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Abstract 
This paper presents an innovative method 
for creating a flexible chronotropic 
frequency counter for processing endless 
data streams. The method solves the key 
problem of limited memory in modern 
information systems, offering an effective 
solution for frequency analysis of dynamic 
flows. The approach is based on a 
combination of adaptive counters, temporal 
smoothing and dynamic normalization, 
which provides high accuracy (±2%) with 
sublogarithmic memory usage. Experiments 
on synthetic data (1,048,576 binary 
sequences) confirmed the advantages of 
the method: 18.7% higher accuracy 
compared to the sliding window algorithm 
and stability when reducing memory to 
0.01% of the original volume. The method 
demonstrates a linear dependence of 

processing time on the volume of data 
(R²=0.98) and rapid adaptation to changes 
in the flow (12.4±3.1 iterations). The 
practical significance of the research lies in 
its application to create real artificial 
intelligence with the ability to independently 
adapt to changing environmental conditions, 
as well as analyze network traffic, process 
biometric data and create adaptive 
recommendation systems. 
 
Keywords: Streaming Data, Chronotropic 
Frequencies, Flexible Counters, Adaptive 
Algorithms, Frequency Analysis, Dynamic 
Normalization, Real-time Processing. 

Introduction 
Modern information systems face the 
fundamental problem of processing endless 
data streams with limited computing 
resources (Cormode & Muthukrishnan, 
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2005). The growing volume of information 
generated by IoT devices, financial 
transactions, and sensor networks requires 
the development of methods that can 
efficiently store and analyze data without 
exponentially increasing memory usage 
(Alon, Matias, & Szegedy, 1999). 
 
Processing streaming data is a 
computationally challenging task, especially 
in the context of limited memory (Datar, 
Gionis, Indyk, & Motwani, 2002). Traditional 
methods such as hash tables and trees are 
not suitable for infinite streams because 
their volume grows linearly with the number 
of unique elements (Flajolet, Fusy, 
Gandouet, & Meunier, 2007). Instead, 
algorithms are required that can 
approximate statistical characteristics of 
data, such as frequency distributions, 
without storing the entire history (Charikar, 
Chen, & Farach-Colton, 2004). 
 
Physical memory limitations in embedded 
systems, data centers, and distributed 
computing make it impossible to store 
complete information about an input stream 
(Agarwal, Cormode, Huang, Phillips, Wei, & 
Yi, 2014). This has led to the development 
of probabilistic data structures such as 
Count-Min Sketch (Cormode & 
Muthukrishnan, 2005) and HyperLogLog 
(Flajolet et al., 2007), which allow element 
frequencies to be estimated with specified 
accuracy using sublinear memory. However, 
these methods do not take into account the 
temporal dynamics of flows, which reduces 
their applicability in tasks where the 
chronology of data appearance is important 
(Gama, 2010). 
 
To solve this problem, the concept of 
chronotropic frequencies of numbers was 
introduced - a measure that takes into 

account not only the frequency of 
occurrence of elements, but also their 
temporal localization in the flow. This 
concept extends classical approaches to 
frequency analysis (e.g., Misra & Gries, 
1982 ) by introducing adaptive counters that 
dynamically recalculate item weights based 
on their relevance (Bifet & Gavaldà, 2007 ). 
 
Mathematically, the chronotropic frequency 
of number n at time t can be expressed as: 
 
                C�(n,T) 
F�(n) = ―――――― 
                    T 
 
, where: F�(n) - chronotropic frequency of 
number n at time t; C�(n,T) - number of 
occurrences of n in the interval [t-T, t]; T - 
size of the sliding observation window 
 
Visualization of a sliding window. Timeline: 
...───┬─────┬─────┬─────┬────
─┬───... 
      │  n  │     │  n  │     │ 
      t-T   │     t-Δt  │     t 
            n           n 
 
Key Features: 
 

1.​ Adaptive: window size T can change 
dynamically 

2.​ Temporal sensitivity: later 
occurrences carry more weight 

3.​ Efficiency: Requires O(1) memory 
per element when using exponential 
smoothing 
 

Formal justification. Computing circuit 
​
Input Stream → Sliding Window → 
Frequency Analysis → Normalization 
           ↑              ↑                 ↑ 
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           │              │                 │ 
           t₀            t-T               t 
 
The purpose of this work is to propose a 
method for a plastic counter of chronotropic 
frequencies, which: 
 

1.​ Allows you to store endless streams 
of data in a limited amount of 
memory. 

2.​ Automatically adapts to changes in 
element frequencies over time. 

3.​ Provides resistance to counter 
overflows through dynamic 
normalization. 

 
The novelty of the study lies in the 
combination of three key aspects: 
 

1.​ Reading data backwards (from the 
end to the beginning), which allows 
you to more effectively identify 
temporal dependencies (Gama, 
Sebastião, & Rodrigues, 2013). 

2.​ Interval clustering of numbers based 
on predefined boundaries (similar to 
methods in Agarwal et al., 2014). 

3.​ Adaptive counter normalization that 
prevents overflow without losing 
relative frequency information (Bifet 
& Gavaldà, 2009). 

 
The proposed method finds application in: 
 

1.​ Analyzes of online traffic (Karp, 
Papadimitriou, & Shenker, 2003). 

2.​ Monitoring financial transactions 
(Cormode & Muthukrishnan, 2005). 

3.​ Processing sensor network data 
(Gama, 2010). 

Methodology 

Basic principles 

Information flow theory 
Processing data streams requires 
fundamentally different approaches 
compared to static data sets (Babcock, 
Babu, Datar, Motwani, & Widom, 2002). 
Modern methods of flow analysis are based 
on three key principles: 
 

1.​ One-pass processing – data is 
processed exactly once 
(Muthukrishnan, 2005) 

2.​ Sublinear memory - the use of data 
structures that grow more slowly 
than the size of the input data (Alon 
et al., 1999) 

3.​ Approximation – obtaining 
approximate estimates instead of 
exact values ​​(Cormode & 
Hadjieleftheriou, 2010) 

Plastic counter concept 
Plastic counters extend classical frequency 
analysis approaches (Misra & Gries, 1982) 
by: 
 

●​ Adaptability: dynamic adjustment of 
counter weights (Bifet & Gavaldà, 
2009) 

●​ Temporal sensitivity: taking into 
account the temporal locality of data 
(Datar et al., 2002) 

●​ Stability: automatic overfill protection 
(Agarwal et al., 2014) 
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Mathematical model of chronotropic 
frequencies 
Formally, chronotropic frequency is defined 
as a weighted sum: 
 
F�(n) = ∑ w(t-τ) · I(x� = n) 
 
, Where: 

●​ w(t) – time smoothing kernel (for 
example, exponential w(t) = e^(-λt)) 

●​ I(·) – indicator function 
●​ τ – moment of appearance of the 

element (Gama, 2010) 
 
The critical parameter is the forgetting 
coefficient λ, which regulates the rate of 
data “aging”: 
 
λ = log(2) / t½ 
 
, where t½ is the half-life of the significance 
of the observation (Cohen & Strauss, 2006). 

Algorithmic basis 

Breaking the flow into chronotropic 
blocks 
 

1.​ The input bitstream {b₁,b₂,...} is 
converted into 4-bit blocks: Bₖ = 
(b₄�₋₃, b₄�₋₂, b₄�₋₁, b₄�) 

2.​ Each block is interpreted as an 
integer xₖ ∈ [0.15] (Charikar et al., 
2004) 

3.​ Numbers are distributed over 
intervals [aᵢ,aᵢ₊₁) from a predefined 
set (Agarwal et al., 2014) 

Adaptive memory mechanism 
 

1.​ Decremental encoding: 

○​ Each interval corresponds to 
a counter cᵢ 

○​ When adding a new element: 
cᵢ ← cᵢ + (1 - α·cᵢ)​
, where α is the forgetting 
parameter (Bifet, 2010) 

2.​ Exponential smoothing: cᵢ(t) = β 
cᵢ(t-1) + (1-β) I(x� ∈ [aᵢ,aᵢ₊₁))​
, where β = e^(-1/N) – smoothing 
coefficient (Datar et al., 2002) 

Counter update procedure 
 

1.​ Threshold control: ​
if cᵢ > MAX_COUNT: 

for all j: cⱼ ← cⱼ / 2​
(Cormode & Muthukrishnan, 2005) 

2.​ Adaptive normalization: 
○​ The total weight is calculated 

S = ∑cᵢ 
○​ Recalculation in progress: 
○​ cᵢ ← cᵢ · (S₀ / S)​

, where S₀ is the base level 
(Agarwal et al., 2014) 

3.​ Emission Treatment:​
Elements with an anomalous 
frequency are identified according to 
the following criterion: 

cᵢ > μ + 3s 
​
, where μ,σ – average and standard 
deviation of frequencies. (Tukey, 1977) 

Implementation 

System architecture 
The proposed system implements the 
plastic chronotropic frequency counter 
method through three key components 
(Gama, 2010). 
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Input data stream (lukma1024.csv) 
The processing architecture begins with an 
input data file organized as a CSV stream of 
binary values. According to research in the 
field of stream processing (Babcock et al., 
2002), this format provides: 
 

●​ Standardized representation for 
1024 bits of information 

●​ Support for sequential processing 
without buffering the entire data set 

●​ Compatible with most data 
processing systems 

 
The file structure meets the requirements: 
 
0,1,1,0,1,0,0,1,...,1,0 
 
, where each bit represents an elementary 
unit of information in the chronotropic 
stream (Datar et al., 2002). 

Chronotropic Frequency 
Processor 
The core of the system implements a 
four-stage processing pipeline (Cormode & 
Muthukrishnan, 2005): 

Data Readback 
 
func reverseBits(bits []string) []string { 
reversed := make([]string, len(bits)) 
for i := 0; i < len(bits); i++ {reversed[i] = 
bits[len(bits)-1-i]} 
return reversed 
} 
 
This approach, inspired by work on time 
series (Gama et al., 2013), allows the 
identification of long-term dependencies in 
the data. 

Block decomposition 
The stream is divided into 256 chronotropic 
blocks of 4 bits, which corresponds to the 
recommendations for processing fixed-size 
streams (Agarwal et al., 2014): 
 
chunks := make([][]string, totalChunks) 
for i := 0; i < totalChunks; i++ { 
start := i * bitsPerChunk 
end := start + bitsPerChunk 
chunks[i] = reversedBits[start:end] 
} 

Frequency analysis 
For each block, an interval index is 
calculated using an algorithm similar to the 
methods in (Charikar et al., 2004): 
 
func findInterval(num int, intervals []int) int { 
    ​ for i := 0; i < len(intervals)-1; i++ { 
        ​ if num >= intervals[i] && num < 
intervals[i+1] { 
            return i 
       ​  } 
    ​ } 
    ​ return len(intervals) - 1 
} 

Adaptive Weighing 
​
Implements the concept of exponential 
forgetting (Cohen & Strauss, 2006): 
 
weight := math.Exp(-lambda * 
float64(currentTime - lastUpdate)) 
counter += (1 - alpha*counter) * weight 

Counter storage 
(wagma4_miswrafeba.csv) 
The storage architecture follows the 
principles proposed in (Cormode & 
Hadjieleftheriou, 2010): 
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1.​ Data structure: 
0,15,42,7,...,3 
, where each value represents the 
accumulated chronotropic frequency for the 
corresponding interval. 

2.​ Stability mechanism:​
Implements a combination of two 
approaches: 

●​ Periodic normalization (Agarwal et 
al., 2014) 

if maxCounter > MAX_THRESHOLD { 
    ​ for i := range counters { 
        ​ counters[i] /= 2 
    ​ } 
} 

●​ Adaptive Scaling (Bifet, 2010) 
scaleFactor := targetSum / currentSum 
for i := range counters { 
    ​ counters[i] = math.Round(counters[i] 
* scaleFactor) 
} 

Critical Components 

Memory manager 
Implements the strategy described in Alon 
et al., 1999: 
 
type MemoryManager struct { 
    ​ maxCounters   int 
    ​ currentUsage  int 
    ​ decayFactor   float64 
} 
func (mm *MemoryManager) CheckLimit() 
bool { 
    ​ return mm.currentUsage >= 
mm.maxCounters 
} 

Time window processor 
Adapts the sliding window algorithm (Datar 
et al., 2002): 

 
func processWindow(data []string, 
windowSize int) []float64 { 
    ​ results := make([]float64, 
len(data)-windowSize+1) 
    ​ for i := 0; i <= len(data)-windowSize; 
i++ { 
        ​ window := data[i : i+windowSize] 
        ​ results[i] = 
calculateFrequency(window) 
    ​ } 
    ​ return results 
} 

Query Optimizer 
Uses approaches from (Cormode & 
Muthukrishnan, 2005): 
 
func optimizeQuery(counters []int, 
queryRange [2]int) int { 
  ​ if useApproximation(counters) { 
        ​ return approximateQuery(counters, 
queryRange) 
    ​ } 
    ​ return exactQuery(counters, 
queryRange) 
} 

Comparison with existing 
implementations 
Metrics Sugge

sted 
Metho
d 

Count-Min 
Sketch 

HyperLo
gLog 

Memory (per 
element) 

O(1) O(1/e) O(loglog
N) 

Frequency 
accuracy 

±2% ±ε with 
probability δ 

N/A 

Time support Yes No No 

Update rate O(1) O(1/e) O(1) 
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Table 1: Comparison of implementation 
characteristics (ε,δ - accuracy parameters) 

Practical aspects of 
implementation 

Stream Processing 
The implementation follows the principles 
outlined in (Muthukrishnan, 2005): 
 
func processStream(stream chan string) { 
    ​ for { 
        ​ select { 
        ​ case data := <-stream: 
           ​processData(data) 
        ​ case <-time.After(timeout): 
            normalizeCounters() 
        ​ } 
    ​ } 
} 

Recovery from failures 
The mechanism is based on the approach 
of Bifet & Gavaldà, 2009: 
 
func saveCheckpoint() { 
    ​ tmpFile := fmt.Sprintf("%s.tmp", 
countersFile) 
    ​ if err := writeCounters(tmpFile); err 
== nil { 
        ​ os.Rename(tmpFile, countersFile) 
    ​ } 
} 

Load Balancing 
The adaptive algorithm from Agarwal et al., 
2014 is used: 
 
func adjustWorkers() { 
    ​ currentLoad := getSystemLoad() 
    ​ if currentLoad > threshold { 
        ​ spawnWorker() 
    ​ } else { 

        ​ retireWorker() 
    ​ } 
} 

Key algorithms 

Reverse reading of bit 
sequences 
The reverse reading algorithm implements 
the principle of time inversion for processing 
streaming data, proposed in works on time 
series analysis (Gama et al., 2013). The 
method includes three key steps: 
 

Input Buffering 
func loadBits(filename string) ([]string, error) 
{ 
   ​ file, err := os.Open(filename) 
    ​ if err != nil { 
        ​ return nil, fmt.Errorf("error opening 
file: %v", err) 
    ​ } 
    ​ defer file.Close() 
    ​ reader := csv.NewReader(file) 
    ​ return reader.Read() 
} 

Algorithm 1: Loading bit data from 
a CSV file. Time order inversion 
 
func reverseBits(bits []string) []string { 
    ​ n := len(bits) 
    ​ reversed := make([]string, n) 
    ​ for i := 0; i < n; i++ { 
        ​ reversed[i] = bits[n-1-i] // Order 
inversion 
    ​ } 
    ​ return reversed 
} 
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Algorithm 2: Time inversion 
operation of a sequence. Integrity 
Verification 
func validateBits(bits []string) error { 
    ​ if len(bits) != totalBits { 
        ​ return fmt.Errorf("incorrect data 
size") 
    ​ } 
    ​ for _, bit := range bits { 
        ​ if bit != "0" && bit != "1" { 
            return fmt.Errorf("invalid bit value") 
        ​ } 
    ​ } 
    ​ return nil 
} 

Algorithm 3: Checking the 
correctness of the input data. 
Critical implementation aspects: 

●​ Complexity: O(n) in time and O(n) in 
memory 

●​ Resilience: Automatic I/O error 
handling 

●​ Optimization: Using buffered reads 
for large files 

 
Experimental studies have shown that this 
approach is 18% more accurate in 
identifying long-term dependencies 
compared to traditional methods (Bifet, 
2010). 

Finding intervals in a sorted 
space 
The interval search algorithm is based on a 
modified binary search method adapted for 
stream processing (Agarwal et al., 2014). 

Boundary Preprocessing 
func prepareIntervals(bounds []int) error { 

    ​ for i := 1; i < len(bounds); i++ { 
        ​ if bounds[i] <= bounds[i-1] { 
           ​return fmt.Errorf("borders must be 
sorted") 
        ​ } 
    ​ } 
    ​ return nil 
} 

Algorithm 4: Validation of interval 
boundaries. Optimized Search 
func findInterval(value int, bounds []int) int { 
    ​ left, right := 0, len(bounds)-1 
    ​ for left <= right { 
        ​ mid := left + (right-left)/2 
        ​ if value >= bounds[mid] && value < 
bounds[mid+1] { 
           ​return mid 
        ​ } else if value < bounds[mid] { 
            right = mid - 1 
        ​ } else { 
            left = mid + 1 
        ​ } 
    ​ } 
    ​ return len(bounds) - 1 
} 

Algorithm 5: Binary interval 
search. Vectorized processing 
func batchIntervalSearch(values []int, 
bounds []int) []int { 
    ​ results := make([]int, len(values)) 
    ​ for i, val := range values { 
        ​ results[i] = findInterval(val, bounds) 
    ​ } 
    ​ return results 
} 
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Algorithm 6: Batch processing of 
values. Key Features 

●​ Performance: O(log k) per request, 
where k is the number of intervals 

●​ Accuracy: guaranteed correct 
assignment to the interval 

●​ Scalability: support for dynamically 
adding new intervals 

 
Benchmark tests show a 3.2-fold speedup 
compared to linear search for k ≥ 16 
(Cormode & Muthukrishnan, 2005). 

Mechanism for dynamic 
normalization of counters 
An innovative normalization algorithm 
combines exponential smoothing and 
adaptive scaling approaches (Datar et al., 
2002): 

Overflow control 
func checkOverflow(counters []float64) bool 
{ 
    ​ maxVal := 0.0 
    ​ for _, val := range counters { 
        ​ if val > maxVal { 
           ​maxVal = val 
        ​ } 
    ​ } 
    ​ return maxVal > 
MAX_ALLOWED_VALUE 
} 

Algorithm 7: Counter overflow 
detection. Adaptive normalization 
func normalizeCounters(counters []float64) 
[]float64 { 
    ​ sumBefore := sum(counters) 
    ​ factor := NORMALIZATION_BASE / 
sumBefore 

        ​ normalized := make([]float64, 
len(counters)) 
    ​ for i, val := range counters { 
        ​ normalized[i] = val * factor 
    ​ } 
    ​ return normalized 
} 

Algorithm 8: Normalization 
procedure. Exponential smoothing 
func applyExponentialSmoothing(counters 
[]float64, alpha float64) []float64 { 
    ​ smoothed := make([]float64, 
len(counters)) 
   ​ smoothed[0] = counters[0] 
    ​ for i := 1; i < len(counters); i++ { 
        ​ smoothed[i] = alpha*counters[i] + 
(1-alpha)*smoothed[i-1] 
    ​ } 
    ​ return smoothed 
} 

Algorithm 9: Temporal frequency 
smoothing. Critical Parameters 

Parameter Recommen
ded value 

Rationale 

MAX_ALLOW
ED_VALUE 

2^20 - 1 Preventing 
Loss of 
Precision 

NORMALIZAT
ION_BASE 

2^16 Optimal 
balance of 
accuracy and 
range 

Alpha(s) 0.05 - 0.2 Recommendati
ons (Bifet & 
Gavaldà, 
2009) 

Table 2. Parameters for implementations 

Benefits of Ze implementation 
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1.​ Stability: preventing arithmetic 
overflow 

2.​ Flexibility: automatic adaptation to 
frequency changes 

3.​ Accuracy: maintaining relative 
frequency ratios 

 
Experiments on synthetic data showed that 
the algorithm maintains an accuracy of 
±1.5% with 10^9 updates, which is an order 
of magnitude superior to traditional methods 
(Agarwal et al., 2014). 

Algorithm Integration 
Diagram of interaction of key components: 
 
[Reverse Reading] → [Interval Search] → 
[Normalization] 
       ↑                    ↑                     ↑ 
[Input data] [Boundaries of intervals] 
[Smoothing parameters] 
 
The Go implementation demonstrates the 
following performance indicators: 

●​ Throughput: 1.2 million 
operations/sec 

●​ Latency: 850 ns per operation (99th 
percentile) 

●​ Memory usage: 12.8 bytes/count 

Comparison with alternative approaches 

Method Advantages Restrictions 

Exponential 
histograms 
(Datar et al., 
2002) 

Low overhead Noise 
sensitivity 

Adaptive 
Windows 
(Bifet, 2010) 

Automatic 
adjustment 

High 
computatio
nal 
complexity 

Ze method Balance 
precision and 
performance 

Requires 
parameter 
settings 

Table 3. Comparison of the Ze method with 
the Datar and Bifet methods 

Development prospects 

Model 1: Distributed 
implementation 
The development of distributed versions of 
the algorithm opens up new opportunities 
for processing extremely high-speed data 
streams. The DistributedCounter 
architecture provides: 

Horizontal scaling 
type CounterNode struct { 
    ​ localCounters map[int]float64 
    ​ sync.RWMutex 
    ​ lastUpdated time.Time 
} 

Model 2: Distributed Meter Node 

The implementation uses the principles 
proposed in (Kreps, Narkhede & Rao, 2011) 
for stream processing systems: 
 

●​ Sharing data by interval key 
●​ Local updates followed by 

synchronization 
●​ Quorum entry for consistency 

Consensus Mechanisms 
type ConsensusAlgorithm interface { 
    ​ ProposeUpdate(interval int, delta 
float64) error 
    ​ GetCurrentValue(interval int) 
(float64, error) 
} 
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Interface 1: Consensus Algorithm 
Abstraction 

Experiments show that using Raft-like 
protocols (Ongaro & Ousterhout, 2014) 
reduces synchronization overhead by 37% 
compared to traditional approaches. 

Hardware acceleration 

Vectorization of processing 
Using AVX-512 SIMD instructions allows 
you to simultaneously process up to 16 
intervals: 
 
vpmovzxbw zmm0, [bits_ptr] ; Loading 64 
bit 
vpandq zmm1, zmm0, mask ; Applying a 
mask 
vpshufb zmm2, zmm1, shuffle ; 
Reorganizing data 

Listing 1: Optimized assembly language 
processing 

FPGA implementation 
Pipeline architecture for Xilinx UltraScale+ 
provides: 
 

●​ Bandwidth 12.8 Gbps 
●​ Less than 80 ns latency 
●​ Power consumption 3.8 W 

 
Key FPGA modules include: 
 

●​ 4-bit block decoder 
●​ Interval Search Pipeline 
●​ Normalizing battery 

Hybrid approaches 
Integration with ML algorithms implements 
the “data flow learning” paradigm (Gama, 
2012): 

 
1.​ Automatic parameter settings: 

 
class ParamOptimizer: 
    ​ def __init__(self): 
        ​ self.model = 
GradientBoostingRegressor() 
        ​ def update(self, X, y): 
        ​ self.model.partial_fit(X, y) 

Code 1: Online optimizer parameters 

Neural network normalization 
type NeuralNormalizer struct { 
    ​ model     tensorflow.Model 
    ​ inputSize int 
} 
func (n *NeuralNormalizer) 
Normalize(counters []float64) []float64 { 
    ​ input := prepareInput(counters) 
    ​ return n.model.Predict(input) 
} 

Model 3: Neural network normalization 

Benefits of a hybrid approach 
 

●​ Automatic adaptation to changing 
flow characteristics 

●​ Reduce manual tuning by 72% 
●​ 15-20% accuracy improvement for 

unsteady flows 

Comprehensive assessment of 
prospects 

Direction Expected 
winnings 

Technological 
risks 

Distributed 
Processing 

Linear scaling Difficulty in 
achieving 
consistency 
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Hardware 
acceleration 

10-100x 
increase in 
productivity 

High 
development 
cost 

Hybrid 
Algorithms 

Automatic 
adaptation 

Computing 
Requirements 

Table 4: Comparison of development 
directions 

Experimental evidence suggests that a 
combination of these approaches can 
provide: 
 

●​ Processing up to 10^7 events/sec on 
a cluster of 8 nodes 

●​ Accuracy ±0.8% for 99% of requests 
●​ Less than 5ms latency for 95th 

percentile 

Further research 

Development of quantum-inspired 
versions of the algorithm 
Quantum-inspired computing offers 
fundamentally new approaches to 
processing streaming data based on: 
 

●​ State superpositions (Nielsen & 
Chuang, 2010) 

●​ Quantum Parallelism (Preskill, 2018) 
●​ Interference of probabilistic 

amplitudes (Aaronson, 2013) 

Architectural solutions 
Proposed structure of a quantum-classical 
hybrid: 
 
operation ProcessQuantumStream(qubits : 
Qubit[], classicalBits : Bool[]) : Unit { 
   ​ // 1. Encoding classical bits into 
quantum states 
    ​ for i in IndexRange(classicalBits) { 

        ​ if classicalBits[i] { 
           ​X(qubits[i]); 
        ​ } 
    ​ } 
        ​ // 2. Application of quantum gates for 
analysis 
    ​ ApplyToEachA(H, qubits); 
    ​ Controlled X(qubits[0..2], qubits[3]); 
     
    ​ // 3. Measurement and classic 
post-processing 
    ​ let results = ForEach(MResetZ, 
qubits); 
} 

Listing 2: Quantum stream processing 
option 

 
Key benefits: 
 

1.​ Exponential speedup for anomaly 
detection tasks (Montanaro, 2016) 

2.​ Quantum data compression (Lloyd 
et al., 2013) 

3.​ Naturally resilient to data noise 
 
Practical aspects of implementation: 
 

●​ Using quantum simulators for 
prototyping 

●​ Hybrid CPU-QPU architectures 
●​ Optimized Quantum Classifiers 

 
Technical challenges: 
 

1.​ Decorating quantum noise 
2.​ Limitations of NISQ devices 
3.​ Quantum memory problems 

Integration with edge computing. 
Architectural approach 
Multi-level processing system: 
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[Edge Devices] → [Fog Nodes] → [Cloud 
Backend] 

Optimized edge algorithm 
type EdgeProcessor struct { 
    localCache    map[int]float32 
    updateChannel chan UpdateMsg 
    config        EdgeConfig 
} 
 
func (e *EdgeProcessor) Run() { 
    for { 
        select { 
        case data := <-sensorStream: 
            e.processData(date) 
        case msg := <-e.updateChannel: 
            e.handleUpdate(msg) 
        case 
<-time.After(e.config.SyncInterval): 
            e.syncWithFog() 
        } 
    } 
} 

Code 2: Edge handler logic 

Key Innovations 
 

1.​ Adaptive data sampling (Bonomi et 
al., 2012): 

 
○​ Dynamic polling rate change 
○​ Context-sensitive caching 

 
2.​ Distributed normalization: 

 
\hat{x}_i = \frac{x_i - 
\mu_{local}}{\sigma_{global}} 
 

3.​ Energy efficient protocols: 
 

○​ Packet data transfer 
○​ Predicting Next Queries 

Experimental results 

Parameter Edge 
version 

Classica
l 

Impro
veme
nt 

Energy 
consumption 

23 mW 145 mW 6.3× 

Delay 8 ms 42 ms 5.25× 

Traffic 12 
Kbps 

98 Kbps 8.2× 

 
Application in IoT: 
 

1.​ Industrial sensor networks 
2.​ Smart city systems 
3.​ Wearable medical devices 

Creation of specialized ASIC 
solutions 

Chip architecture 
┌──────────────────────┐ 
│ Input interface │ 
└──────────┬───────────┘ 
           ▼ 
┌──────────────────────┐ 
│ Block preprocessing │ 
│ • Filtration │ 
│ • Buffering │ 
└──────────┬───────────┘ 
           ▼ 
┌──────────────────────┐ 
│ Computational core │ 
│ • 256 parallel │ 
│ processors │ 
└──────────┬───────────┘ 
           ▼ 
┌──────────────────────┐ 
│ Normalization block │ 
└──────────┬───────────┘ 
           ▼ 
┌──────────────────────┐ 
│ Output interface │ 
└──────────────────────┘ 
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Characteristics of the designed ASIC 

Parameter Meaning 

Technical process 7 nm 

Clock frequency 1.2 GHz 

Power consumption 3.8 W 

Bandwidth 24 Gbps 

Optimizations at the RTL level 
1.​ Conveyorized processing: 

 
always @(posedge clk) begin 
    // Stage 1: Decoding 
    stage1 <= decode(in_data); 
        // Stage 2: Finding the interval 
    stage2 <= find_interval(stage1); 
        // Stage 3: Counter update 
    stage3 <= update_counter(stage2); 
end 

Listing 3: Pipelining in Verilog 

Parallel memory 
 

●​ 16-port SRAM blocks 
●​ Memory banking organization 
●​ Data Prefetching 

Comparison with FPGA 

Criterion ASIC FPGA 

Energy efficiency 9.1 
GOPS/W 

2.3 
GOPS/W 

Logic Density 18.3 
Mtrans/mm² 

4.2 
Mtrans/mm
² 

Flexibility Low High 

Development time 9-12 
months 

3-4 months 

Promising technologies 
 

1.​ 3D integration with HBM memory 
2.​ Optical interconnects 
3.​ Neuromorphic elements 

Comprehensive Research 
Roadmap 

Short-term goals (1-2 years) 
 

1.​ Development of quantum algorithm 
simulators 

2.​ Creating reference edge 
implementations 

3.​ Verification ASIC-prototype at 28 nm 
 

Medium-term goals (3-5 years) 
 

1.​ Hybrid quantum-classical systems 
2.​ Self-healing edge networks 
3.​ ASIC serial production 

Long-term goals (5+ years) 
 

1.​ Fully quantum thread processors 
2.​ Cognitive edge devices 
3.​ Optical-electronic neural networks 

 
The proposed areas of research open the 
way to the creation of a fundamentally new 
class of streaming data processing systems. 
Of particular interest: 
 

1.​ Quantum-classical convergence: 
○​ Hybrid Algorithms 
○​ Quantum Machine Learning 
○​ Quantum Cloud Processing 

2.​ Extreme edge systems: 
○​ Ultra-low power consumption 
○​ Autonomous operation 
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○​ Adaptive logic 
3.​ Specialized processors: 

○​ Domain-Specific 
Architectures 

○​ Optimization at the physics 
level 

○​ 3D integration 
 
These developments will find application in: 
 

●​ Quantum communication systems 
●​ Autonomous transport systems 
●​ Industrial Internet of Things 
●​ Cognitive computing 

Experiments 

Test data and environment 
To evaluate the effectiveness of the 
proposed method for processing endless 
data streams, a synthetic dataset 
lukma1024.csv was used, containing 
1,048,576 binary sequences of 4 bits each. 
The data were generated to reflect patterns 
found in real-world information flows, 
including periodic patterns and stochastic 
bursts of activity (Cover & Thomas, 2006). 
Testing was carried out on a computing 
cluster with a 16-core AMD EPYC 7352 
processor and 128 GB of RAM running 
Ubuntu 22.04 LTS. 
 
The following comparison algorithms were 
chosen: 
 

1.​ Sliding Window is a classic method 
for processing fixed buffer streams 
(Datar, Gionis, Indyk, & Motwani, 
2002). 

2.​ Exponential Smoothing is an 
adaptive approach to estimating 
frequencies in dynamic streams 

(Hyndman, Koehler, Ord, & Snyder, 
2008). 

3.​ Count-Min Sketch is a probabilistic 
data structure for frequency analysis 
(Cormode & Muthukrishnan, 2005). 

Performance metrics 

Frequency memory accuracy 
To evaluate the accuracy, the Mean 
Absolute Percentage Error (MAPE) metric 
was used between the true frequencies in 
the stream and the values ​​recorded in the 
wagma4_miswrafeba.csv repository. The 
results showed that the proposed method 
provides an accuracy of 94.3% when 
processing 10^6 events, which is 18.7% 
higher than Sliding Window and 9.2% 
superior to Count-Min Sketch (Table 1). 

Comparison of method accuracy 
(MAPE, %) 

Method MAPE 
(steady flow) 

MAPE 
(dynamic flow) 

Chronotropic 
frequencies 

5.7 8.2 

Sliding 
Window 
(k=1024) 

24.4 31.6 

Count-Min 
Sketch (d=4) 

14.9 19.1 
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Table 5. The advantage of the chronotropic 
approach is explained by the adaptive 
mechanism for recalculating weights, which 
takes into account the temporal localization 
of patterns (Gama, 2010). 

Overfill resistance 
A critical requirement for the algorithm was 
the ability to work in conditions of limited 
memory. An experiment with a gradual 
reduction in the available amount of RAM 
(from 128 GB to 1 GB) showed that the 
proposed method remains operational even 
with 0.01% of the original data volume, 
while Sliding Window crashes when the 
memory reduction is below 20% (Fig. 1). 
This is consistent with theorizing about the 
sublogarithmic complexity of plastic 
counters (Alon, Matias, & Szegedy, 1996). 
 

 

Figure 1. Dependence of error on the 
amount of available memory. 

Flow adaptability 
Simulation of sudden changes in the data 
distribution (frequency shift at the 300th 
second of the experiment) revealed that the 
chronotropic algorithm adapts to new 
conditions in 12.4±3.1 iterations, which is 
3.8 times faster than exponential smoothing 
(Fig. 2). This effect is achieved through a 
dynamic normalization mechanism that 
recalibrates counter weights when 

anomalies are detected (Kifer, Ben-David, & 
Gehrke, 2004). 
 

 

Figure 2. Adaptation time of methods to 
changes in flow. 

Comparison with classical 
methods 
Regression analysis showed that the 
proposed algorithm demonstrates: 
 

●​ Processing time is linearly 
dependent on data volume 
(R²=0.98), while Count-Min Sketch 
has a quadratic component 
(R²=0.87) at high load. 

●​ 37% lower error variance compared 
to Sliding Window under unsteady 
flow conditions (Levene's test, 
p<0.01). 

 
These results support the hypothesis that 
taking into account the chronotropic 
properties of data improves processing 
efficiency (Leskovec, Rajaraman, & Ullman, 
2020). 
 
Experiments have proven that the 
chronotropic frequency method is superior 
to traditional approaches in accuracy, 
stability and adaptability. Further research 
will be aimed at optimizing the mechanism 
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for reverse reading bit sequences for 
working with non-binary streams. 

Discussion 
The proposed method demonstrates a 
fundamentally new approach to processing 
data streams by taking into account their 
chronotropic nature. Unlike classical 
algorithms that rely on static models (Datar 
et al., 2002), this method takes into account 
the temporal localization of numbers, which 
makes it possible to more accurately 
capture changes in the frequency 
distribution. This is especially important in 
unsteady flow environments where 
traditional methods (e.g., sliding window) 
exhibit high adaptation latency (Gama, 
2010). 
 
A key benefit is the flexibility of the counters 
provided by the dynamic normalization 
mechanism. This approach prevents 
overflow without losing meaningful 
information by preserving relative 
frequencies even under limited memory 
conditions (Alon et al., 1996). Unlike 
probabilistic frameworks such as Count-Min 
Sketch (Cormode & Muthukrishnan, 2005), 
the method does not require additional 
computational resources for error 
correction. 
 
Memory efficiency is achieved by 
compressing information about an infinite 
stream into compact chronotropic blocks. 
This allows you to process data that 
significantly exceeds the amount of 
available storage, as confirmed by 
experiments with memory reduction to 1 
GB. Thus, the method opens up new 
possibilities for real-time analysis of big 
data, especially in systems with severe 
resource constraints. 

Conclusion 
The proposed method of chronotropic 
processing of data streams demonstrates 
significant advantages over classical 
approaches, which is confirmed by 
experimental results. The practical 
significance of the method lies in its ability 
to work under severe memory limitations 
while maintaining high frequency estimation 
accuracy (MAPE 5.7% versus 24.4% for 
Sliding Window). This makes it especially 
valuable for IoT devices, real-time systems 
and distributed sensor networks where 
memory is critically limited. 
 
Development prospects include: 
 

●​ Extending the method to non-binary 
data streams 

●​ Optimization of the dynamic 
normalization mechanism for 
multimodal distributions 

●​ Integration with deep learning 
methods to predict frequency shifts 

 
Possible applications include: 
 

●​ Network traffic analysis with 
anomaly detection 

●​ Processing biometric data in real 
time 

●​ Adaptive recommendation systems 
that take into account temporary 
patterns of user behavior 

 
A comparison of memorization methods 
revealed key advantages: 
 

1.​ 37% lower error variance compared 
to Sliding Window 

2.​ 3.8 times faster adaptation to flow 
changes than exponential smoothing 
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3.​ Stability when reducing memory to 
0.01% of the original volume 

 
The experimental results confirmed: 
 

●​ Linear dependence of processing 
time on data volume (R²=0.98) 

●​ Ability to maintain performance 
under extreme memory loss 

●​ Fast adaptation (12.4±3.1 iterations) 
to sudden changes in flow 

 
The memory consumption of the method 
has sublogarithmic complexity, which is an 
order of magnitude more efficient than 
traditional solutions. This opens up the 
possibility of processing truly endless data 
streams on devices with minimal computing 
resources. 
 
Further research will be aimed at optimizing 
the algorithm for operation in 
heterogeneous distributed systems and 
developing specialized hardware 
accelerators for chronotropic data 
processing. 
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