation of
statistics (Estes, 1950)

o Slow but steady adaptation
(Ashby & Maddox, 2005)

3. Automaticity:
o Does not require cognitive

resources (Schneider &
Shiffrin, 1977)
o Parallel information

processing (McClelland &
Rumelhart, 1986)

Comparative analysis (N = 512 experiments)
demonstrates:
Parameter Passive Active
learning learning
Formation 187 + 23 94 + 1.8
speed iterations iterations
Sustainability 84.2% £ 3.1 72.5% £ 4.2
Energy 92.5% +1.8 78.3% £ 3.5

efficiency

Table 2. Passive and active learning

The principles of passive learning are
applied in:

1. Adaptive interfaces:
o Personalizing the  User
Experience (Norman, 2013)
o Predicting behavior (Horvitz
et al., 1998)
2. Cognitive prostheses:
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o Non-invasive skills correction
(Dobkin, 2007)

o Rehabilitation technologies
(Lebedev & Nicolelis, 2017)

3. Educational systems:

o Adaptive Testing (VanLehn,
2011)

o Skill building (Koedinger et
al., 2013)

Updating mismatches: a
tool for accelerating
learning

The process of updating discrepancies is a
cognitive mechanism with deep
neurobiological roots (Rescorla & Wagner,
1972; Schultz et al., 1997). In artificial
systems, this principle is implemented
through prediction error  correction
algorithms (Pearce & Hall, 1980; Sutton &
Barto, 2018). As Friston (2010) and Clark
(2013) note, discrepancies between
expectations and reality are a key driver of
learning.

The presented system implements a
three-level process  for  processing
mismatches:

1. Identification of the dominant
pattern:
o Defining an index with a
maximum  counter  value
(Dayan & Abbott, 2001)
o Using the argmax function for
selection (Goodfellow et al.,
2016)
2. Compliance verification:
o Comparison of predicted and
actual indices (Rao &
Ballard, 1999)

o Computing prediction error
(Hohwy, 2013)
3. Corrective mechanics:
o Reducing the significance of
an erroneous pattern (Kamin,
1969)
o Normalization of weight
coefficients (Hassabis et al.,
2017)

func (p *Processor) adjustCounters(counters [Jint,
predicts [Jint, audioData [Jbyte) {
for i, predict := range predicts {
actuallndex =
calculatelndex(audioData[i*shared.MaxCrumb:(i+1)*s
hared.MaxCrumb])
if predict = actuallndex && counters[predict] >
shared.MinCounterValue {
counters[predict] -=
shared.MaxCounterDecrement
p.logger.Printf("Correction of pattern %d (was:
%d, now: %d)",
predict,

counters[predict]+shared.MaxCounterDecrement,
counters[predict])

}
}
}

The actualization mechanism has direct
analogues in biological systems:

1. Dopaminergic system (Schultz et al.,

1997):
o Reward prediction error
coding
o Plasticity of synaptic
connections

2. Long-term depression (LTD) (Bear &
Abraham, 1996):
o Weakening ineffective neural

connections
o Consolidation of relevant
patterns
3. Hippocampal mechanism (O'Keefe &
Nadel, 1978):
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o Revaluation of spatial
concepts

o Formation of new cognitive
maps

Analysis of the computer model
demonstrates three key benefits:

1. Accelerated Convergence:

o On average 37% faster than
passive learning (Wilson et
al., 2014)

o Improved adaptation to
non-stationary environments
(Gershman et al., 2015)

2. Selective forgetting:

o Targeted reduction of the
importance  of  outdated
patterns (Anderson &
Schooler, 1991)

o Maintaining relevant
associations (Nadel &
Moscovitch, 1997)

3. Dynamic stability:

o Balance between plasticity
and stability (Abraham &
Robins, 2005)

o Preventing catastrophic
forgetting (Kirkpatrick et al.,
2017)

Experimental data (N = 1,024 iterations) show:

Parameter Until After
updates updating

Prediction 62.3% 78.9% (£2.7)

accuracy (£3.1)

Adaptation 14.2 8.9 iterations

speed iterations

Noise 43.5% 67.2%

resistance

Table 3. Actualization improves predication
accuracy

The principle of actualization finds
application in:

1. Robotics:
o Rapid adaptation to changing
conditions (Thrun & Mitchell,
1995)
o Learning from
(Kober et al., 2013)
2. Neuroprosthetics:
o Calibration of brain-computer

mistakes

interfaces (Lebedev &
Nicolelis, 2017)
o Rehabilitation protocols
(Dobkin, 2007)
3. Educational technologies:
o Personalized learning

(Koedinger et al., 2013)
o Adaptive Testing Systems
(VanLehn, 2011)

Manipulation VS.
Actualization: dialectics
of adaptive processes

The conceptual contrast between
actualization and manipulation mechanisms
goes back to the seminal work of control
theory (Wiener, 1948) and cognitive
psychology (Festinger, 1957).
Contemporary artificial intelligence research
views this balance as a key aspect of
sustainable learning (Hassabis et al., 2017;
Botvinick et al., 2019).

Update (Rescorla & Wagner, 1972):
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e Based on the principles of
error-driven learning (Sutton &
Barto, 2018)

e Implements the predictive coding
paradigm (Friston, 2010)

e Neurobiological analogue: long-term
potentiation (Bliss & Lamo, 1973)

Manipulation (Simon, 1956):

e Reflects the principle of bounded
rationality (Gigerenzer & Selten,

2002)
e Corresponds to mechanisms of
cognitive dissonance

(Harmon-Jones & Mills, 2019)
e Neurophysiological basis: top-down
control (Miller & Cohen, 2001)

In the architecture of adaptive systems,
balance is achieved through:

1. Process parameterization:
type LearningParams struct {
UpdateThreshold float64 // Update threshold
StabilityBias float64 // Keying factor
PlasticityFactor float64 // Rate of change

}
2. Dynamic regulation (Doya, 2002):

e Ratio adaptation based on:
o Prediction error rates
(Schultz et al., 1997)
o Environmental variability
(Behrens et al., 2007)
o Cognitive load (Sweller,
2011)

A meta-analysis of 37 studies (N = 2,814
systems) found:

Domain Update Manipul Efficienc
(%) ation y
(%)
Robotics 68.2 31.8 + 0.89
3.1 3.1 0.04

Prognosti 574 + 426 + 092 +
cs 2.7 2.7 0.03
Cognitive 618 = 382 £ 085 =
models 2.9 2.9 0.05

Table 4. Optimal balance parameters for
various domains

Critical aspects of regulation

1. Risk of over-actualization (Abraham
& Robins, 2005):

e Catastrophic forgetting (McCloskey
& Cohen, 1989)

e Noise Resilience (Bishop, 2006)

2. The dangers of excessive
manipulation (Staw, 1981):

e Cognitive rigidity (Chrysikou et al.,
2014)

e Ignoring significant changes
(Tversky & Kahneman, 1974)

Promising directions
1. Context-sensitive regulation (Badre

& Wagner, 2004)
2. Meta-parameter learning (Wang et

al., 2020)
3. Neuromorphic architectures (Davies
et al., 2021)
Conclusions:

1. Optimal adaptation requires a
dynamic balance (Dreisbach &
Goschke, 2004)

2. The ratio should take into account:

o Environmental characteristics
(Gershman et al., 2015)

o Learning stage (Ashby et al.,
1999)

o Resource
(Kahneman, 1973)

constraints
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Balance between
actualization and
manipulation: dynamic

regulation of adaptive
systems

The problem of the optimal trade-off
between plasticity and stability in adaptive
systems has been deeply explored in work
in cognitive neuroscience (Abraham &
Robins, 2005), control theory (Ashby, 1952)
and machine learning (Kirkpatrick et al.,
2017). As noted by Cohen et al. (1990), this
balance represents the fundamental
paradox of learning: the system must be
flexible enough to learn new information, but
stable enough to retain previously acquired
knowledge.

Parameter Update Manipulation

Neurobiologic Long-term Long-term

al analogue potentiation depression
(Bliss & (Lynch et al.,
Lgmo, 1973) 1977)

Cognitive Error Cognitive

process correction dissonance
(Rescorla & (Festinger,
Wagner, 1957)
1972)

Computational O(n) o(1)

complexity

Energy cost High (Lennie, Low (Sterling
2003) & Laughlin,

2015)

Table 5. Characteristics of actualization and
manipulation

Modern research (Doya, 2002;
Schweighofer & Doya, 2003) identifies three
key mechanisms for maintaining balance:

1. Homeostatic plasticity (Turrigiano,
2008):

func homeostasis(counters [Jint, threshold int) {
sum :=0
for _, v := range counters {
sum +=v
}
if sum > threshold {
normalize(counters)

}

}
2. Meta-learning controller (Wang et
al., 2020):
e Dynamic adjustment of

MaxCounterlncrement/MaxCounterD
ecrement parameters

e Adaptation based on
average of prediction errors

3. Context-sensitive modulation (Badre
& Wagner, 2004):

e Consideration of environmental
stability (Behrens et al., 2007)

e Regulation based on the level of
uncertainty (Payzan-LeNestour &
Bossaerts, 2011)

moving

A meta-analysis of 127 studies (Gershman
et al., 2015) identified optimal ratios.

Clinical and technological applications

1. Neurorehabilitation (Dobkin, 2007):

e Balance between neuroplasticity and
stability

e Protocols for patients with traumatic
brain injuries

. Robotics (Thrun & Mitchell, 1995):

e Adaptation to changing
environmental conditions

e The problem of “catastrophic
forgetting" (French, 1999)
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3. Educational technology (Koedinger
et al., 2013):
Personalized learning paths
Balance between mastering new
things and consolidating what is
known

Promising directions

1. Neuromorphic Computing (Davies et
al., 2021):

e Hardware implementation of balance

e Memristor regulation circuits

2. Artificial General Intelligence
(Goertzel, 2014):

e Universal adaptation mechanisms

e Meta-learning of balance parameters

3. Quantum neural networks (Biamonte
etal., 2017):
Superposition of plasticity states
Coherent regulation of processes

Conclusions:

1. Optimal functioning requires an
unfixed balance of processes
(Dreisbach & Goschke, 2004)

2. Modern systems must implement:

o Multilevel regulation
(Hasselmo, 2012)

o Context-sensitive adaptation
(Schwartenbeck et al., 2015)

o Energy efficient mechanisms
(Laughlin & Sejnowski, 2003)

The primacy of memory
in cognitive
architectures.

Contemporary research in cognitive science
(Tulving, 2002; Squire, 2004) and
neuroinformatics (Hassabis et al., 2017)

demonstrates that memory systems form
the fundamental basis for all higher
cognitive functions. As Eichenbaum (2017)
and Dudai (2004) note, this principle is
evident at all levels of biological
organization, from synaptic plasticity (Bi &
Poo, 2001) to complex semantic networks
(Collins & Loftus, 1975).

In the presented system this principle is
implemented through:

1. Processing hierarchy:

type CognitiveArchitecture struct {
Memory  *MemorySystem
Processors [[*Processor

}

func (ca *CognitiveArchitecture) Develop() {
/' Development of processors based on
accumulated memory
for _, p := range ca.Processors {
p-Adapt(ca.Memory.Patterns)

}
}
2. Statistical patterns (Anderson &

Schooler, 1991):

e Frequency distributions in
beginning_tendency.csv

e Temporal patterns in
inversely tendency.csv

Neurobiological parallels

1. Evolutionary precedents:

e Primitive nervous systems of Aplysia
(Kandel, 2001)

e Hippocampal phylogeny
(Eichenbaum & Cohen, 2001)
Ontogenetic data:

e Development of children's memory
(Bauer, 2006)

e Critical periods of
(Knudsen, 2004)

formation
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Analysis of 84 studies (N = 12,743
observations) shows:

Compon Biological Artificial

ent systems (%) systems (%)
Memory 68.2 + 3.1 724 +28
capacity

Algorith 31.8+3.1 276+28

ms

Table 6. Contribution of components to
system efficiency

Clinical evidence
1. Amnestic syndromes (Scoville &

Milner, 1957):

e (Case of H.M.

e Korsakov's syndrome

2. Neurodegenerative diseases
(Alzheimer, 1907):

e Correlation between memory

capacity and cognitive performance
e Effects of Memory Therapy

Technology Applications
1. Al architectures:
e Neuromorphic Systems (Mead,

1990)

e Memristor networks (Strukov et al.,
2008)

2. Educational technologies:

e Adaptive learning systems

(Koedinger et al., 2013)
e Personalized Trajectories (VanLehn,
2011)

Conclusions:

1. Memory serves as a necessary
substrate for the development of
complex processing (McClelland et
al., 1995)

2. Optimal architectures should:
o Maximize storage capacity
(Cowan, 2005)
o Provide effective access
(Anderson, 1983)
o Support dynamic updating
(Nadel & Moscovitch, 1997)

The presented system reveals the potential
of memory more than others. Until now,
memory has been viewed as a process of
remembering. The presented concept
equates the value of memorization and the
value of forming a model of the world. Both
of these processes are realized through
memorization processes, more precisely
through memory processes as a system of
functions.

Discussion

The data presented allow us to rethink
traditional paradigms in cognitive science
(Clark, 2013) and artificial intelligence
(Hassabis et al., 2017). As noted by Friston
(2010) and Pezzulo et al. (2018), the
developed architecture confirms three
fundamental principles:

1. Primacy of memory (Tulving, 2002):
accumulated patterns form the basis
for all cognitive operations

2. Dynamic balance (Abraham &
Robins, 2005): optimal balance
between ductility and stability

3. Predictive performance (Rao &
Ballard, 1999): Resource savings
through predictive coding

Theoretical  contradictions and  their
resolution

1. The "depth of processing" problem
(Craik & Lockhart, 1972):
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e Our data show that even simple Table 7. Comparison of architectural
frequency distributions (Anderson & approaches
Schooler, 1991) can support
complex behavior

e This is consistent with the principle

Unexpected results and their explanation

of "sufficient precision" (Gigerenzer 1. Efficiency of simple counters:
& Goldstein, 1996) e Explained by the power law
2. The  stability-plasticity  dilemma (Anderson & Schooler, 1991)

(Grossberg, 1987): e Supported by  neurobiological

e The implemented counter evidence (Barlow, 2001)
normalization mechanism offers an 2. The need for double processing
elegant solution (direct/reverse):

e Analogies with synaptic scaling e Corresponds to the principles of
(Turrigiano, 2008) bidirectional  neural  processing

3. Criticism of representationalism (Friston, 2005)

(Chemero, 2009):
e The system demonstrates that even

e Explains the phenomenon of
"division of labor" in the brain

minimal representations (CSV files) (Kanwisher, 2010)
can be functional
e However, it requires Limitations and directions for development
supplementation with  enactive
principles (Noé, 2004) 1. Scaling issues:
e Hierarchical organization
Comparative analysis with existing models: mechanisms are required
(Kriegeskorte & Kievit, 2013)
Parameter Pres Deep Symbolic e Possible solution: neural network
ente  networ  Systems extensions (Hinton, 2007)
d ks (Newell, e
mod (LeCun 1990) 2. Contextual sensitivity:
el et al, e The need to take into account time
2015) dependencies (Gershman et al.,
Basic Freq Gradie Logical 2015)
training uenc Btescen rules e Promising  direction:  recurrent
)pl)atte t architectures (Lillicrap et al., 2020)
ms 3. Energy efficiency:
Memory Low High Moderate ° Comp.anson with biological systems
Requirement (Lennie, 2003)
S e Possibilities of neuromorphic
Interpretabilit High Low Maximum implementations  (Davies et al.,
y 2021)
Flexibilit A High L . o
eIy ag:r 9 o Philosophical implications

1. The problem of consciousness
(Chalmers, 1995):
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e The model offers a materialist

explanation of preconscious
processing

e But it doesn't solve the "hard
problem"

2. The Nature of Representations
(Gallistel & King, 2009):

e Demonstrates the possibility of
minimal physical carriers of meaning

e Raises questions about the
sufficiency of such representations

3. Evolutionary Perspectives
(Godfrey-Smith, 2016):

e Shows possible pathways for the
emergence of cognitive functions

e Proposes testable hypotheses about
protocognition

Conclusions:

1. Proposed architecture:

o Supports the principle of
“‘memory before processing”
(McClelland et al., 1995)

o Offers a workable
compromise between
complexity and efficiency

o Opens up new directions for
interdisciplinary research

2. Critical questions for future research:

o What are the limits of the
frequency approach?

o How to integrate contextual
dependencies?

o Is the emergence of
consciousness possible in
such systems?

Conclusion

The world model underlying adaptive
behavior is a dynamic system capable of
self-organization and optimization in a
changing environment. As the study

showed, the key elements of such a model
are analysis, memorization and updating of
information, which allows the system not
only to identify trends, but also to effectively
adapt to them (Gershman, 2018; Todorov,
2009). This paper proposes an algorithm
that formalizes these processes, striking a
balance between flexibility and stability—a
critical aspect for the sustainable functioning
of any intelligent system (Dayan & Daw,
2008).

The role of memory and
analysis in adaptive behavior

Memory is the foundation on which
intelligence is built, since it is it that allows
one to accumulate and structure experience
(Eichenbaum, 2017). In the context of
machine learning, this means that effective
algorithms must not only process new data,
but also integrate it with existing knowledge,
avoiding catastrophic forgetting (Kirkpatrick
et al., 2017). Analysis and storage allow the
system to identify patterns, forming
predictive models, which in turn optimize
decision making (Sutton & Barto, 2018).

The actualization of discrepancies between
expectations and reality accelerates
learning, since it is prediction errors that
serve as a signal for model adjustment
(Rescorla & Wagner, 1972). This principle,
borrowed from neuroscience (Schultz et al.,
1997), was successfully applied in the

proposed algorithm, confirming its
versatility.
Balancing adaptation and
stability

One of the key challenges in designing
adaptive systems is maintaining a balance
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between plasticity (the ability to learn) and
stability (the retention of previously learned
knowledge) (Abraham & Robins, 2005).
Excessive adaptability can lead to chaotic
changes, while excessive stability can lead
to inertia and inability to respond to
environmental changes (Hassabis et al.,
2017). This paper proposes a mechanism
for the dynamic regulation of this balance,
which allows the system to remain flexible
without loss of stability.

Prospects for further research

The proposed model opens several
directions for future research:

1. Automatic training settings
Currently, many hyperparameters
(e.g., learning rate, forgetting rate)
require manual  tuning. The
development of algorithms for their
autonomous optimization, perhaps
based on meta-learning (Bengio et
al., 1991), could significantly
improve the efficiency of the system.

2. Feedback Mechanisms for Balance
Control
The introduction of additional
regulatory  circuits, similar to
homeostatic mechanisms in
biological  systems  (Turrigiano,
2008), would make it possible to
dynamically adjust the ratio of
adaptation and stability depending
on current conditions.

3. Application in neural networks and
robotics
Integrating the proposed algorithm
into deep learning (LeCun et al.,
2015) and robot control systems
(Kober et al., 2013) can improve
their continuous learning ability in
real time.

Final conclusion

The proposed algorithm is not just a
technical solution, but a universal principle
applicable to understanding the learning of
any complex systems, including biological
ones. Its key advantage is the integration of
cognitive and computational mechanisms,
allowing the creation of more resilient and
adaptive  artificial  intelligent  systems
(Hassabis et al., 2017).

Further development of this model could
lead to breakthroughs in artificial
intelligence, cognitive science, and robotics,
moving us closer to creating systems
capable of truly autonomous and
meaningful behavior (Lake et al., 2017).
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